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Abstract
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factor structure in interest rates to represent many bank positions as portfolios

in a small number of bonds. This approach makes exposures comparable across
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strategy to estimate exposure due to interest rate derivatives from regulatory data
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1 Introduction

The economic value of financial institutions depends on their exposure to market risk. A

traditional bank borrows short term via deposits and lends long term via loans. Modern

institutions have increasingly borrowed short term in the money market, for example

via repurchase agreements and lent long term via holding securities such as mortgage

bonds. Modern institutions also play a prominent role in derivatives markets. The value

of positions taken as a result of these activities changes if interest rates change, for

example because of news about future monetary policy or default rates.

Measuring financial institutions’ risk exposure is clearly important for regulation, but

it is also relevant for economic analysis more broadly. Institutions are the main players in

markets for fixed income instruments. For example, many short term instruments (such

as commercial paper) are not traded directly by households. Moreover, banks choose

risk exposures that are different from each other and therefore have different experiences

when conditions change (for example, Lehman versus JP Morgan during the 2007-2009

financial crisis.) This has motivated a literature that aims to explain asset prices from

the interaction of heterogeneous institutions. To quantify such models, we need to know

banks’ exposures.

It is difficult to discern exposures from institutions’ reported credit market posi-

tions. Indeed, common data sources such as annual reports and regulatory filings record

accounting measures on a large and diverse number of credit market instruments. Ac-

counting measures are not necessarily comparable across positions. For example, the

economic value of two loans with the same book value but different maturities will react

quite differently to changes in interest rates. At the same time, many instruments are

close substitutes and thus entail essentially the same market risk. For example, a 10 year

government bond and a 9 year high-grade mortgage bond will tend to respond similarly

to many changes in market conditions.

This paper constructs comparable and parsimonious measures of institutions’ expo-

sure to market risk by representing their positions as portfolios in a small number of

bonds. We start from balance sheet data from the US Reports on Bank Conditions

and Income (“call reports”). We show how to construct, for any bank and for each

major class of credit market instruments, replicating portfolios of bonds that have ap-

proximately the same conditional payoff distribution. We then compare portfolios across

positions as well as across banks.

Our findings suggest that the overall position of the major dealer banks is a portfolio

which is long in long-term bonds and short in cash. We also find that these banks have

large net positions in interest-rate derivatives. This net derivative position comes close

in magnitude to the net position in other fixed income business. We document that,
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during much of our sample, the net-interest rate derivative position does not hedge other

balance-sheet positions. Instead, banks increase their risk exposure through derivatives.

Because of its large size, it is important to account for the net position in interest-rate

derivatives when measuring exposure. The key difficulty in measuring the exposure in

interest-rate derivatives is that banks do not report the sign of their position — whether

they represent bets on interest rate increases (e.g., pay-fixed swaps) or decreases (e.g.,

pay-floating swaps.) Moreover, there is no detailed information about the maturities of

these net (as opposed to gross) derivatives positions or the start day of these derivatives

(and thus their associated locked-in interest rates).

To deal with the lack of reported information, we propose a novel approach to obtain

the exposure contained in the net position in interest-rate derivatives. We specify a state

space model of a bank’s derivatives trading strategy. We then use Bayesian methods to

estimate the bank’s strategy using the joint distribution of interest rates, bank fair and

notional values as well as bid-ask spreads. Intuitively, the identification of the bank’s

strategy relies on whether the net position (per dollar notional) gains or loses in value

over time, together with the history of rates. If rates go up and the bank’s derivative

position experiences gains, the Bayesian estimation puts more probability on a derivative

position with a pay-fixed interest rate.

Our approach is motivated by the statistical finding that the market value of fixed

income instruments exhibit a low-dimensional factor structure. Indeed, a large literature

has documented that the prices of many types of bonds comove strongly, and that these

common movements are summarized by a small number of factors. It follows that for any

fixed income position, there is a portfolio in a few bonds that approximately replicates

how the value of the position changes with innovations to the factors.

For loans and securities, the replication portfolio is derived from detailed information

on the maturity distribution provided by the call reports. For loans reported at book

value, we follow Piazzesi and Schneider (2010) and represent loan portfolios as bundles

of zero coupon bonds. For securities reported at market value, we use those market

values together with the properties of zero coupon bond prices. For derivatives, the

replication portfolio becomes an observation equation for a state space system, which

has unobservable replication weights that can be estimated.

Related literature

The current regulatory framework is known as Basel II. The regulation distinguishes

between credit risk due to borrower default and market risk due to price changes. Reg-

ulator ask banks to estimate default probabilities of the securities that they are holding

either with (external) credit ratings or with internal models. Based on the default proba-

bilities, regulators compute capital requirements for the various positions. This approach
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treats the positions one by one. Our portfolio approach treats credit and market risk

jointly — exploiting the fact that borrowers tend to default when prices move and vice

versa. Moreover, we make positions comparable with each other.

A popular approach to measuring the interest-rate risk exposure of a bank is to run

regressions of the bank’s stock return on a risk factor, such as an interest rate. The

regression coefficient on the interest rate — often referred to as the interest-rate beta, is a

measure of the bank’s average exposure to interest rate changes over the sample period

considered (Flannery and James 1984a). More recently, Landier, Sraer and Thesmar

(2013) take the left-hand side variable to be changes in interest income or earnings as

a fraction of assets. Interest rate betas do not tell us where the bank’s exposure comes

from, that is, what positions generate it. This issue has been investigated by relating

interest rate betas to summary statistics of bank positions. For example, interest rate

betas have been related to banks’ maturity gaps, that is, the difference between bank

assets and liabilities that mature within a specified horizon (Flannery and James 1984b).

Moreover, changes in bank equity values have been related to off-balance sheet statistics

that indicate derivative use (Venkatachalam 1996). A key feature of this line of work

is that exposure measures are by construction constant over time and cannot speak to

how exposures change. Recent extension have attempted to incorporate time-varying

interest rate betas, but those have proven difficult to estimate (for example, Flannery,

Hammed, and Haries 1997, Hirtle 1997). Our replication approach is designed to provide

time series of exposure. Moreover, since we work with positions data, we can report for

each date what positions are generating what exposure.

Our Bayesian approach estimates a time-varying exposure from banks’ gains and

losses on their interest-rate derivative positions. This approach builds on early work by

Gorton and Rosen (1995) who did not have data on market values, because few banks

reported them before the adoption of fair value accounting in the mid 1990s. Instead,

Gorton and Rosen use data on "replacement costs" from the Call Reports, which refers

to the value of derivatives that are assets to the bank (not netting out the liabilities).

Under the assumption that the positions have constant maturity and constant interest-

rate exposure, these data can be used to compute the market value of interest-rate

derivatives.

We find that banks mostly take pay-floating positions in interest-rate derivatives,

which are positions that gain in value from a surprise fall in interest rates. Some of the

counterparties to these positions are nonfinancial corporations, who use pay-fixed posi-

tions in swaps to insure themselves against surprising interest-rate increases. Hentschel

and Kothari (2001) and Chernenko and Faulkender (2011) document these positions em-

pirically. Jermann and Yue (2012) use a theoretical framework to understand why non-

financial corporations have a need for pay-fixed swaps. Minton, Stulz, and Williamson
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(2009) document which financial corporations use credit derivatives.

Since the financial crisis, there has been renewed interest in documenting the balance-

sheet positions of financial institutions. We share the important goal of this literature:

to come up with data on positions that will inform the theoretical modeling of these insti-

tutions, as called for by Franklin Allen in his 2001 AFA presidential address. Adrian and

Shin (2011) investigate the behavior of Value-at-Risk measures reported by investment

banks. They document that VaR per dollar of book equity stayed constant throughout

the last decade, including the financial crisis, when these institutions were deleverag-

ing. He, Khang, and Krishnamurthy (2010) document the behavior of book values of

balance sheet positions of various financial institutions. These positions do not include

derivatives.

