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1 Introduction

Two alternative approaches are usually followed to price credit derivatives such as Credit

Default Swaps (CDS). In the structural approach introduced by Merton the default of a

corporation occurs when the asset side of the balance sheet becomes smaller than its liability

side. Then the probability and the price of default are deduced from the historical and risk-

neutral properties of these two underlying variables. Another approach is the reduced-form

or intensity approach, in which the underlying phenomena are not explicitly modeled and the

historical default intensity, assumed to exist, is directly analyzed [see e.g. Duffie, Singleton

(1999)]. The latter approach is easily implemented in the framework of factor models,

when the default intensity and the stochastic discount factor (s.d.f.) are exponential affine

functions of these factors and when these factors feature an affine dynamics [see Duffie,

Filipovic, Schachermayer (2003), Duffie (2005) in continuous time, Gouriéroux, Monfort,

Polimenis (2006) in discrete time]. Indeed the term structure of riskfree as well as risky

interest rates admit closed-form expressions and are affine functions of these factors.

However in order to derive these closed-form expressions of interest rates and prices, the

reduced-form approach usually prices the default intensity, but not the default indicator

itself. In other words, the default indicator does not appear in the s.d.f. and is replaced by

an appropriate prediction. Thus the prediction error, that is the surprise on default event,

is neglected.

There exist a few papers mentioning this approximation and trying to adjust for this

practice [see e.g. Jarrow, Yu (2001), Bai, Collin-Dufresne, Goldstein, Helwege (2012)a, b].

However, in this context, pricing formulas have no longer closed forms and it seems much

more difficult to account for default correlations. This explains why some of these analyses

have considered the joint pricing of default for a small number of names, for instance two

names in Jarrow, Yu (2001) while others focus on recursive credit events, which do not

imply default [see e.g. Bai, Collin-Dufresne, Goldstein, Helwege (2012)a, eq (15)].

Our paper develops an approach that results in closed-form formula to price credit
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derivatives written on any number of names, without neglecting default-event surprises. In

Section 2 we review the standard reduced form approach and its limitations. In particular

we carefully discuss the link between the assumption that the default count process does not

cause the factor process and the existence of a default pre-intensity, both under the historical

and risk-neutral dynamics. In Section 3, we consider a homogeneous pool of credits and

introduce a pricing model, with a joint Compound AutoRegressive (CaR) dynamics for the

factor and the default count. When the s.d.f. is exponential affine in both factor and default

count, we get linear affine formulas for the term structures of riskfree and risky interest

rates. The results are extended in Section 4 to account for a possible heterogeneity of the

initial pool of credits. We consider that this pool can be partitioned into J homogeneous

segments. The model allows for a common systematic factor (e.g. dynamic frailty), and

also for contagion phenomena, where a default-event surprise of segment j may have an

impact on the prices of credit derivatives written on another segment. Section 5 provides

illustrations of our approach. The observation of a wide gap between Credit Default Swap

(CDS) spreads, that can be seen as default-loss expectations under the risk-neutral measure,

and expected default losses is usually called the credit-spread puzzle in the literature [see

e.g. D’Amato, Remolona (2003), Hull, Predescu, White (2005)]. The standard credit-

risk models, that do not price default-event surprises, deal with this puzzle by incorporating

credit-risk premia. But these premia are too small for short maturities. By contrast, we show

that pricing default-event surprises may solve the credit-puzzle for all maturities, including

the shortest ones. To highlight this feature, we calibrate our model on U.S. banking-sector

bond data covering the last twenty years. Our results suggest that neglecting the pricing of

default events is likely to result in an overestimation of model-implied physical probabilities

of defaults for short-term horizons. We also illustrate how our approach can be exploited

to investigate the effect of the propagation of defaults on the prices of credit derivatives.

Section 6 concludes. Proofs are gathered in appendices.
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2 The standard reduced-form approach and its limita-

tion

2.1 Basic assumptions

We consider a pool of I entities, indexed by i = 1, . . . , I; these entities can be firms or credit

contracts. We denote by di,t the indicator of default of entity i, that is di,t = 1, if entity i

is in default at time t (or before), and di,t = 0, otherwise.

We introduce the notations: dt = (d1,t, . . . , dI,t)
′, dt = (d′1, . . . , d

′
t)
′, PaRt = {i|di,t = 0},

nt = Σi∈PaRt−1di,t, Nt = Σt
τ=1nτ .

PaRt is the Population-at-Risk that is the set of entities still alive at date t, nt is the number

of defaults occurring at date t and Nt is the number of defaults at date t or before.

Let us first assume that the pool is homogeneous and that the default dependence is

driven by an exogenous (multivariate) factor Ft. Let us denote by Ωt = (Ft, dt), Ω∗t =

(Ft+1, dt) = (Ft+1,Ωt) the information sets, where Ft = {Fτ , τ ≤ t}. Thus we have nested

filtrations satisfying Ωt ⊂ Ω∗t ⊂ Ωt+1. The assumptions, which will be relaxed in Subsection

2.5 and in Section 4, can be formalized in the following way:

Assumption A0: i) The variables di,t+1, i = 1, . . . , I, are independent conditional on

Ω∗t = (Ft+1,Ωt), state 1 is an absorbing state, the variables {di,t+1, i ∈ PaRt} are identically

distributed, conditional on1 Ω∗t , and this conditional distribution is only function of Ft+1.

ii) The binomial distribution of nt+1 given Ω∗t is approximated by a Poisson distribution

depending on Ft+1 only. iii) The conditional distribution of Ft+1 given Ωt is equal to the

distribution of Ft+1 given Ft.

Assumption A0 ii) means that the number of entities still alive at t, that is I −Nt, remains

large and that the probability of default is small [see Gagliardini, Gouriéroux (2013)]. This

assumption of a small probability of default implies that the default risk events are not

diversifiable even for large population conditionally on the driving factor since the number
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of default is not exploding [compare with Jarrow, Lando, Yu (2005)].

Assumption A0 iii) means that the process (dt) does not cause the process (Ft), or equiv-

alently that process (Ft) is exogenous, and that process (Ft) is Markov of order 1. Let us

recall that the usual definition of noncausality introduced by Granger is characterized by

the conditions:

f(Ft+1|Ft, dt) = f(Ft+1|Ft),∀t, (2.1)

where f(.|.) denotes a conditional probability density function (p.d.f) [Granger (1980)].

Moreover, it is easily shown by projecting the noncausality condition (2.1) on the information

Ft, nt that we also have:

f(Ft+1|Ft, nt) = f(Ft+1|Ft),∀t,

that is, the count process (nt) does not cause process (Ft).

Assumptions A0 i) and A0 ii) also implies that P (di,t+1 = 0|di,t = 0,Ωt) only depends on Ft

and not on nt. In other words, there is no contagion.

In the following, we will also need a technical result stating that these conditions are also

equivalent to:2

f(dt+1|dt, FT ) = f(dt+1|dt, Ft+1) = f(dt+1|Ω∗t ),∀t, T, T ≥ t. (2.2)

This is the Sims’ definition of noncausality [Sims (1972)].

Let us now consider three pricing situations.

2.2 Case 1: no default events in the s.d.f. and exogenous factors

(standard approach)

Under the assumption of no arbitrage opportunity, derivatives can be priced by introducing

stochastic discount factors (s.d.f.) from the issuing date t0, say. The standard pricing
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approach assumes that the short term s.d.f. is specified as a function of the current factor

value only, that is, the s.d.f. for period (t, t + 1) is of the type: m̃t,t+1 = m̃(Ft+1), say.3

Then the price at t0 of the derivative written on the total number of defaults and paying

g(Nt0+h) at date t0 + h is:

Π̃(g, h) = Et0
[
Πh
k=1m̃t0+k−1,t0+kg(Nt0+h)

]
= Et0

[
Πh
k=1m̃(Ft0+k)g(Nt0+h)

]
, (2.3)

where Et0 is the conditional expectation given Ωt0 = (Ft0 , dt0 = 0), since all the entities are

alive at the issuing of the pool.

By applying the iterated expectation theorem, we get:

Π̃(g, h) = Et0

[
Πh
k=1m̃(Ft0+k)E(g(Nt0+h)|Ft0+h)

]
= Π̃(g̃, h), (2.4)

where g̃(Ft0+h) = E[g(Nt0+h)|Ft0+h].

In other words it is equivalent to price the derivative with payoff g(Nt0+h) written on

the cumulated number of defaults, or to price the derivative with payoff g̃(Ft0+h) written

on the factor history. Thus the choice of a s.d.f. that is function of the latent factor only

greatly simplifies the derivation of closed-form formulas for the prices of credit derivatives

[see e.g. Lando (1998), Duffee (1999), Duffie, Singleton (1999), Duffie (2005) for pricing in

continuous time, Gouriéroux, Monfort, Polimenis (2006) for pricing in discrete time].

2.3 Case 2: default events in the s.d.f. and exogenous factors

The standard practice described above may induce mispricing, since the default events

themselves have not been included in the s.d.f.. Let us now consider a short term s.d.f.

depending on both Ft+1 and nt+1:

mt,t+1 = m(Ft+1, nt+1). (2.5)
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The pricing formula becomes:

Π(g, h) = Et0
{

Πh
k=1m(Ft0+k

, nt0+k)g(Nt0+h)
}
. (2.6)

Since the pricing operator is linear, we get:

Π(g, h) = Et0

[
Πh
k=1m(Ft0+k, nt0+k)g̃(Ft0+h)

]
+ Et0

{
Πh
k=1m(Ft0+k, nt0+k)[g(Nt0+h)− g̃(Ft0+h)]

}
= Et0

{
E[Πh

k=1m(Ft0+k, nt0+k)|Ft0+h]g̃(Ft0+h)
}

+ Et0

{
Πh
k=1m(Ft0+k, nt0+k)[g(Nt0+h)− g̃(Ft0+h)]

}
. (2.7)

By the iterated expectation theorem and by using the Sims’ version (2.2) of the non-

causality assumption A0 ii), we get (see Appendix A.1):

E
[
Πh
k=1m(Ft0+k, nt0+k)|Ft0+h

]
= Πh

k=1m̃(Ft0+k), (2.8)

with:

m̃(Ft+1) = E[m(Ft+1, nt+1)|Ft+1]. (2.9)

Let us now interpret Equations (2.8)-(2.9). The pricer Π̃ based on factor values only

is obtained by considering the expectation m̃(Ft+1) of the s.d.f. of different maturities

conditional on factor values. From (2.8)-(2.9), we see that the projection of the s.d.f. for

maturity h is the product of the short term projections. This feature is needed for these

approximated s.d.f.’s to be compatible with no dynamic arbitrage opportunity for an investor

using information (Ft) in his portfolio updating and interested in pricing derivatives written

on the factor process. However, even if the "projected" s.d.f.’s are time-consistent, they

differ from the initial s.d.f., and this implies mispricing for derivatives written on default
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counts. Let us discuss this mispricing. From (2.7), we get:

Π(g, h) = Π(g̃, h) + Π(g − g̃, h),

with g − g̃ = g(Nt0+h)− E[g(Nt0+h)|Ft0+h]. Then, by applying (2.8)-(2.9):

Π(g, h) = Π̃(g̃, h) + Π(g − g̃, h) = Π̃(g, h) + Π(g − g̃, h). (2.10)

The true price is the standard one based on the projected s.d.f. plus an adjustment

term. This adjustment term Π(g − g̃, h) is the price of the surprise on default events:

g(Nt0+h)−E[g(Nt0+h)|Ft0+h].When the s.d.f. does not depend on the default-event surprise

of date t + 1, this adjustment term vanishes. Otherwise, there is a risk premium for the

surprise and a need for price adjustment.

When mt,t+1 is proportional to exp(δ′FFt+1 + δSnt+1), the projected s.d.f. m̃t,t+1 will

depend on δS. In particular, considering the payoff 1 at t + h, we see that the riskfree

interest rate with residual maturity h at date t, denoted by R(t, h), also depends on δS.

Nevertheless, the price of the surprise is equal to zero.

2.4 Case 3: default events in the s.d.f. and non-exogenous factors

Let us now discuss how the results above are modified if we relax the noncausality as-

sumption A0 iii) under the historical distribution, that is, if we consider the new set of

assumptions:

A∗0 = A0i) + A0ii) + A∗0iii),

where:

Assumption A∗0 iii): The conditional historical distribution of Ft+1 given Ωt is equal to

the distribution of Ft+1 given Ft, nt. Thus this conditional distribution can also depend on

nt.
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When the noncausality, or exogeneity, condition is not satisfied, the decomposition (2.10)

of the derivative price has to be modified. Indeed when the noncausality of process (di,t),

that is Assumption A0 iii), is no longer satisfied, we do not have equality (2.8) and Π(g̃, h)

becomes different from Π̃(g̃, h). In this case we have the following decomposition of Π(g, h):

Π(g, h) = Π̃(g, h) + [Π(g̃, h)− Π̃(g̃, h)] + Π(g − g̃, h), (2.11)

using the fact that we still have Π̃(g, h) = Π̃(g̃, h). The additional term between brackets is

an adjustment term for causality of the count process and we have the decomposition:

Price=Standard Price + Causality Adjustment + Surprise Adjustment.

Of course, if mt,t+1 is only function of Ft+1, the surprise adjustment disappears.

Finally let us discuss the expressions of the riskfree rate for an s.d.f. proportional to

exp(δ′FFt+1 + δSnt+1). We have seen in Subsection 2.3 that, if Ft is exogenous, the riskfree

rate of residual maturity h is R(t, h) ≡ r(h, Ft, δS). Under Assumption A∗0, the riskfree

rate also depends on nt: R(t, h) ≡ r∗(h, Ft, nt, δS). We note two different effects of the

introduction of defaults events in the s.d.f.. First the risk sensitivity δS still appears in the

riskfree rate. Second, if the factor process is not exogenous, we observe "jumps" in the

riskfree rate when default occurs in the sense that the formula valid in absence of default

r(h, Ft, δS) is replaced by r∗(h, Ft, nt, δS); moreover the magnitude of these jumps depends

on the number of defaults.

2.5 Intensities, risk-neutral dynamics and exogeneity

Definition 1: The physical default intensity with respect to the filtration (Ω∗t ), denoted by

λi,t, is defined by:

P (di,t+1 = 0|di,t = 0,Ω∗t ) = exp(−λi,t+1).

In Appendix A.2, we show how this definition of the default intensity is linked to the intensity

of a point process in discrete-time [see Bremaud (1980)]. The notion of default pre-intensity
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introduced by Duffie, Gârleanu (2001, p. 44) will also be useful.

Definition 2: The physical intensity λi,t associated with the point process (di,t) is a default

pre-intensity with respect to the filtration (Ω∗t ) if and only if:

P [τi > t+ h|τi > t,Ω∗t ] = E[Πh
k=1 exp(−λi,t+k)|di,t = 0,Ω∗t ], ∀t, h,

where τi = inf{t : di,t = 1} is the lifetime of entity i.