Our estimated exposures in the form of replicating portfolios provide broad risk mea-

sure for financial institutions. Other risk measures focus on tail risk (e.g., VaRs, Acharya,

Pedersen, Phillipon, and Richardson 2010, Kelly, Lustig, and van Nieuwerburgh 2011)

or on stress tests (Brunnermeier, Gorton, Krishnamurthy 2012, Duffie 2012). The ad-

vantage of replicating portfolios is that they describe the entire distribution, not just

tail risks or individual scenarios. Moreover, our portfolios are additive, so that they can

be compared across positions within a bank as well as across banks.

2 Institutions’ fixed income portfolios: an organiz-

ing framework

Our goal is to understand financial institutions’ fixed income strategies. We want to

compare strategies across institutions, as well as relate different components of an in-

dividual institution’s strategy, for example its loan portfolio and its derivatives trading

business. We use a discrete time framework for our analysis. Fix a probability space

(∞ P). Here  is the state space: one element  ∈  is realized every period. De-

note by  the history of state realizations. It summarizes all contingencies relevant to

institutions up to date  including not only aggregate events (such as changes in inter-

est rates), but also events specific to an individual institution, such as changes in the

demand for loans and deposits, or the order flow for swaps.

We think of a fixed income instrument as simply a history-contingent payoff stream

 = { ()} that is denominated in dollars. The simplest example is a safe zero coupon
bond issued at some date  that pays off one dollar for sure at the maturity date  +

say. More generally, payoffs could depend on interest rates — for example, an interest

rate swap or an adjustable rate mortgage promise payoff streams that move with a short

term interest rate — or on other events, such as customers’ decisions to prepay or default
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on a mortgage.

We assume that every instrument of interest can be assigned a fair value. If the payoff

stream of the instrument is , we denote its fair value  Following GAAP accounting

rules, we view the fair value as the price at which the instrument could be sold “in

an orderly transaction”. For instruments traded in a market, fair values can be read

off market prices. For nontraded instruments, such as loans, fair values have to be

constructed from the payoffs of comparable instruments.

The fair values of fixed income instruments exhibit a low-dimensional factor structure.

In particular, the overwhelming majority of movements in bond prices is due to the

“overall level” of interest rates. The latter can be summarized by any particular interest

rate, for example a riskless nominal short rate. Since fixed income instruments are fairly

predictable payoff streams, it is natural that changes in discount rates drive their value.

Our key assumption is that fair values of all relevant fixed income instruments can be

written as functions of a small number of factors  as well as possibly calendar time. Let

 denote an (×1)-vector-valued stochastic process of factors. Here each  is a random
variable that depends on the history  but we mostly suppress this dependence in what

follows. The fair value  ( ) of a fixed income instrument depends on the factors and

calendar time , which is important because the maturity date is part of the description

of the payoff stream.

As an example, let the payoff stream correspond to a riskfree zero coupon bond with

maturity date  + that was issued at date  or earlier. Let 
()
 denote the yield to

maturity on an -period zero coupon bond quoted in the market at date . The price

of the payoff stream  at date  is exp(−() ). At any later date +  before maturity

date (so   ), the price is exp(−(−)+ (− )). The payoff stream thus satisfies our

assumption as long as the interest rate depends on the factors.

We assume further that the distribution of the factors is given by a stationary

Gaussian AR(1) process. We thus represent the distribution of  under P by a sta-

tionary process that satisfies

+1 =  + +1 +1 ∼ N (0 ×) (1)

We assume that the riskless one period interest rate is a linear function of the factors.

 = 0 + >1 

The linear Gaussian dynamics are not necessary for the approach to work, but they

simplify the analysis. They also provide a reasonable description of interest-rate dy-

namics for quarterly data. More generally, it would be possible to extend the analysis

to allow for changes in the conditional volatility of the factors or nonlinearities in their

conditional mean.
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We approximate the change in the fair value of the instrument as a linear function in

the shocks +1. If time were continuous, Ito’s lemma would deliver this result exactly,

given normality and the smoothness of . Here we use a second-order Taylor expansion

and the properties of normal distributions. We write

 (+1 + 1)−  ( ) ≈  ( ) (+1 − ) +  ( ) +
1

2
 ( )

>

=  ( ) (+1 −  + +1) +  ( ) +
1

2
 ( )

>

=:  +  +1 (2)

where the first (approximate) equality uses the fact that the third moments of a normal

distribution are zero and higher moments are an order of magnitude smaller than the

first and second moments. The coefficient  is the conditional expected change in fair

value. If we divide  by the current fair value,  ( ), we get the expected return.

The 1× slope coefficients  is the exposure of the fair value to the factor risks, +1

We are now ready to replicate the payoff stream of any instrument by  + 1 simple

securities. That is, we define, for each date  a portfolio of  + 1 securities that has

the same value as the instrument in every state of the world at date  + 1. We always

take one of the securities to be the riskless one period bond; let 1 denote the number

of short bonds in the portfolio at date . Since 1 is also the face value of the one-period

riskless bonds, we will refer to 1 as cash. For the payoff stream corresponding to a short

bond, the coefficients in (2) are given by  = 
− and  = 0. Consider  additional

“spanning" securities that satisfy

̂+1 − ̂ = ̂ + ̂+1 (3)

The  × 1 vector ̂ denotes the holdings of spanning securities at date . In our one
factor implementation below the only spanning security will be a long bond (so that ̂
will be a scalar).

For each period  we equate the change in the values of the payoff stream  and

its replicating portfolio. This means that for every realization of the shocks +1, the

holdings of cash 1 and spanning securities ̂ solve

¡
 

¢µ 1

+1

¶
=
³
1 ̂

>


´µ 
− 0

̂ ̂

¶µ
1

+1

¶
 (4)

These are +1 equations in +1 unknowns, the holdings
³
1  ̂

>


´
of cash and longer

spanning bonds. If the matrix on the left hand side is nonsingular then we can find

portfolio holdings (1  ̂
>
 ) that satisfy this equation.
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If the market prevents riskless arbitrage, then the value of the replicating portfolio

at date  should be the same as the value of the payoff stream  ( ). Suppose to the

contrary that the value of the replicating portfolio, b ( ) say, was lower than  ( ).

Then one could sell short one unit of the payoff stream  buy one unit of the replicating

portfolio and invest the difference b ( )− ( ) in the riskless asset. Since the change
in value for  and the replicating portfolio is identical, this strategy delivers a riskfree

profit that consists of the interest earned on b ( )− ( ). It follows that one period
ahead a position in the payoff can be equivalently viewed as a position in the replicating

portfolio: it has the same value at date  as well as in each state of the world at date

+ 1 Alternatively, we can divide equation (4) by the value b ( ) =  ( ) and see

that the returns on these two strategies are equalized state by state.

Once positions are represented as portfolios, we can measure risk by considering how

the value of the position changes with the prices of the long term spanning securities

̂, or equivalently with the factor innovations +1. If the short interest rate is the only

factor, then the exposure of the position is closely related to duration, which is defined

as (minus) the derivative of a bond’s value with respect to its yield. In this case, the

holdings of the spanning bonds ̂ are the delta of the position, and the change in value

(4) can be used for Value at Risk (VaR) computations that determine the threshold loss

that occurs with a certain probability. For example, we might determine that a given

bond has a one-quarter 5% VaR of 90 cents. This would correspond to a 5% probability

that the bond’s price will fall by more than 90 cents over the quarter.

The advantage of the portfolio representation (4) over VaR is that it fully describes

the conditional distribution of risk in the instrument, not just the probability of a certain

tail event. Another advantage is that the replicating portfolios of various fixed-income

positions are additive, making these positions easy to compare. The same is not true for

VaR computations of complex positions. Moreover, our approach can easily incorporate

factors in addition to the short rate, such as liquidity factors.