In particular, it is clear, by taking h = 1, that if a default pre-intensity exists, it is

equal to the default intensity. Note that the definition of default pre-intensity includes the

exponential-type formula for the term structure of the probabilities of default.

Proposition 1: Under Assumption A0 and under the historical probability, each point

process (di,t) admits a default pre-intensity with respect to the filtration (Ω∗t ). This default

pre-intensity does not depend on i and is denoted by λt.

Proof: In our framework, we have:

P [τi > t+ h|τi > t,Ω∗t ] = E{P [τi > t+ h|τi > t,Ω∗t , Ft+h]|τi > t,Ω∗t}

= E{Πh
k=1P [τi > t+ k|τi > t+ k − 1,Ω∗t , Ft+h]|τi > t,Ω∗t}.

Using the Sims characterization of noncausality from (di,t) to (Ft), we get:

P [τi > t+ h|τi > t,Ω∗t ] = E{Πh
k=1P [τi > t+ k|τi > t+ k − 1,Ω∗t , Ft+k]|τi > t,Ω∗t}

= E{Πh
k=1P [di,t+k = 0|di,t+k−1 = 0,Ω∗t , Ft+k]|τi > t,Ω∗t}

= E[Πh
k=1 exp(−λt+k)|di,t = 0,Ω∗t ].

Thus the point process (di,t) admits the default pre-intensity λt.�

If λt+1 is small we have approximately: P (di,t+1 = 1|di,t = 0,Ω∗t ) ' λt+1. This condition

(λt+1 small) is usually satisfied if the time unit is small, that is, when the discrete time
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approach tends to a continuous time approach and, then, (1−di,t)λt+1 is approximately the

intensity of the point process (di,t) (see Appendix A.2).

Let us now consider the dynamics of the individual point processes under the risk-neutral

distribution. For this purpose, we still assume A0 and we assume that the s.d.f. mt,t+1 is of

the general form4:

mt,t+1 = exp(δ0 + δ′FFt+1 + δSnt+1). (2.12)

Proposition 2: Under the risk-neutral dynamics,

i) The point processes (di,t), i = 1, . . . , I, are still independent conditional on process

(Ft);

ii) State 1 is still absorbing;

iii) We have: Q[di,t+1 = 0|di,t = 0,Ω∗t ] ≡ exp(−λQt+1), where the risk-neutral default

intensity is:

λQt+1 = λt+1 + log{exp(−λt+1) + [1− exp(−λt+1)] exp(δS)}.

In particular, if δS = 0, λQt+1 = λt+1.

Proof: See Appendix A.3.

Since δS is expected to be nonnegative we have λQt+1 ≥ λt+1 ∀t. Moreover, λQt+1 = λt,

∀t, if and only if δS = 0. In other words, if the s.d.f. does not contain event variables, the

historical and risk-neutral default intensities are the same functions of the factors.5 If λt+1

is small, it is easily checked that λQt+1 ' λt+1 exp(δS).

Proposition 3: The risk-neutral p.d.f. of Ft+1 given Ωt is proportional to:

fPt (Ft+1|Ωt) exp(δ′FFt+1)[
1∑

di,t+1=0

fP (di,t+1|Ft+1, di,t = 0) exp(δSdi,t+1)]
(I−Nt),
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where fPt (Ft+1|Ωt) denotes the historical conditional p.d.f. of Ft+1 given Ωt.

Proof: see Appendix A.3.

Under the risk-neutral probability the distribution of Ft+1 given Ωt depends not only on

Ft through fPt (Ft+1|Ωt), but also on the cumulated default count Nt. Therefore the sequence

of counts (nt) will generally Granger cause the factor in the risk-neutral world. In particular,

this implies that, conditional to Ωt, the risk-neutral probability of default of entity i at date

t+ 1 depends on (Ft, Nt).6 This shows that contagion exists in the risk-neutral world.

However, when δS = 0, the sum appearing in the formula of Proposition 3 is equal to 1 and

the dependency on Nt disappears. This discussion is summarized below.

Corollary 1: Under assumption A0 and the exponential affine specification (2.12) of the

s.d.f., the default count process (nt) Q-causes the factor process (Ft) except if δS = 0, that

is, if the default-event surprise is priced at zero.

Proposition 4: If δS 6= 0, a default pre-intensity does not exist in the risk-neutral world.

Proof: We know that, if the default pre-intensity exists, it is λQt . (This is obtained by

setting h = 1 in Definition 2.) Let us now consider the quantity Q[τi > t + h|τi > t,Ω∗t ]

and show that it cannot be equal to EQ[Πh
k=1 exp(−λQt+k)|di,t = 0,Ω∗t ]. Indeed, since process

(Ft) is no longer exogenous, we cannot replace Q[τi > t + k|τi > t + k − 1,Ω∗t , Ft+h] by

Q[τi > t+ k|τi > t+ k − 1,Ω∗t , Ft+k] in the analogue of the proof of Proposition 1.�

The previous proposition has important consequences when pricing defaultable bonds.

The price at date t of a defaultable bond with zero recovery rate and time-to-maturity h is:

B(t, h) = EQ
t [exp(−rt − . . .− rt+h−1)I(di,t+h=0)], (2.13)

where rt is the riskfree rate between t and t + 1, equal to −logE[mt,t+1|Ωt]. It is easily

seen, using assumption A0 and conditioning first on Ω∗t in the previous expression, that rt
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is function of Ft only.

Proposition 5: If δS = 0, we have:

B(t, h) = EQ
t [exp(−rt − . . .− rt+h−1 − λQt+1 − . . .− λ

Q
t+h)], with λ

Q
t = λt. (2.14)

If δS 6= 0, the previous formula is no longer valid. It could be replaced by:

B(t, h) = EQ
t [exp(−rt − . . .− rt+h−1 − λ̃Qt+1,t+h − . . .− λ̃

Q
t+h,t+h)], (2.15)

where λ̃Qt+k,t+h is defined by: Q(dt+k = 0|dt+k−1 = 0, Ft+h) = exp(−λ̃Qt+k,t+h). λ̃
Q
t+k,t+h is

doubly indexed and function of Ft+h, and thus is not a default intensity process. It can be

seen as a "forward" default intensity.

Proof: We have:

B(t, h) = EQ[exp(−rt − . . .− rt+h−1)I(di,t+h=0)|di,t = 0,Ωt]

= EQ[EQ[exp(−rt − . . .− rt+h−1)I(di,t+h=0)|di,t = 0,Ωt, Ft+h]|di,t = 0,Ωt]

= EQ[exp(−rt − . . .− rt+h−1)E
Q[I(di,t+h=0)|di,t = 0,Ωt, Ft+h]|di,t = 0,Ωt]

(using the fact that rt is function of Ft)

= EQ[exp(−rt − . . .− rt+h−1)

× EQ{Πh
k=1Q[τi > t+ k|τi > t+ k − 1, Ft+h]|τi > t,Ωt}]|di,t = 0,Ωt].

If δS = 0, the factor process (Ft) remains exogenous in the risk-neutral world and Q[τi >

t + k|τi > t + k − 1, Ft+h] can be replaced by Q[τi > t + k|τi > t + k − 1, Ft+k], which is

also equal to exp(−λQt+k) and to exp(−λt+k) (Proposition 2 iii)). If δS 6= 0, the expression

Q[τi > t+ k|τi > t+ k − 1, Ft+h] is equal to exp(−λ̃Qt+k,t+h) and the result follows.�

Proposition 4 shows that a default pre-intensity can exist in the historical world with-

out existing in the risk-neutral world. Besides, Proposition 5 shows that by assuming the
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existence of a default pre-intensity in the risk-neutral world we implicitly do not price the

surprise events. It has already been shown in the literature that Equation (2.13) is typically

not equal to Equation (2.14) [See e.g. Duffie, Schroeder, Skiadas (1996), Proposition 1] and

that it may arise when there are contagious defaults under Q [See e.g. Bai, Collin-Dufresne,

Goldstein, Helwege (2012)a]. Our results show that this is due to the non-exogeneity of the

driving factors under Q, which can arise even if these factors are exogenous under P .

If we replace assumption A0 by assumption A∗0, that is if Ft is no longer exogenous, a

default pre-intensity exists neither in the historical world, nor in the risk-neutral world.

3 Homogeneous Pool

3.1 The dynamic Poisson model

Let us illustrate the discussion above by considering a Poisson regression model for the

default counts with the exogenous factors as explanatory variables [see Cameron, Trivedi

(1989) for Poisson regression models]. Moreover let us consider factors which follow a

compound autoregressive (CaR) dynamic [Darolles, Gouriéroux, Jasiak (2006)].

Assumption A.1: i) The conditional distribution of nt+1 given (Ft), nt is Poisson P(β′Ft+1+

γ). ii) The conditional Laplace transform of Ft+1 given Ft and nt is exponential affine in

Ft:

Et[exp(v′Ft+1)] = E[exp(v′Ft+1)|Ft, nt] ≡ exp[A(1, v)′Ft +B(1, v)], for any v ∈ V ,

where V is the set of arguments v for which the Laplace transform exists and functions

A(1, .), B(1, .) characterize the dynamics of factor F .7

The conditional Poisson model defined in Assumption A.1 i) is the aggregate of a microe-

conomic model in which the individual defaults are independent conditional on the factor

path, the conditional individual default probabilities are the same for all non-defaulted en-
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tities and are equal to β′Ft+1 + γ divided by the number of alive entities I − Nt. This

is the doubly stochastic model or model with stochastic intensity [see Cox (1955)] written

under its macroeconomic version. In this respect the model extends the model considered in

Collin-Dufresne, Goldstein, Helwege (2010), in which the common frailty Ft ≡ S is assumed

time independent. As seen below the introduction of a dynamic frailty is needed to get

an appropriate dynamic treatment of the information available to investors. Indeed, even

if the dynamic frailty is observed up to time t by the investor, the investor will not know

perfectly its future values; this creates a dependence between the future individual defaults,

jump in the default intensities when a default occurs, and this dependence changes with

the prediction horizon. This specification allows to manage the term structure of default

dependence in a flexible way.8

For a CaR process, the Laplace transform of the cumulated process is also exponential

affine at any prediction horizon h, and we can write:

Et[exp(v′
h∑
k=1

Ft+k)] = exp[A(h, v)′Ft +B(h, v)],

where functions A(h, v), B(h, v) are defined recursively (see Appendix A.4).

Proposition 6: Under Assumption A.1, process (Ft, nt) is jointly compound autoregressive

and, for any horizon h, we can write:

Et[exp(u′F

h∑
k=1

Ft+k + uS

h∑
k=1

nt+k)] = exp[a′F (h, uF , uS)′Ft + b(h, uF , uS)],

where uF , uS are the arguments of the Laplace transform and functions aF and b are given

by:

aF (h, uF , uS) = A[h, uF + β(expuS − 1)]

b(h, uF , uS) = B[h, uF + β(expuS − 1)] + hγ(expuS − 1).

Proof: See Appendix A.5.

Let us now compare the different pricing formulas, when the s.d.f. is exponential affine
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in both the factor and the default count:9

mt,t+1 = exp(δ0 + δ′FFt+1 + δSnt+1). (3.1)

The price of the payoff exp(uNt0+h) = exp(u
h∑
k=1

nt0+k) ≡ N(u)t0+h (say) is given by:

Π(N(u), h) = Et0 [Π
h
k=1mt0+k−1,t0+k exp(u

h∑
k=1

nt0+k)]

= Et0{exp[hδ0 + δ′F

h∑
k=1

Ft0+k + (δS + u)
h∑
k=1

nt0+k]}

= exp{A[h, δF + β(exp(δS + u)− 1]′Ft0 +B[h, δF + β(exp(δS + u)− 1)]

+ h[δ0 + γ[exp(δS + u)− 1]]}. (3.2)

When the payoff is replaced by its expectation given Ft0+h, we get:

Ñ(u)t0+h ≡ E[exp(uNt0+h)|Ft0+h] = Πh
k=1E[exp(unt0+k

)|Ft0+k
]

= exp[β′
h∑
k=1

Ft0+k(expu− 1) + hγ(expu− 1)].

The price of this expected payoff is given by:

Π(Ñ(u), h) = Et0{Πh
k=1mt0+k−1,t0+kEt0 [exp(uNt0+h)|Ft0+h]}

= Et0{exp[hδ0 + δ′F

h∑
k=1

Ft0+k + δS

h∑
k=1

nt0+k

+ β′
h∑
k=1

Ft0+k(expu− 1) + hγ(expu− 1)]}

= exp{A[h, δF + β(expu− 1) + β(exp δS − 1)]′Ft0

+ B[h, δF + β(expu− 1) + β(exp δS − 1)]

+ h[δ0 + γ(expu− 1) + γ(exp δS − 1)]}. (3.3)
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Let us finally consider how the pricing formulas are modified when the s.d.f. depends

on the factor only and is given by:

m̃t,t+1 = E[exp(δ0 + δ′FFt+1 + δSnt+1)|Ft+1]

= exp{δ0 + γ(exp δS − 1) + [δF + β(exp δS − 1)]′Ft+1}. (3.4)

We easily derive the price of N(u)t0+h = exp(uNt0+h) and of its expectation given Ft0+h

based on this projected s.d.f. We get:

Π̃(N(u), h) = Π̃(Ñ(u), h) = Π(Ñ(u), h). (3.5)

We deduce the following proposition:

Proposition 7: Under Assumption A.1, the term structures of the prices given in (3.2),

(3.3) and (3.5) are exponential affine in Ft. The factor sensitivities are all based on the

A(h, .) function and derived by changing the argument u, and the risk sensitivity coefficients

associated with the factor and default count, that are δF and δS, respectively, according to

the derivative to be priced.

In particular for u = 0, we get the term structure of the riskfree zero-coupon prices:

Bf (t0, h) = Π(1, h) = Π̃(1, h)

= exp{A[h, δF + β(exp δS − 1)]′Ft0 +B[h, δF + β(exp δS − 1)]

+ h[δ0 + γ(exp δS − 1)]}. (3.6)

3.2 Pricing individual and joint defaults

We have derived above the closed-form expression of the price of an exponential transfor-

mation of the default count: Π(N(u), h), with N(u) = exp(uN). It is known that the price

of any derivative written on Nt0+h can be deduced from the prices of the derivatives with
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exponential payoff [see Duffie, Pan, Singleton (2000)]. Let us now explain how the pricing

formula (3.2) can be used to deduce a closed-form expression for the price of the joint default

of K individual contracts, that is Π(d1 . . . dK , h). We have the following result proved in

Appendix A.6:

Lemma 1: If N = d1+. . .+dI and the indicator variables di, i = 1, . . . , I, are exchangeable,

E(d1 . . . dK) =
E[N(N − 1) . . . (N −K + 1)]

I(I − 1) . . . (I −K + 1)
, for K ≤ I.

This lemma can be applied to the forward-neutral probability to get the similar relationship

written in term of prices.

Corollary 2: Π(d1 . . . dK , h) =
Π[N(N − 1) . . . (N −K + 1), h]

I(I − 1) . . . (I −K + 1)
.