3 Data

Our data source for bank portfolios are the Bank Reports of Conditions and Income,

or "call reports”, filed quarterly by US commercial banks and bank holding companies

(BHCs). The call reports contain detailed breakdowns of the key items on an institution’s

balance sheet and income statement. The breakdowns are for most items more detailed

than what is contained in corporations’ SEC filings for banks. At the same time, the call

reports contain all banks, not simply those that are publicly traded. They also contain

additional information that helps regulators assess bank risk. Of particular interest to us

are data on the maturity distribution of balance sheet items such as loans and borrowed
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money, as well as on the notional value and maturity of interest rate derivative contracts.

Table 1 shows a bank balance sheet which is based on the Consolidated Financial

Statements for Bank Holding Companies (FR-Y-9C) from December 31, 2011. These

financial statements are required by law and are filed by Bank holding companies to the

Board of Governors of the Federal Reserve System. The assets of banks include cash

which can be interest bearing (IB) or noninterest bearing (NIB) in domestic offices (DO)

and foreign offices (FO), securities, Flow of Funds sold (FFS), loans and leases, trading

assets, premises and fixed assets, other investment, intangible assets and other assets.

The liabilities include deposits, Federal Funds purchased (FFB), trading liabilities, other

borrowed money, subordinated notes, and other liabilities. The difference between assets

and liabilities is capital. The item numbers "BH" followed by more letters and numbers

refer to the entry into the financial statements by each bank holding company.
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Table 1: Bank Balance Sheets in Call Reports

Assets Liabilities

1. Cash 13. Deposits

NIB balances, currency and coin BHCK0081 a. In DO: (1) NIB BHDM6631

IB balances in US offices BHCK0395 (2) IB BHDM6636

IB balances in FO BHCK0397 b. In FO, Edges, IBFs: (1) NIB BHFN6631

(2) IB BHFN6636

2. Securities 14. FFP

a. Held-to-maturity securities BHCK1754 a. FFP in DO BHDMB993

b. Available-for-sale securities BHCK1773 b. Securities Sold to Repurchase BHCKB995

3. FFS 15. Trading Liabilities

a. FFS in DO BHDMB987 BHCK3548

b. Securities Purchased BHCKB989

4. Loans & Leases 16. Other Borrowed Money

a. Loans & leases held for sale BHCK5369 Includes mortgage, indebtness, BHCK3548

d. Loans & leases, net of unearned BHCKB529 and obligations under capitalized leases

income and allowance for (items 17., 18. are not applicable)

loan & lease losses

5. Trading Assets 19. Subordinated Notes

BHCK3545 Subordinated notes and debentures BHCK4062

Subordinated notes payable to trusts BHCKC699

6. Premises and fixed Assets 20. Other Liabilities

BHCK2145 BHCK2750

Other Investment 21. Total Liabilities

7. Other real estate owned BHCK2150 BHCK2948

8. Investments in uncons. subsidiaries BHCK2130

9. Direct & indirect investments BHCK3656

in real estate ventures

10. Intangible assets Equity

a. Goodwill BHCK3163 Total Equity Capital BHCKG105

b. Other intangible assets BHCK0426

11. Other Assets

BHCK2160

12. Total Assets BHCK2170

Abbreviations: domestic office (DO), foreign office (FO), interest baring (IB),

noninterest baring (NIB), Federal Funds sold (FFS), and Federal Funds pur-

chased (FFB).
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Figure 1: Balance sheet positions of JP Morgan Chase

In this paper we are interested in representing banks’ net exposures due to different

types of business. To provide a first impression, Figure 1 shows various net positions as a

percentage of assets for the largest bank in recent years, JPMorgan Chase. In particular,

the dotted dark blue line shows the net fair value of interest rate derivatives. The solid

dark blue line describes a net fixed income position without interest rate derivatives:

it comprises loans plus securities plus net trading assets less deposits and other debt.

To put these numbers in perspective the red line is (book) equity over assets. Finally,

the light blue line labeled "net other" is a residual defined so that all three blue lines

together add up to equity. The remainder of this paper is about understanding the risk

exposure inherent in the leveraged fixed income positions represented by the dark blue

lines (both dotted and solid.)

The risk exposures in these positions are not evident from the variation in the fair

values in Figure 1 over time. The reason is that these fair values only represent the
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overall value of their replicating portfolio

 ( ) = 1 
− + ̂

>
 ̂

in the notation of Section 2. To learn about the risk exposure of the portfolio, we would

need to know the portfolio weights ̂
()

 ̂
()
  ( ) on each of the  = 1   risky

spanning securities and how these weights change over time. The spanning securities

depend on the risk in the factors +1 through the loadings ̂ in equation (3). Therefore,

once we know the portfolio weights for each period , we know how the overall portfolio

depends on the risk factors. In the rest of the paper, we will compute the replicating

portfolio
³
1  ̂

>


´
for each of the fair values in Figure 1 and for each of the U.S. banks.

Sample selection

We are interested in the risk exposure of domestic BHCs. We thus work with data

series that are consolidated at the BHC level. We consider only BHCs that are the top

tier company in their BHC, and thus eliminate BHC that are subsidiaries of another

BHC. We also eliminate all BHC that have a foreign parent. The risk exposure of a

US subsidiary of a foreign bank is likely to depend on very different considerations than

that of a US top tier bank. Most data series are directly available from the consolidated

BHC files in the call reports. However, the maturity distribution of loans, securities and

borrowed money is more detailed in the bank data. For these items, we thus sum up the

bank-level holdings over all banks in the same BHC to obtain the BHC level maturity

distribution. We verify that this procedure comes up with the correct aggregate holdings.

Our sample is 1995:Q1-2011:Q4. We choose this period because accounting rules

allow consistent definitions of the main fair value and notional value series. In particular,

the fair value of interest rate derivatives positions is available over this whole period and

we have three maturity buckets for notionals. Our sample period also contains the years

2009-2011, during which the call reports also contain the major surviving investment

banks, Goldman Sachs and Morgan Stanley. This fact together with new regulatory

requirement on the reporting of credit exposure in derivatives markets makes this latest

part of the sample particularly interesting for studying swap positions.

Holding companies with less than $500 million assets report semiannually to the

Federal Reserve. For tiered bank holdings companies, only the top-tier holding company

must file a report. We use information on merger and acquisition activities of our sample

from the Federal Reserve Bank of Chicago. This data has date of merger, the identity

number of the non-surviving and the acquiring bank and their respective bank holding

company identity number. We convert the merger date to the quarter date.

Data on loans and securities

Under traditional accounting rules, deposits and loans are recorded in balance sheets
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at face value. The face value of a deposit position is the amount of money deposited in

the account. The face value of a loan is usually the amount of money disbursed when the

loan is taken out (although there can be small difference, for example, when a mortgage

borrower buys points.) The balance sheet therefore does not contain a proper measure

of economic value, and it cannot answer questions on how the loan portfolio is exposed

to interest rate risk. Under the traditional rules, fluctuations in interest rates show up

only in the income statement. Indeed, interest paid on deposits or earned on loans is

recorded as part of interest income and expense, respectively.

Recent statements by the Financial Accounting Standard Board (FASB) have moved

US GAAP rules increasingly towards marked-to-market (MTM) accounting. Statement

FAS 115, issued in 1993, introduced a three way split of positions into "held to maturity"

(HTM), "available for sale" (AFS), and "held for trading" instruments. The latter two

categories are recorded at fair value on the balance sheet, while HTM instruments are

recorded at face value. The difference between AFS and trading assets is how changes in

fair values affect earnings: trading gains and losses directly affect net income, whereas

gains and losses on AFS assets enter other comprehensive income (OCI), a component

of equity.

The call reports show how many loans and securities are designated as "available

for sale" and recorded at fair value versus "held to maturity" and recorded at face

value. Over our sample, the majority of positions in loans, deposits and "other borrowed

money" is recorded at face value, while the majority of positions in securities is recorded

at fair value. We thus work with face value numbers for loans and deposits and compute

fair values, as described further below. We work with fair value numbers for securities.

Loans or securities held for trading must be held with the purpose of resale in the near

future. The call report show these trading assets separately.

Interest rate swaps: terminology and market structure

In terms of both notionals and gross fair values, interest rate swaps are by far the

most important derivatives used by banks. A plain vanilla single currency interest rate

swap is an agreement by two parties to exchange interest payments at regular intervals.

The interest payments are proportional to a notional amount. One party pays a fixed

interest rate, the swap rate, while the other party pays a floating rate. The payments

are made at a certain frequency up to a given maturity. The stream of fixed interest

rate payments together with the notional value paid at maturity, is referred to as the

“fixed leg” of the swap. Similarly, the stream of floating payments together with the

notional value at maturity is called the “floating leg”. Although the notional values

cancel exactly, including them in the streams is helpful in calculations.

Consider a frictionless market without bid ask spreads. The swap rate is then chosen

at the inception date (when the swap agreement is written) to equate the present values
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of the fixed and floating legs. In other words, the fair value of the swap at inception is

zero. After the inception date, the fair value of the swap moves with market interest

rates. In particular, the fair value of a pay fixed (receive floating) swap becomes positive

if interest rates rise above what they were at the inception date. This is because higher

floating rates are received. Similarly, the fair value of a pay floating (receive fixed) swap

increases when rates fall, as lower floating rates are paid.

It is helpful to restate these effects by comparing swaps with bonds. Consider the

value of the two payment streams. On the one hand, the present value of the fixed leg

is the sum of a coupon bond that pays the swap rate every period until maturity plus

a zero coupon bond that pays the notional value at maturity. The present value of the

fixed leg thus works like a long bond that falls as interest rates increase. On the other

hand, the present value of the floating leg is simply equal to the notional value and does

not respond to interest rates. This is because owning the floating leg is equivalent to

owning the notional in cash and rolling it over at the short interest rate until maturity

— both strategies give rise to a floating stream of interest payments plus the notional at

maturity. Another way to understand the effects of rate changes on fair value is thus to

view a pay fixed (pay floating) swap as a leveraged position in long (short) bonds which

loses (gains) as interest rates rise.

In practice, most swaps are traded over the counter. As for many classes of bonds, a

few large dealers make the market and frequently retrade swaps among each other. The

concentration of the market is illustrated in Figure 2. It shows the total notionals of

interest rate derivatives held for trading, for all BHCs as well as for the top three BHCs in

terms of interest rate derivatives hgeld for trading. Here we exclude the Goldman-Sachs

and Morgan Stanley, firms that became BHCs only after the financial crisis.

There is an important difference in how swap dealing and bond dealing affect a

dealer’s position. A bond dealer makes the market by buying and selling bonds. He

makes money because he buys at a lower bid price and sells at a higher ask price. The

inventory of bonds currently held is recorded on the dealer’s books as trading assets (or

trading liabilities if the dealer allows a short sale). Once the dealer sells a bond, it is

no longer on the dealer’s balance sheet. The bidask spread enters as income once it is

earned.

In contrast, a swap dealer makes the market by initiating a swap with one client

at and then initiating an offsetting swap with another client. The dealer makes money

by adjusting the swap rates to incorporate a spread. In particular, the swap rate on a

pay-fixed (pay-floating) swap is typically lower (higher) than the rate that makes the

fair value zero. Moreover, the both swaps remain in the accounts of the dealer and

contribute to the reported numbers for notional and fair values. The income on the

swap is earned only period by period as the swap payments are made and are recorded
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Figure 2: Total notionals in interest-rate derivatives of US banks. The notionals are for

trading, not for trading, and the top three dealer banks.

as income when they received.

Interest rate derivatives: accounting rules & data

Banks hold a variety of derivatives — for example, options, futures or swaps — with

payoffs that depend on credit events, exchange rates, stock prices or interest rates.

FAS 133 requires that all derivatives are carried on the balance sheet at fair value.

Banks thus compute for every derivative position whether the fair value is positive or

negative. Positions with positive (negative) fair value are included on the asset (liability)

side of the balance sheet. In the call reports, schedule HC-L provides both fair values

and notional values for derivatives by type of exposure. For interest rate derivatives,

there is also information on the maturity distribution: it is known how many notionals

have maturity less than one year, between one and five years or more than five years.

Unfortunately, there is no information about the direction of trades. Thus, we do not

know whether, for example, swaps are pay-fixed or pay-floating.
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The call reports distinguish between derivatives "held for trading purposes" or "not

held for trading”. The difference lies in how changes in fair value affect income, as

for nonderivative assets. However, the meaning of "held for trading" is broader for

derivatives than for loans and securities and does not only cover short term holdings.

The broad scope of the term "held for trading" is clarified in the Federal Reserve Board’s

Guide to the BHC performance report: "Besides derivative instruments used in dealing

and other trading activities, this line item [namely, derivatives held for trading purposes]

covers activities in which the BHC acquires or takes derivatives positions for sale in the

near term or with the intent to resell (or repurchase) in order to profit from short-

term price movements, accommodate customers’ needs, or hedge trading activities”. In

contrast, derivatives "not held for trading" comprise all other positions.

Independently of whether a derivative is designated as "for trading", FAS 133 pro-

vides rules for so-called hedge accounting. The idea is to allow businesses to shelter

earnings from changes in the fair value of a derivative that is used to hedge an existing

position (a "fair value hedge") or an anticipated future cash flow (a "cash flow hedge").

In both cases, there are stringent requirement for demonstrating the correlation between

the hedging instrument and the risk to be hedged. If the derivative qualifies as a fair

value hedge, then the fair value on the hedged position may be adjusted to offset the

change in fair value of the derivative. This is useful if the hedged position is not itself

marked to market, for example if it is fixed rate debt and the derivatives is a pay floating

swap. If the derivative qualifies as a cash flow hedge, then a change in its fair value can

initially be recorded in OCI, with a later adjustment to earnings when the hedged cash

flow materializes.

An unfortunate implication of current accounting rules is the call reports cannot

be used to easily distinguish hedging, speculation and intermediation. In particular,

there is no clean mapping between "held for trading" and short term holdings due to

intermediation or short term speculation, and there is no clean mapping between "not

held for trading" and hedging. On the one hand, "held for trading" derivatives could

contain long term speculative holdings, but also hedges, in principle even qualifying

accounting hedges. On the other hand, derivatives “not held for trading” could contain

speculative holdings, as long as they are not short term.

At the same time, we take away three observations that help us interpret our findings

below. First, short term holdings, due to intermediation or short-term speculation, must

be "held for trading". Second, hedging of positions in (nonderivative) trading assets or

securities are likely to be “held for trading”. If the position to be hedged is in the

balance sheet at fair value with changes going to directly to income, then it makes sense

to account for the derivative the same way. Finally, derivatives that hedge positions

that are not marked to market are more likely to be "not held for trading", unless they
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satisfy the requirements for fair value hedges.

We obtain information on bid ask spreads in the swap market by maturity from

Bloomberg.

4 A Portfolio View of Bank Call Reports

In this section we replicate major bank positions in the call reports by portfolios in two

“spanning” zero coupon bonds — a one quarter bond (which we often refer to as "cash")

as well as a five year bond. Zero coupon bonds are useful because most instruments can

be viewed as collections of such bonds, perhaps with adjustments for default risk. For

example, a loan or a swap can be viewed as collection of zero coupon bond positions of

many different maturities — one for every payment. We now describe a pricing model

that gives rise to a linear representation of fair values as in (2) as well as the pricing of

zero coupon bonds for that model.