Moreover the price of g(N) = N(N − 1) . . . (N −K + 1) can be deduced from the prices

of exponential transforms of N .

Corollary 3: Π(d1 . . . dK , h) =
1

I(I − 1) . . . (I −K + 1)

(
dK

dvK
Π[exp(N log(v)], h]

)
v=1

.

The standard approaches for credit derivative pricing assume the existence of default

intensities under the risk-neutral probability in order to derive closed-form expressions of

the derivative prices and they cannot be applied when the factor process is not exogenous

under Q. Corollary 3 explains how to deal with this difficulty when the pool is homogeneous

with a sufficiently large size. We first derive the price of exponential functions of default

counts, which admit closed-form expressions [see pricing formula (3.2)]. Then the prices of

individual and joint defaults are deduced by an appropriate differentiation. In particular, the

price of a CDS or of a defaultable bond is easily derived although the standard exponential

affine pricing formula no longer applies.
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4 Heterogenous pools

The approach of Section 3 can be extended to a heterogenous pool composed of J homo-

geneous segments with different risk characteristics. We will also authorize an influence of

the number of past defaults on present defaults under the physical measure. This extension

allows to disentangle the effect on price of the common factor and the effect of contagion. It

is also appropriate for the analysis of the default correlations within and between segments,

both under the historical and risk-neutral probabilities. We will also relax the noncausality

assumption from the count process to the factor process under the historical distribution.

4.1 The model

Let us consider a pool which is segmented into J segments of initial size Ij, j = 1, . . . , J .

We denote by di,j,t the default indicator at date t of the entity i belonging to segment

j, i = 1, . . . , Ij, j = 1, . . . , J , by nj,t, j = 1, . . . , J , the default counts by segment and

nt = (n1,t, . . . , nJ,t)
′. We assume that a given entity belongs to the same segment at all

dates. For instance if the entities are firms, the segment can be e.g. defined by the industrial

sector, by the size or by the domicile country. The extension of the model introduced in

Subection 3.1 is given below.

Assumption A.2: Model for heterogenous pools.

i) Conditional on Ω∗t = (Ft+1,Ωt) the counts nj,t+1, j = 1, . . . , J are independent with

Poisson distributions: nj,t+1 ∼ P(β′jFt+1 + c′jnt + γj), j = 1, . . . , J.

ii) The conditional Laplace transform of Ft+1 given Ωt is exponential affine in Ft, nt:

Et[exp(v′Ft+1)|Ft, nt] = exp[AF (1, v)′Ft + AS(1, v)′nt +B(1, v)], for any v ∈ V .

Thus, according to A.2.i), the conditional distribution of future default counts depends

on both a dynamic frailty component and lagged default counts, the latter variables in-

troducing contagion effects. This approach extends the specifications with dynamic frailty
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only, introduced to reproduce the observed default clustering and default dependence [see

e.g. Gouriéroux, Monfort and Polimenis (2006), Duffie, Eckner, Horel, Saita (2009)], as well

as the specifications with contagion only. For instance, the introduction of the lagged default

counts in the conditional distribution of nj,t+1 given in i), is in line with Lang, Stulz (1992),

Jarrow, Yu (2001), Billio, Getmansky, Lo, Pellizon (2012), or with the Hawkes’ (1971) spec-

ification of the mutually exciting point processes in a continuous-time framework [see e.g.

Lando, Nielsen (1998), Errais, Giesecke, Goldberg (2010) for applications to credit risk].

Note that the total number of defaults Nt might also be introduced as a component of Ft+1

(see the applications in Section 5).

Assumption A.2.ii) allows for the nonexogeneity of Ft, when AS(.) is different from zero.

The dynamic model described in Assumption A.2 is easily interpretable. Factor (Ft)

represents the shocks with joint effect on the probabilities of default, whereas the matrix

C with rows c′j, j = 1, . . . , J characterizes a contagion channel. This matrix gives the

segments connected by possible contagion effects, but also the direction and magnitude of

the contagion [for such an interpretation, see e.g. Billio, Getmansky, Lo, Pellizon (2012) for a

model with contagion only, Darolles, Gagliardini, Gouriéroux (2013) with a model including

both dynamic frailty and contagion]. Note that a second contagion channel is introduced

through A.2.ii) if AS is different from 0, since the conditional distribution of nj,t+1 given Ωt is

obtained by marginalizing P(β′jFt+1 + c′jnt+γj) with respect to the conditional distribution

of Ft+1 given Ωt, which also depends on nt.

We deduce the following Proposition, which extends Proposition 6.

Proposition 8: Under Assumption A.2 the process (Ft, nt) is jointly compound autore-
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gressive. For any horizon h, we can write:

Et[exp(u′F

h∑
k=1

Ft+k + u′S

h∑
k=1

nt+k)]

= exp[a′F (h, uF , uS)Ft + a′S(h, uF , uS)nt + b(h, uF , uS)],

where

aF (1, uF , uS) = AF [1, uF +
J∑
j=1

βj(expujS − 1)],

aS(1, uF , uS) = AS[1, uF +
J∑
j=1

βj(expujS − 1)] +
J∑
j=1

cj(expujS − 1),

b(1, uF , uS) = B[1, uF +
J∑
j=1

βj(expujS − 1)] +
J∑
j=1

γj(expu′jS − 1),

and similar functions for other horizons h are deduced by recursion (see Appendix A.4).

Proof: See Appendix A.7.

4.2 Pricing formulas

This subsection extends Proposition 7. Let us introduce the vector Nt+h =
h∑
k=1

nt+k and

consider the s.d.f. function incorporating the surprises of default events in each segment:

mt,t+1 = exp[δ0 + δ′FFt+1 + δ′Snt+1].

Proposition 9: Under Assumption A.2, the price at date t0 of the exponential affine payoff

N(u)t0+h = exp(u′Nt0+h
) is given by:

Π(N(u), h) = exp{aF (h, δF , δS + u)′Ft0 + aS(h, δF , δS + u)′nt0

+ b(h, δF , δS + u) + hδ0].
(4.1)
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Proof: See Appendix A.8.

Thus the prices of derivatives, including riskfree or defaultable zero-coupon bonds, can

be derived from formula of Corollary 3 and depend on the surprise on credit events in two

ways: i) by means of the risk premium components of vector δS, and ii) by the current

default counts nj,t0 , j = 1, . . . , J , in the different segments. These effects can be more or

less important according to the form of functions aF , aS and b, that is, according to the

sensitivity parameters βj and the contagion parameters cj.

5 Illustrations

In this section, we illustrate the relevance of the models introduced in the previous sections.

First, considering riskfree bonds and bonds issued by banks, we show that part of the credit-

spread puzzle might be due to the omission of the pricing of default-event surprises in the

standard credit-risk models. Then we analyze the propagation of the effect of default events

in a model with several segments.

5.1 Surprise pricing and the credit-spread puzzle

In this subsection, we use the model of Section 3 to jointly price U.S. banking-sector bonds

and Treasury bonds (T-bonds). The latter bonds are considered riskfree. The defaultable

entities are U.S. BBB-rated banks and are assumed to constitute a homogeneous pool of

credits.10 The sample covers the period from February 1995 to May 2013. The sources and

the preliminary treatments of data are presented in Appendix B. This exercise illustrates

the relevance of the model pricing default-event surprises. In particular, we show that this

feature is needed to capture the risk premia in the short-end of the term structure of spreads

and therefore to extract the physical default probabilities in an appropriate way. In that

sense, pricing default-event surprises might contribute to solve the credit-spread puzzle.
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5.1.1 Model specification

The factor Ft is given by [F1,t, F1,t−1, F2,t, F2,t−1], where processes (F1,t) and (F2,t) are inde-

pendent autoregressive gamma (ARG) processes with parameters µi, ρi and νi, i ∈ {1, 2}

(see Appendix A.4 for the definition of an ARG process). By introducing lagged values of

F1,t and F2,t in the factor Ft, we get more flexible specifications of the s.d.f. and hence of

the term structure of yields and spreads.