4.1 Summarizing interest rate dynamics

We consider an exponential affine pricing model that describes the joint distribution of

riskfree nominal government bonds and risky nominal private sector bonds. The nominal

pricing kernel process +1 represents one step ahead dollar state prices (normalized by

conditional probabilities) for dollar payoffs contingent on the factor innovation +1. In

particular, for any payoff  ( +1 (
)) the date  price is [+1 (

+1)  ( +1 (
)) |].

We choose the functional form

+1 = exp

µ
− − 1

2
>  − > +1

¶
(5)

 = 0 + 1

Since +1 is standard normal, the price of a certain payoff of one is simply the one period

zero coupon bond price 
(1)
 = exp (−). The price of the payoff exp (+1 − 12) is

given by exp (− − ). In this sense  is the market price of the risk introduced by

the th factor innovation. Market prices of risk can in general vary over time with the

factors.

Riskfree government bonds

The price of an -period riskless zero coupon bond is given recursively by


()


¡

¢
= 

h
+1

¡
+1

¢

(−1)
+1

¡
 +1

¡

¢¢ |i 
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This recursion starts with the bond’s payoff at maturity, 
(0)
 = 1. Our functional form

assumptions ensure that is can be written as


()
 = exp

¡
 +>

 
¢

(6)

where the coefficients  and  satisfy a system of difference equations with boundary

conditions  = −0 and  = −1 (For a derivation, see Ang and Piazzesi 2003.) The
difference equations are

+1 =  −>
 0 +

1

2
>
 

> − 0

>
+1 = >

 (− 1)− >1

The recursion of the coefficients  shows how the difference equation reflects the ex-

pectations hypothesis of the term structure. Indeed, with risk neutral pricing ( = 0),

the log price is minus the sum of expected future short rates (plus a Jensen’s inquality

term.). With risk adjustment, the mechanics are the same, but expectations are taken

under a risk-adjusted probability. After risk adjustment, expectations are formed using

different AR(1) coefficients − 1 for the factors and a different long-run mean (−0
rather than 0.)

The affine model leads to simple formulas for the coefficients  and  in (2):


(−1)
+1 − 

()
 ≈ 

()


µ
>
−1 (+1 − ) +−1 − + (−1 −)

>
 +

1

2
>
−1

>−1

¶
= 

()


µ
>
−1 (− 1)  +−1 − + (−1 −)

>
 +

1

2
>
−1

>−1

¶
+

()
 >

−1+1

= 
()


¡
 +>

−1 +>
−1+1

¢
(7)

=  +  +1

where the second equality uses the coefficient difference equations.

After dividing the expected change in the bond price (7) by the current price of the

bond 
()
 , we can see that the expected excess returns on a riskfree -period bond held

over one period is >
−1. The amount of risk in the excess return on a long bond is

>
−1, which is a vector describing the amount of risk due to each of the shocks +1.
The vector  of market prices of risk captures a contribution to expected excess returns

that is earned as a compensation for a unit exposure to each shock.

Suppose that there is a single factor ( = 1) which is positively related to the

riskless short rate, that is 1  0. A large positive shock +1 means an increase in
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the short rate, which lowers the one-period bond price 
(1)
+1. If   0, a higher short

rate represents a bad state of the world. With a negative , the pricing kernel +1

depends positively on +1, which means that payoffs in bad states are valued highly.

Since bond prices are exponential-affine (6) and the coefficient −1 is negative, the
conditional standard deviation of the return on the long-term bond is (approximately)

equal to −−1. This suggests an alternative interpretation of − in equation (7) as
the (positive) Sharpe ratio of the bond, its expected excess return divided by the return

volatility. The expected excess return on long bonds and their Sharpe ratio is positive

if long bonds have low payoffs in bad states — in which case they are unattractive assets

that need to compensate investors with a positive premium.

Risky private sector bonds

Private sector bonds are subject to credit risk. For each dollar invested in risky bonds

between  and +1, there is some loss from default. We treat a risky bond as a claim on

many independent borrowers, such as a mortgage bond or an index of corporate bonds.

For every dollar invested in the risky bond at date , there will be some loss from default

between dates  and  + 1 due to the law of large numbers. This loss can be larger or

smaller depending on the state of the economy at date , captured by the factors , as

well as the state of the economy at date + 1, captured by +1 (or equivalently, given

knowledge of  by the innovation +1. To retain the tractability of the affine model,

we follow Duffie and Singleton (1999) and assume that the recovery value on a bond

in default is proportional to the value of the bond. In particular, suppose ̃
()
 is the

value of an -period zero coupon risky bond trading at date . As of date , investors

anticipate the value of the bond at + 1 to be ∆+1̃
(−1)
+1 , where the loss factor

∆+1 = exp

µ
−0 − >1  −

1

2
>2 2 − >2 +1

¶


captures jointly the probability of default and the recovery value.

The prices of risky bonds are determined recursively as risk adjusted present values:

̃
()


¡

¢
= 

∙
+1

¡
+1

¢
exp

µ
−0 − >1  −

1

2
>2 2 − >2 +1

¶
̃
(−1)
+1

¡
 +1

¢ |¸
As for riskless bonds, there is an exponential affine solution solution

̃
()
 = exp

³
̃ + ̃>

 

´


where ̃ and ̃ satisfy a system of difference equations

̃+1 = ̃ − ̃>
  (0 + 2) +

1

2
̃>
 

>̃ − 0 − 0 + >2 0

̃>
+1 = ̃>

 (− 1)− >1 − >1 + >2 1 (8)
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with boundary conditions ̃1 = −0− 0+ >2 0 and ̃1 = −>1 − >1 + >2 1 The private
sector short rate is given by

̃ = − log ̃ (1)
 =  + 0 + >1  − >2 

and incorporate a spread over the riskless rate that depends on the parameter of ∆.

With risk neutral pricing, the spread ̃−  reflects only the expected loss per dollar

invested 0 + >1  which can vary over time with . More generally, the spread can be

higher or lower than the risk-neutral spread because of risk premia. In particular,   0

means that high interest rates are a bad state of the world. If 2  0 means less payoff

after taking into account ∆ when rates are high (since ∆ is lower when +1 is large.)

Together we have a positive expected excess return on the one-period risky bond over

the short rate

 log∆+1 +
1

2
 (log∆+1)− log ̃ (1)

 −  = −>2 

So we can think of 2 as giving the expected excess return on risky bonds over riskless

bonds.

Replication of risky zero coupon bonds

The affine model leads to simple formulas for the coefficients  and  in (2) if the

payoff stream is a risky zero coupon bond. Taking default into account, the change in

the portfolio value between  and + 1 is

∆+1̃
(−1)
+1 − ̃

()
 ≈ ̃

()


³
−0 − >1  + ̃−1 + ̃>

−1 (− 1)  − ̃

´
+̃

()


µ³
̃−1 − ̃

´>
 +

1

2
̃>
−1

>̃−1

¶
+̃

()


³
̃>
−1 − >2

´
+1

= ̃
()


³
 +

³
̃>
−1 − >2

´
 +

³
̃>
−1 − >2

´
+1

´
= ̃ + ̃ +1

where again the first equality uses the coefficient difference equations.

Note that the parameters 0 and 1 affect the replication of the change in value only

through the coefficients ̃−1. This is because they represent predictable losses from
default which affect the value of the risky position, but not its change over time. The

coefficient ̃
()
 ̃

()
 is the expected return on the risky bond, which is equal to the

riskless short rate plus the risk premium
³
̃>
−1 − >2

´
 The risk premium has two

terms as it compensates investors for both time variation in the bond price at  + 1 as
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well as the default loss between  and  + 1. For the riskless bond, this risk premium

is just equal to >
−1 as computed above. The coefficient

³
̃>
−1 − >2

´
̃

()
 is the

volatility of the return on the bond between  and  + 1. In the one factor case, the

market price of risk  is again the Sharpe ratio.

Replication with a single factor

Suppose we have a single factor, so that we can replicate any instrument using cash

1 and a public bond ̂ with spanning maturity . To replicate a private bonds with

maturity , we equate the changes in value


(1)
 1  + 

()
 ̂ ( −−1 ( + +1)) = ̃

()


³
 +

³
̃−1 − 2

´
( + +1)

´


The replicating portfolio does not depend on time and is given by


()
 ̂

̃
()


=
̃−1 − 2

−1

on the -period public bond, which is constant over time. To translate this portfolio

weight into holdings  we also match the value ̃
()
 

If the bond we are replicating is riskless, the portfolio weight has the simpler formula


()
 ̂


()


=
−1
−1

Intuitively, if  = , the portfolio weight is equal to 1. Moreover, the s are negative

and their absolute value increases in maturity, so we will find a larger portfolio weight

if    and smaller otherwise. If  = 1, then 0 = 0 and the portfolio weight on the

long riskless bond is zero, because the replicating portfolio consists only of cash.

A risky, private sector bond is like a riskless bond with a different duration. Whether

it is shorter or longer depends on the parameters of ∆. There are two effects. First,

the replicating portfolio captures exposure to the interest rate induced by losses from

default between  and  + 1. The direction of this effect depends on the sign of 2 If

2  0, then there is more default (or a lower payoff in default) when interest rates are

high. As a result, a riskier bond will have more exposure to changes in interest rates

and is thus more similar to a longer riskless bond. In contrast, if 2  0 then the loss

between  and  + 1 induces less exposure to interest rate risk and the risky bond will

be more similar to a shorter riskless bond.

The second effect comes from the difference between the coefficients  and ̃. From

(8), this effect depends not only on 2, but also on 1. If 1  0, then there are larger

21



expected losses from default if interest are high. This means that risky bond prices

are more sensitive to interest rates than riskless bond prices of the same maturity, so

that again risky bonds work like longer riskless bonds. The opposite result obtains if

1  0. In addition to the effects of 1, the coefficients ̃ also depend on the product

21. However, in our estimations this part of the risk premium turns out to be an order

of magnitude smaller than 1

4.2 The estimated one factor model

We estimate the government and private sector yield curves using quarterly data on

Treasury bonds and swap rates from 1995:Q1-2011:Q4. The government bond yields

are the solid lines in Figure 3, while the private sector yields with the same maturity are

the dashed lines in the same color. In a principle component analysis, a large fraction

of the variation in these yield data, 93%, is explained by a single factor. In Figure 3,

this is reflected by the fact that all rates vary around together. The movements in the

longer maturity rates (towards the top in the figure) are somewhat dampened versions

of the movements in the shorter maturity interest rates (towards the bottom.) The gray

shaded area is the TED spread, defined as the difference between the 3-month LIBOR

rate and the 3-month T-bill rate. This spread is higher in times when interest rates are

high—right before recessions. This is why these credit spreads are commonly used as

leading recession indicators. During the financial crisis of 2007-2008, the TED spread

increased further when interest rates fell unexpectedly.

As our single factor, we choose the two-year swap rate, which will capture both

interest rate risk as well as credit risk. The estimation of the government yield curve is

in several steps. First, we estimate the parameters  and  with OLS on the (demeaned)

factor dynamics (1). Then we estimate the parameter 0 as the mean of the riskless short

rate and 1 with an OLS regression of the short rate on the factor. Finally, we estimate

the parameters 0 and 1 by minimizes the squared errors from the model

min
01

X


³

()
 −b()

´2
(9)

where b() = −


− >






The estimation of the private sector yield curve gets the parameters 0 and 1 from

minimizing the squared errors

min
012

X


³
̃
()
 − b̃()

´2
(10)
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Figure 3: Public and private sector zero-coupon interest rates with the same maturity.

Solid lines are public, dashed lines are private. The gray shaded area is the TED spread,

which is the difference between the 3-month libor rate and the 3-month Treasury bill

rate.

where the model-implied private yields are

b̃() = −̃


− ̃>






Panel A in Table 2 contains the estimation results together with Monte Carlo stan-

dard errors. The parameter 0 times four is the average short rate, 3.07%. The riskless

short rate has a loading of almost one on the factor, 1 = 0999 The factor is highly

persistent with a quarterly autoregressive coefficient of 0.97. The market prices of risk

are on average negative, 0 = −025 (since the factor has a mean of zero), implying
that high nominal interest rates represent bad states of the world. Investors want to be

compensated for holding assets — such as private or public nominal bonds — that have
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low payoffs (low prices) in those states. These prices of risk are, however, imprecisely

estimated in small samples. The spreads of risky over riskless bonds are positive and

covary positively (1  0) with the level of interest rates—as suggested by the large TED

spread during periods of high rates in Figure 3. Moreover, 2  0, indicating an increase

in default when rates are surprisingly low (which captures the increase in credit spreads

during the financial crisis in Figure 3.)

Panel B in Table 2 shows average absolute fitting errors around 30 basis points (per

year), with larger fitting errors for 30-year Treasuries. The spreads between risky and

riskless bonds are fitted with an error of roughly 20 basis points.

Table 2: Yield Curve Estimations

Panel A: Parameter estimates

0 0.0077 (0.4215)  0.9702 (0.0079)

1 0.9990 (0.1249)  0.0012 (0.0001)

0 −02523 (39.773) 0 0.0010 (0.0002)

1 0.0018 (40.305) 1 0.0814 (5.9903)

2 −00022 (0.0124)

Panel B: Mean absolute errors (% per year)

maturity  (in qrts) 1 4 8 12 20 40 120

public yields 
()
 0.35 0.31 0.27 0.29 0.38 0.51 0.68

spreads ̃
()
 − 

()
 0.35 0.20 0.24 0.28 0.25 0.15 0.29

Note: Panel A reports parameter estimates and small sample standard er-

rors. The data are quarterly zero coupon yields from Treasuries and swaps,

1995:Q1-2011:Q4. The single factor is the two-year zero-coupon yield from

swaps. The sequential estimation procedure is described in the text. The

small sample standard errors are computed from 10,000 Monte Carlo sim-

ulations with the same sample length as the data. Panel B reports mean

absolute fitting errors for public interest rates 
()
 and spreads ̃

()
 − 

()


between private and public interest rates in annualized percentage points.
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4.3 Replication: loans, securities, deposits and borrowedmoney

For short term assets and liabilities, book value and fair value are typically very similar.

Here “short term” refers not to the maturity date, but rather to the next repricing date.

For example, a 30 year adjustable rate mortgage that resets every quarter will also have

a fair value close to its book value. We treat all assets and liabilities with repricing date

less than one quarter as a one quarter bond, applying a private sector or government

short rate depending on the issuer. In contrast, long term securities are revalued as

news about future interest rates and payments arrive. For those long terms positions

that are recorded at book value — in particular most loans and long term debt — it is thus

necessary to construct measures of market value as well as replicating portfolios from

book value data. For long term securities where we have fair value data, the construction

of replicating portfolios is straightforward.

Loans and long term debt

We view loans as installment loans that are amortized following standard formulas.

We derive a measure of market value for loans by first constructing a payment stream

corresponding to a loan portfolio, and then discounting the payment stream using the

yield curve. The resulting measure is not necessarily the market price at which the bank

could sell the loan. Indeed, banks might hold loans on their portfolios precisely because

the presence of transaction costs or asymmetric information make all or parts of the

portfolio hard to sell. At least part of the loan portfolio should thus best be viewed as a

nontradable “endowment” held by the bank. Nevertheless, our present value calculation

will show how the economic value of the endowment moves with interest rates.