We set β = [0, 0, 1, 0]′ and γ = 0, implying that F2,t is the expectation of default count

nt conditional on Ft, since in this case nt ∼ P(F2,t).

We denote by yt,h the yield-to-maturity of a zero-coupon riskfree bond with residual

maturity h. In order to facilitate the calibration procedure, we transform observed yields-

to-maturity of defaultable bond into (synthetic) Credit Default Swap (CDS) spreads. These

spreads are st,h ≡ (12/h)× Π(d1, h)/Π(1, h) = (12/h)× EQ∗

t (d1,t+h), where Q∗ denotes the

forward-neutral measure.11 st,h is such that the price of the payoff d1,t+h − (h/12)× st,h at

date t is zero (see Appendix B for details about the computation of st,h from the data). In

the following, we refer to the yt,h’s and to the st,h’s as "yields" and "spreads", respectively.

These yields and spreads are affine functions of factor Ft.12 Thus, by gathering yields and

spreads of different maturities in vectors Yt and St, respectively, we have:

[ Y ′t S ′t ]′ ≡MFt +m. (5.1)

Since the moments of Ft are available in closed form (see Appendix A.4), the same is true

for [Y ′t , S
′
t]
′. This is exploited by our calibration procedure.

5.1.2 Calibration procedure

The parameters of the model are calibrated to reproduce a set of unconditional moments

derived from observed data. Nine parameters are estimated, that are: ν1, ν2, µ1, µ2, three

entries of δF (the first one being set to one for sake of identification of F1,t), and δS and δ0.13

Four types of moments are used for calibration: (i) the means of yields and spreads, (ii)
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the standard deviations of the same yields and spreads, (iii) the correlations between yields

and spreads of the same maturity and (iv) the average default frequency. Regarding the

latter, the unconditional (physical) default rate is set to 0.4%, that is the average annual

default rates across Moody’s-rated bank issuers [Moody’s (2010), Exhibit 39]. The first

three types of moments are the sample moments computed on our yield and spread dataset:

we use yields and spreads of maturities 1 year, 3 years and 5 years. For T-bonds, we add

the short-term 1-month rate (this maturity is not available for banks’ yields). Specifically,

17 moments of types i) to iii) have to be fitted: 7 means, 7 standard deviations and 3

correlations. Weighted squared deviations between sample and model-implied moments are

minimized using a numerical procedure.14

To show the need for pricing default-event surprises, we calibrate a baseline version

of our model (M1) and an alternative version (M2), which does not allow for the pricing

of default-event surprises. Only eight parameters have to be calibrated in M2 (in which

δS = 0). Calibrated parameters for both models are reported in Table 1. Panel A of

Table 2 compares the sample moments with the model-implied ones. Overall, Model M1

provides a better fit of sample moments than model M2, especially at the short-end of the

term structure of spreads (this will be discussed further in Subsection 5.1.3). From a time-

series perspective, Panel B of Table 2 reports the ratios of the mean squared errors to the

variances of yields and spreads at different maturities.15 The pricing errors are relatively

small; they are larger for shorter and longer maturities. Although the model with pricing

of default events features no more factors than the alternative one (but only one additional

parameter), it entails a much better fit of the data.

5.1.3 Results and interpretation

Figure 1 compares the model-implied unconditional means of riskfree yields (upper panel)

and spreads (lower panel) with the sample-based ones. For both yields and spreads, the

model that prices default events (model M1) provides a better adjustment to sample means.
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The difference is especially significant for short-term spreads; this stems from the ability of

model M1 to generate sizeable credit-risk premia for short maturities. Let us elaborate on

this.

[Insert Figure 1: Sample vs. Model-Implied Averages of Yields and Spreads]

The credit-risk premia are defined as the differences between priced spreads and the

ones that would prevail if investors were risk-neutral, that is between the expectations of

12
h
d1,t under the forward-neutral and the physical measures [see e.g. Berndt, Douglas, Duffie,

Ferguson, Schranz (2008)]. At this stage, it is important to distinguish the observed credit-

risk premia, that are directly deduced from a comparison of the observed spreads with the

historical probability of default, from model-based risk premia. The latter ones, that we

call implied risk premia, are calibrated from corporate bonds but depend on the selected

credit-risk model.

As stated by D’Amato, Remolona (2003), "while (observed) credit spreads are often

generally understood as the compensation for credit risk, it has been difficult to explain

the precise relationship between (these) spreads and such (credit) risk." More precisely, the

observed spreads tend to be "many times wider than what would be implied by expected

default loss", but also significantly larger than implied credit-risk premia derived from stan-

dard credit-risk models. This is the so-called credit-spread puzzle [Altman (1989), D’Amato,

Remolona (2003), Hull, Predescu, White (2005), Huang and Huang (2012)].

In the lower panel of Figure 1, the implied credit-risk premia (resp. the observed credit-

risk premia) are the differences between solid and dashed lines (resp. between the circles

and the dashed lines). Model M1 entails a flexible modeling of risk premia resulting from

the facts that: (a) the risk-neutral forward default intensities and the physical default in-

tensity are not equal16 and (b) physical and risk-neutral default intensities depend on factor

Ft, whose dynamics are not the same under the two probability measures. For model M2,

point (a) does not apply (see Proposition 2). This tends to limit the size of the implied

credit-risk premia for short maturities under M2, because the differences in the historical
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and risk-neutral dynamics of factor Ft translate into implied credit-risk premia only in a

progressive way with respect to maturities. This limitation of models that do not allow for

the pricing of credit-event surprises explains why empirical studies based on this standard

approach obtain ratios of credit-risk premia to total spreads that are strongly increasing

across maturities [see e.g. Doshi, Ericsson, Jacobs, Turnbull (2012), Table 5]. Because of

the inability of structural credit-risk models [à la Black, Scholes (1973), Merton (1974)],

but also of basic intensity credit-risk models, to account for large credit-risk premia at the

short-end of the yield curve, alternative considerations are often invoked to explain the large

bond or CDS spreads at short maturities such as liquidity [Feldhütter (2012)], taxes [Elton,

Gruber, Agrawal, Mann (2001) and Driessen (2005)] and incomplete accounting information

[Duffie, Lando (2001)]. By accommodating sizeable risk premia also for short maturities and

not for long maturities only, our framework provides an alternative solution to the credit-

spread puzzle. This feature is compatible with the results in Bai, Collin-Dufresne, Goldstein,

Helwege (2012)a, since our specification includes the effect of contagion within the segment

under the risk-neutral measure (see the comment following Proposition 3 in Subsection 2.5).

Figure 2 illustrates a time-series implication of the inability of basic intensity credit-risk

models to account for large credit-risk premia for short maturities. On this figure, we con-

sider the one-year probability of default (PD) of a U.S. BBB-rated bank. The dashed line

corresponds to the observed spread st,12. In each model, there is a one-to-one relationship

between st,12 and the factor value F2,t.17 From the implied factor path (F2,t), we can deduce

the implied physical PDs for both models. Model-implied physical PDs are also displayed

in Figure 2; they are substantially lower with model M1. Therefore, in that context, using

a model that does not price default-event surprises may tend to overestimate physical prob-

abilities of default at short horizons or, equivalently, to underestimate the credit-risk premia.