The first step is to find, for each date , the sequence of loan payments by maturity

expected by the bank. Let  denote the loan payment that the expected as of date 

by the bank in + , ()  To construct payment streams, we use data on the maturity

distribution of loan face values (
 ) together with the yield to maturity on new loans

by maturity ( ). For the first period in the sample, we assume that all loans are new.

We thus determine the payments ( ) by a standard annuity formula: 

 must equal

the present value of an annuity of maturity with payment  and interest rate 

 . We

can also determine how much face value from the initial vintage of loans remains in each

following period, assuming that loans are amortized according to the standard schedule.

We then calculate recursively for each period the amount of new loans issued, as well as

the expected payments and evolution of face value associated with that period’s vintage.

In particular, for period  we compute new loans as the difference between total loan

face values observed in the data and the partially amortized “old loans” remaining from

earlier periods.

This procedure produces a complete set of payment streams for each date and ma-
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turity. The market value can then be calculated by applying the appropriate private or

public sector prices to the payment streams. For long term debt, we follow a similar

procedure for constructing vintages. The difference is that long term debt is treated as

coupon bonds issued at a par value equal to the face value. As a result, the payment

stream consists of a sequence of coupon payments together with a principal payment at

maturity, and the face value is not amortized.

Maturity data in the call reports are in the form of maturity (or repricing) buckets.

The buckets contain maturities less than one quarter, 1-4 quarters, 1-3 years, 3-5 years,

5-15 years and more than 15 years. We assume that maturities are uniformly distributed

within buckets and that the top coded bucket has a maximal length of 20 years.

Securities & trading assets

Suppose there is a pool of securities for which we observe fair values by maturity

( 
 ). Without information on face values, it is difficult to construct directly the pay-

ment stream promised by the securities. As a result, the construction of the replicating

portfolio from payoff streams is not feasible. However, we can use the maturity informa-

tion to view securities as zero coupon bonds that can be directly replicated. Consider the

case of riskless bonds — here we count both government bonds and GSE-insured mortgage

bonds. We assume that the fair value  
 is the market value of 

()
 =  

 
()


riskless zero coupon bonds. We then replicate these bonds according to (4). Similarly,

for private sector bonds — all private sector bonds that are not GSE-insured — we can

find 
()
 =  

 ̃
()
 and then replicate the resulting portfolio of private sector zero

coupon bonds. As for loans, the call reports provide maturity buckets for different types

of securities. We again proceed under the assumption that the maturity is uniform

conditional on the bucket and that the maximal maturity is 20 years.

For securities held for trading, detailed data on maturities is not available. This

item consists of bonds held in the short term as inventory of market making banks. We

proceed under the assumption that the average maturity is similar to that of securities

not held for trading. From the breakdown of bonds held for trading into different types

we again form private and public bond groups and replicate with the respective weights.

4.4 Interest rate derivatives

The data situation for interest rate derivatives is different than that for loans and secu-

rities. In particular, we do not observe the direction of trades, that is, whether a bank

wins or loses from an increase in interest rates. For this reason, we infer the direction of

trade from the joint distribution of the net fair value in interest rate derivatives together

with the history of interest rates. Intuitively, if the bank has a negative net fair value

and interest rates have recently increased, we would expect that the bank has position
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that pays off when interest rates fall, for example it has entered in pay-fixed swaps or it

has purchased bonds forward. The strength of this effect should depend on the bid and

ask prices that the bank deals at.

Our goal is to approximate the net position in interest rate derivatives by a replicat-

ing portfolio. We work under the assumption that all interest rate derivatives are swaps.

In fact, swaps make up the majority of interest rate exposures, followed by futures which

behave similarly as they also have linear payoffs in interest rates. A more detailed treat-

ment of options, which have nonlinear payoffs, is likely to be not of primary importance

and in any case is not feasible given our data.

To value swaps with our pricing model, the following notation is helpful. Define ̃
()


as the date  price of a privately issued annuity that promises one dollar every period

up to date  + . Consider now a pay fixed swap of maturity  that promises fixed

payments at the swap rate  and receives floating payments at the short rate − log ̃ (1)
 .

As explained in Section 3, the fixed leg is the sum of a zero coupon bond and an annuity,

and the fair value of the floating leg is equal to the notional value. Using ̃
()
 to again

denote a private sector zero coupon bond of maturity , the fair value of a pay fixed

swap can be written as the difference between the floating and fixed legs

 =  −
³


()
 + e ()



´
 =:  ()

Here  () is the fair value of a pay fixed swaps with a notional value of one dollar.

At the same time, the fair value of a pay floating swap with notional value of one dollar

is equal to − () 

We now develop the relationship between net and total notionals and their effects on

the fair value. Let +
 denote the amount of notionals in pay fixed swaps of maturity

 held at date  and let −
 denote the maturity  pay floating notionals. Assume

further that all pay-fixed swaps are of maturity  have the same locked in swap rate

 +  . Here 

 is the “midmarket” swap rate (that is, the rate at the midpoint of the

bidask spread) and  is one half the bidask spread for maturity . Moreover, all pay

floating swaps of maturity  have the same locked in rate  −  .

With this notation, the fair value of the net position in pay fixed swaps is

 =
X


+
  (


 −  )−

X


−
  (

 +  )

=
X


¡
+

 −−


¢
 (


 ) +

X


¡
+

 +−


¢
 




= :
X



 

  (

 ) +

X



  


 (11)
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where 
 = +

 + −
 is the total amount of notionals of maturity  and  is

the net position in pay fixed swaps expressed as a share of total notionals. For every

maturity, the fair value thus naturally decomposes into two parts. The first sum,  


say, is the net fair value due to the bank trading on its account, valued at the midmarket

rate. Its sign depends on the direction and size of the bank’s trade (captured by the

sign and size of 
 ) as well as on the history of interest rates since the swap rate 




was locked in. The second term  
 say, consists of the present value of bidask spreads,

which scales directly with total notionals.

Our estimation strategy treats the two terms separately. The reason is that we

have data on the maturity distribution for total notionals, but not for net notionals.

Since total notionals are potentially much larger than net notionals, especially for large

dealer banks, we cannot know at what maturities the banks trade on their own account.

We therefore use data on bidask spreads and maturities to obtain an estimate of  
 .

We then subtract that estimate from the total net fair value to obtain an estimate of

 
 . We then specify a state space model that replicates 


 by a portfolio of 5 year

swaps and cash, up to measurement error. This estimation step allows replication in the

absence of maturity information on  
 .

Rents from market making

For every maturity , the spread factor  in (11) reflects (one half) the average

bidask spread for all the swaps currently on the bank’s books. To the extent that bidask

spreads change over time, its magnitude depends on how many current swaps were ini-

tiated in the past when bidask spreads were, say, higher. To capture this effect, we

construct a vintage distribution of swap notionals analogously to the vintage distribu-

tions of loans and long term debt discussed above. We use data on bidask spreads on

new swaps to find, for each maturity and period, the total bidask spread payment earned

by swaps of that maturity in that period.

More specifically, suppose we know the distribution (
 ) of total notional values

by maturity as well as the distribution of bidask spreads on new swaps by maturity,

that is, the sequence (2 ). We assume that in the first sample period, all swaps are

new, and we record the stream of bidask spread payments (1 ) on those swaps. We

then proceed recursively: for each period and maturity, new swaps are defined as the

difference between total notionals for that period and “old” notionals that remain from

the previous period, taking into account that the old swaps have aged by one period.

We then use the current bidask spreads to add to the stream of payments for all future

periods.