[Insert Figure 2: 1-Year Probability of default]
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5.2 Recursive contagion

This subsection provides an illustration of the model for heterogenous pools introduced in

Section 4. For expository purpose, we consider a simple setting, but the approach remains

tractable with larger systems and more complicated exposure setups.

Six homogeneous segments are involved, each of them being constituted of 100 entities.

The factor Ft is equal to [FB,t, F
′
N,t]
′; (FB,t) is a sequence of i.i.d. Bernoulli variables with

parameter ν = 0.05. The process (FN,t), of dimension 6, keeps memory of past default

counts in the different segments. Specifically, we have:

FN,j,t = ρFN,j,t−1 + nj,t−1, j = 1, . . . , 6,

where the smoothing parameter ρ is chosen independent of the segment. If ρ is equal to one

and FN,t0 = 0, then FN,t gives the cumulated number of defaults between t0 and t− 1 in the

different segments. When 0 < ρ < 1, FN,t keeps track of the number of past defaults, but

underweights the oldest ones. We use ρ = 0.8 in the numerical example presented below.

Conditional on Ω∗t = (Ft+1,Ωt), the counts nj,t+1, j = 1, . . . , 6, follow independent

Poisson distributions:

n1,t+1 ∼ P(0.4× FN,6,t + FB,t) and nj,t+1 ∼ P(0.4× FN,j−1,t) if j > 1. (5.2)

This structure defines a circular network of segments where the probability of experiencing

defaults in segment j depends on the number of recent defaults in segment j − 1 (or in

segment 6 for j = 1).

[Insert Figure 3: Evolutions of Factors and Default Counts]

Figure 3 displays simulated trajectories of the processes (Ft) and (nt). We initialize the

simulation with FN,1 = 0. At date 5, we get the high value of factor FB (FB,5 = 1) that

generates two defaults in segment 1. This implies an increase in factor FN,1,t, which induces
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one default in segment 2 at date 6, and so on. Even in the absence of new shock on FB,t,

defaults occur again in segment 1 at date 17 because of propagation across segments till

segment 6 (recall that segment 1 is exposed to segment 6, see Equation 5.2). After the 30th

period, default intensities fade and the FN,j,t’s are all back to small values. In the absence

of a new shock on FB, there is no additional default. A new default wave is triggered after

the 40th period, due to a shock on FB that translates into three defaults in segment 1 and

so on.

[Insert Figure 4: CDS prices and Probabilities of Default]

Figure 4 illustrates the implications of the model with contagion in terms of forecasting

and pricing. We focus on two dates (t = 1 and t = 45) and two segments (1 and 4). For

each segment and date, two charts are provided:

• The upper chart presents cumulated probabilities of default: more precisely, the black

solid line indicates the probabilities that entity i defaults between t and t+ h (where

t is the current date, i.e. either 1 or 45); the grey solid line is a forward CDS price,

given by Π(dj,i, h)/Π(1, h);18 the dotted line is the forward CDS price computed with

the s.d.f. m̃t,t+1 that ignores the pricing of default events.

• The lower chart presents the first differences of the previous curves (with respect

to horizon h). Therefore, this chart focuses on the event of a default of entity i at

specific future dates t + h, for h between 1 and 15: the black solid line indicates the

probabilities of default of entity i at date t+ h, the grey solid line reflects the cost of

insuring against a default of entity i exactly at date t + h and the dotted line shows

the cost that would prevail if mt,t+1 was replaced by m̃t,t+1.

The prices are obtained with a s.d.f. mt,t+1 defined by Equation (3.1), with δ0 = 0,

δF = [−0.1, 0, 0, 0, 0, 0] and δS = [0.1, 0, 0, 0, 0, 0, 0]. As in the previous example, the spread

between the grey solid line and the dotted solid line is accounted for by credit-event risk

premia.
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At date 1, the default probabilities for segment-1 entities in any of the next seven periods

is equal 0.05% (see Panel A in Figure 3). To understand that, recall that the number of

defaults in segment 1, conditional on Ft, follows a Poisson distribution P(0.4×FN,6,t+FB,t).

Therefore, we can have a default in segment 1 at date t only if either FB,t > 0, or FN,6,t > 0.

Further, since there cannot be any default in segment j (j > 1) without previous defaults

in segment j − 1, FN,6,t necessarily remains at zero for at least 6 periods when FN,t = 0. In

the latter case, the default probability for any entity in segment 1 at dates t + h for h < 7

is constant and equal to 0.05%. Beyond that horizon, the probability of default increases

because of possible contagion along the lines described above.

The other plots in Figure 5 show that various profiles of expected probabilities of de-

fault can be obtained in that framework. Let us look at Panel D, that corresponds to the

probabilities of default of segment-4 entities in future dates t + h, as expected from date

t = 45. This chart suggests that the probabilities of default are decreasing in the next 6

periods, but increase beyond that horizon. This stems from the fact that the expectation of

n4,t conditional on future Ft is equal to FN,3,t and that, based on the information available

at date t = 45, FN,3,t+h is expected to decrease in the next six periods. However, one default

occurs in segment 4 at date 45 and this default could propagate across the different segments

and generates a new wave of defaults that would take 6 periods before affecting segment 4

again. This contributes to the increase (with respect to h) in the expected probabilities of

default in segment 4 beyond t+ 6.

The propagation schemes are summarized in the left-hand-side plots of Figure 5. They

provide the direction of propagation and indicate the number of defaults, when defaults

occur.

This illustration shows how the model for heterogenous pool with both dynamic frailty

and recursive contagion is able to reproduce stylized facts highlighted in the literature such

as the increase in CDS spreads and the increase in default correlation responding to a

borrower bankruptcy [see e.g. Jorion, Zhang (2009)]. This model is even more flexible since
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it is able to analyze these responses in a dynamic way.

6 Concluding remarks

In order to derive closed-form expressions of interest rates and prices, standard reduced-

form credit-risk models usually price the default intensity, but not the default indicator

itself. In other words, the default indicator does not appear in the s.d.f. and is replaced

by an appropriate prediction. Thus the prediction error, that is the surprise on default

event, is neglected. This paper develops an approach that results in closed-form formula to

price credit derivatives written on any number of names, without neglecting default-event

surprises.

An empirical analysis based on U.S. bond data highlights the importance of pricing

default-event surprises. We show that this feature adds flexibility to the modelling of credit-

risk premia. Models pricing default-event surprises can generate sizeable credit-risk premia

at the short end of the yield curve and, hence, can solve the credit-risk puzzle.

The analysis is extended to heterogenous pools of credits, where defaults can be driven

by a dynamic frailty as well as by past default counts in the different segments. This

model is appropriate for disentangling the effects of exogenous shocks from contagion effects.

The illustration shows how shocks propagate in the system and the implications of this

propagation on derivative prices.

Finally, note that even if traded volumes of these derivatives have decreased in the af-

termath of the recent financial crisis, credit-derivative pricing is still an important topic.19

First, this volume remains significant. Second, coherent pricing formulas are also useful

from a regulating point of view, in particular to compute the required capital for finan-

cial institutions. Indeed, for rather illiquid assets, the usual mark-to-market (fair value)

approach is progressively replaced by mark-to-model values. The model considered in this

paper can serve this purpose.
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Notes
1Note that the population-at-risk PaRt is measurable with respect to Ωt.
2See e.g. Florens, Mouchart (1982), and Gouriéroux, Monfort (1989) Property 1.2 for a simpler proof.
3This specification includes the specifications with lags, i.e. with m̃(F̃t+1, F̃t, . . . , F̃t−p), by setting Ft+1 =

(F̃ ′t+1, F̃
′
t , . . . , F̃

′
t−p)′.