Trading on own account

At any point in time the net position in pay fixed swaps is replicable by a portfolio
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in a long term spanning bond and cash. Alternatively, we can think of a position in

cash and a long term swap, say of maturity ̂. Suppose that, at date − 1, the bank’s
net position in pay fixed swaps per dollar of notional value can be written as a position

̂−1 in the ̂ period pay fixed swap with swap rate ̄−1 as well as −1 dollars in cash.
From (11), the fair value of this position at date  is

(̂−1 (̄−1 ̂− 1) +−1)−1

Here the fair value is the present value of future payments on the swap; current interest

payments are not included since it is booked as income in the current period.

Our goal is to describe the trading strategy of the bank over time in terms of the

triple (̂ ̄). We define the state space model

 
 −1 = ̂−1 (̄−1 ̂− 1) +−1 + 

( ̄) =  (−1 ̄−1 −1) 

where  is an iid sequence of measurement errors. The transition equation captures the

evolution of the state variables which has two parts. First, since  describes the position

in a fixed maturity instrument that ages between periods  − 1 and , the transition

equation must adjust the  position for aging. Second, the transition equation must

describe how the bank’s trades in long term swaps affect its swap rate and cash position.

We now describe these parts in turn.

Consider first the updating of maturities. It is useful to view −1 as the long swap
position of maturity ̂ at the end of period − 1. The bank then enters date  with a
long swap position −1 of maturity ̂− 1 as well as cash −1. We want to transform
this position into a beginning of period position in maturity ̂ swaps and cash, denoted¡
̂
 



¢
. Here we use the same replication argument as in (4). For the fixed leg of

a swap of maturity ̂ − 1 there exist coefficients  and  such that the fixed leg is

replicated by  units of the fixed leg of a swap of maturity ̂ together with  dollars

in cash. We thus update the position in long swaps by ̂
 = −1

It remains to update the cash position. Replication of the fixed leg involves −1
dollars in cash which must be subtracted from the cash position. Consider now the

floating legs, which are equivalent to positions in cash since the fair value of a floating

leg is equal to its notional value. The floating leg of the original swap (of maturity ̂−1)
can be viewed as a position of −1 dollars in cash. The floating leg of the maturity 

swap is a cash position of only −1 dollars. We must therefore add the difference
−1 (1− ) dollars to the cash position. The updating rule is therefore


 = −1 + −1 (1−  − ) 
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For large ̂, such as ̂ = 20 quarters, swaps of maturities ̂ and ̂− 1 tend to be very
similar. The replicating portfolio must capture the fact that the maturity ̂− 1 swap is
less (but almost as) responsive to interest rates as the maturity ̂ swap. As a result, 
will be close to but less than one and  will be close to but greater than zero, and the

sum will generally be close to one. This explains why the cash positions we find tend to

be small in size.

Consider now the trades the bank can make, that is, how it moves from the beginning

of period position
¡

  



¢
to the end of period position (). Since the only long

swaps are of maturity ̂, there are two possibilities. On the one hand, the bank can

either increase or decrease its exposure to those swaps. If the bank increases its exposure,

it combines 
 −1 swaps with the old locked in rate ̄−1 with 

  new swaps that

are issued at the current market rate  . The payment stream of the combined swaps

is equivalent to holding 
 −1 + 

  swaps at the adjusted swap rate

̄ =

 −1


̄−1 +





 

On the other hand, the bank can decrease its exposure to long swaps by canceling

some of the old swaps. In practice, cancellation is often accomplished by initiating

an offsetting swap in the opposite direction. If the current swap rate for the relevant

maturity is different from the original locked in rate, the cancellation will also involve

a sure gain or loss. We assume that this gain or loss is directly booked to income and

does not appear as part of the fair value after cancellation. The remaining long swaps

then retain the same locked in swap rate, that is ̄ = ̄−1.

We assume that, in any given period, the bank makes moves between positions 


and  in the simplest possible way. In particular, if the sign of  remains the same,

then it makes only one of the above trades — it either increases or decreases its exposure.

the only exception to this rule is the case where the bank changes the sign of : in

this case we assume that it cancels all existing long swaps and issues all new swaps in

the opposite direction. Let  denote the fraction of old long swaps that is canceled in

period . The transition for  can be summarized by

 = (1− )

 −1 + 

 

Given these assumption, a sequence ̂ together with initial conditions for ̄1 and 1

implies a unique history of all three state variables.

We take a Bayesian approach to infer the sequence of ̂. Our prior is that changes

in the strategy are hard to predict and are broadly similar in magnitude over time. We

thus assume that ̂ follows a random walk without drift, with iid innovation that have
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variance 2. Under the prior, the variance 
2
 as well as the variance of the measurement

error 2 follow noninformative gamma priors and are mutually independent as well as

independent of the ̂s. We fix the initial swaprate to the swap rate at the beginning of

the sample and set the initial cash position to zero.

We jointly estimate the sequence (̂) and the variances 
2
 and 2 using Markov

chain Monte Carlo methods. The conditional posterior of either one of the variances

given the other variance, the data and the ̂s is available in closed form. However,

the conditional distribution of the sequence () given the variances and the data is not

simple. This is because the value of ̂ affects the swap rate and the cash position in a

nonlinear fashion. Moreover, since we need the entire sequence of  to infer the swap

rates, the problem does not allow the application of sequential Monte Carlo methods.

We thus follow a Metropolis-within-Gibbs approach. We draw variances in Gibbs steps.

We draw sequences () in a Metropolis step. To tune the proposal density, we use the

log adaptive proposal algorithm developed by Shaby and Wells (2010).

Estimation results

To illustrate how the estimation works, Figure 4 shows the trading positions for two

major dealer banks, JPMorganChase (blue/dark lines) and Bank of America (green/light

lines.) The top panels display the data. The top left panel shows the evolution of notional

values. These numbers are large because of the lack of netting of interdealer positions in

the call reports: the notionals of each bank by itself amounts to several times US GDP.

While JPMorgan Chase was for the most part larger than BofA, the notionals held by

the latter jumps with the takeover of Merrill Lynch in 2008. The top right panel shows

the net fair value as a share of notionals. Here we show the ratio  
 −1 defined

above — the fair value is already net of the present value of bidask spreads  
 .

The bottom panels display the estimation results, with posterior medians as thick

solid lines and the 25th and 75th percentiles as thin dashed lines. The bottom left panel

shows the estimated sequence of positions in long (̂ = 5 years) swaps . The bottom

right panel shows the locked in swap rate ̄ on those swaps. In addition to the blue and

green lines that show the posterior medians for the locked in rates for both banks, the

gray line shows the current midmarket swap rate.

5 Replication results

Figure 5 illustrates the results of the replication exercise for JP Morgan Chase. The solid

lines represent the replicating portfolio for the bank’s “traditional” net fixed income

position, defined as loans plus securities less deposits and other borrowings. The solid
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Figure 4: Trading positions for JP MorganChase (blue/dark) and Bank of America

(green/light.)

green line shows the face values of 5 year zero coupon bonds, and the solid red line

shows the face value of short bonds. The dotted line shows the replicating portfolio for

the total net position in interest rate derivatives. Finally, the dashed line presents the

replicating portfolio for bonds in the bank’s trading portfolio. This position is broken

out separately in part because the replication results are more uncertain for this item

due to the lack of information on maturities.

Figure 6 shows the replicating portfolio for four top dealer banks. The top left

panel replicates Figure 5, and the other panels show Bank of America, Wells Fargo and

Citibank.
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Figure 5: Replication portfolios for JPMorgan Chase. The portfolios are holdings of cash

(in red) and a 5-year riskless zero coupon bond (in green). Solid lines are replicating

porfolios for the traditional fixed income position, while dotted lines are for derivatives

and dashed lines are for bonds held for trading.
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Figure 6: Replication portfolios of four top dealer banks. The portfolios are holdings of

cash (in red) and a 5-year riskless zero coupon bond (in green). Solid lines are replicating

porfolios for the traditional fixed income position, while dotted lines are for derivatives

and dashed lines are for bonds held for trading.
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