4The results that follow (Propositions 2 to 5) remain valid when δ0 is replaced by −r(Ft)−Ψt(δF , δS),
where r is a function of Ft, that defines the riskfree short-term rate, and Ψt denotes the conditional log-
Laplace transform of (Ft, nt).

5See also Monfort, Renne (2013). In a continuous-time setup, Jarrow, Lando, Yu (2005) show that both
kinds of default intensities are equal when default-event risk is perfectly diversifiable.

6Indeed Q(di,t+1 = 1|di,t = 0,Ωt) = EQ(Q(di,t+1 = 1|di,t = 0,Ω∗t )|di,t = 0,Ωt) = EQ(exp(−λQ
t+1)|di,t =

0,Ωt). Since (a) λQ
t+1 depends on Ft+1 and (b) the process (Nt) Q-Granger causes the process (Ft), the

latter expression is a function of both Ft and Nt.
7The factors are often assumed nonnegative as well as the components of β and parameter γ to ensure

the positivity of the default intensity. In this case V ⊃ (−∞, 0)L, where L = dim Ft.
8To keep a nondenegerate default dependence, Collin-Dufresne, Goldstein, Helwege (2008) assumed that

the common static frailty S is not observed by the investor. However, when time goes on, the investor
updates in a Bayesian way his knowledge about S, which becomes known after a sufficiently long time.
In our framework the investor cannot get the asymptotic knowledge of the future frailty values, since the
frailty receives independent shocks at any future date.

9The following propositions remain valid if δ0 is replaced by δ0 + δ′1Ft in Equation (3.1).
10Modeling the term structures of interest rates by rating class is usual in the literature [see e.g. D’Amato,

Luisi (2006), Jacobs, Li (2008), Wu, Zhang (2008), or Christensen, Lopez (2012)]. The assumption that the
entities of a same industrial sector, a same country and a same rating class form a homogeneous pool is for
instance made in J.P. Morgan’s CreditMetrics model (1997) and in the standard Basel regulation.

11The forward-neutral measure is such that the present value of a payoff gt+h (settled at date t+h) is given
by Πt(1, h) × EQ∗

t (gt+h). The Radon-Nikodym derivative of Q∗ with respect to the historical distribution
is mt,t+1 × · · · ×mt+h−1,t+h/Πt(1, h), where mt,t+1 is the s.d.f. between t and t+ 1.

12Regarding riskfree yields, this is easily seen from Equation (3.6). For spreads, it follows from Corollary
3 that Π(d1, h) = (1/I) × Π(1, h) × (C ′(0, h)F + D′(0, h)), where the functions C and D are such that
Π(1, h) = exp(C(0, h)F +D(0, h)); therefore st,h = (12/(Ih))× (C ′(0, h)Ft +D′(0, h)) is an affine function
of Ft.

13In order to minimize the number of parameters to estimate, some parameters are fixed: ρ1 and ρ2 are
taken equal to 0.95 (a value that is consistent with the persistence of yields and spreads) and the number
of banks is set to 100. Our results are robust to these choices.

14The weights are presented in line ω of Table 2; qualitative results are fairly robust to the choice of these
weights.

15 Model-implied spreads are based on estimates F̂t of the factor path. At each date, we assume that two
linear combinations of yields or spreads are measured without errors by the model. We select the linear
combinations as being those that minimize the squared measurement errors across yields and spreads for
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each month; these combinations are simply given by the OLS formula: F̂t = (MM ′)−1M ′([Y ′t , S
′
t]
′ −m),

using the notations of Eq. 5.1.
16see Proposition 5 and Equation (2.15) for the definition of the forward default intensity. Note that the

physical forward-default intensity is equal to the physical default intensity if (Ft) does not cause nt under
P , which is the case here.

17In the present context, F1,t does not intervene in spreads. This stems from the fact that (F1,t) and
(F2,t, nt) are independent under both P and Q, which implies that Π(N(u), h) is of the form exp(G1,hF1,t)×
exp(G2,h(u)F2,t). Therefore, since st,h = (1/I) (dΠ(N(u), h)/du)u=0 /Π(N(0), h), factor F1,t does not ap-
pear in st,h.

18This standardization avoids the discounting effects that are implicitly present in the CDS pricing formula
given in Corollary 3 where Π(dj,i, h) is paid upfront at date t, while the payoff dj,i,t+h is implicitly settled
at date t+ h.

19According the BIS (http://www.bis.org/statistics/otcder/dt21.csv), the amounts outstanding of over-
the-counter traded CDS was larger than $45tr in mid-2008. Between mid-2009 and the end of 2012, this
amount lied between $20tr and $25tr.
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Appendix A: Proofs and Technical Results

Appendix A.1: Conditional Independence

Lemma A.1: The process (nt) admits independent components conditional on the factor
process (Ft).

Proof: Let us consider the Sims’ characterization of the noncausality of process (nt). We
get:

f(nt|nt−1, FT ) = f(nt|nt−1, Ft), ∀t ≤ T.

Moreover by Assumption A0 ii), we get:

f(nt|nt−1, Ft) = f(nt|Ft).

Thus we deduce that f(nt|nt−1, FT ) does not depend on nt−1, which characterizes the inde-
pendence of n1, . . . , nT given FT .�

The same approach can be followed to prove the conditional independence of the indi-
vidual point processes di = (di,t), i = 1, . . . , I, conditional on the factor process.

Let us now consider the projected s.d.f. We get:

E[Πh
k=1m(Ft0+k, nt0+k)|Ft0+h]

= Πh
k=1E[m(Ft0+k, nt0+k)|Ft0+h] (using the conditional independence)

= Πh
k=1E[m(Ft0+k, nt0+k)|Ft0+k] (using the noncausality from (nt) to (Ft)).

Appendix A.2: Default intensity and intensity of a point process in discrete
time

Let us consider the point process (di,t). We have:

E[di,t+h − di,t|Ω∗t ] =
h∑
k=1

E(di,t+k − di,t+k−1|Ω∗t )

=
h∑
k=1

E
[
E(di,t+k − di,t+k−1|Ω∗t+k−1)|Ω∗t

]
= E

[
h∑
k=1

λ∗t+k|Ω∗t

]
,
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with λ∗t+k = E(di,t+k − di,t+k−1|Ω∗t+k−1). The process di,t − Σt
τ=0λ

∗
τ is a Ω∗t -martingale since

E[di,t+h − Σt+h
τ=0λ

∗
τ |Ω∗t ] = di,t − Σt

τ=0λ
∗
τ . Thus, by definition, λ∗t is the intensity of di,t [see

Bremaud (1980), Section 2]. This intensity is linked to the default intensity introduced in
Definition 1 by:

λ∗t+1 = (1− di,t)[1− exp(−λt+1)].

Appendix A.3: Proofs of Propositions 2 and 3

i) Proof of Proposition 2
We have:

fP (Ft+1, dt+1|Ωt) = fP (Ft+1|Ωt)f
P (dt+1|Ft+1,Ωt)

= fP (Ft+1|Ωt)
∏

i∈PaRt
fP (di,t+1|Ft+1, di,t = 0)

∏
i/∈PaRt

di,t+1,

by the independence of the individual point processes given (Ft).
The risk-neutral conditional p.d.f of (Ft+1, dt+1) given Ωt is proportional to:

fP (Ft+1|Ωt) exp(δ′FFt+1)
∏

i∈PaRt

[
fP (di,t+1|Ft+1, di,t = 0) exp(δSdi,t+1)

] ∏
i/∈PaRt

di,t+1.

Therefore, we have:

fQ(dt+1|Ft+1,Ωt) ∝
∏

i∈PaRt

[
fP (di,t+1|Ft+1, di,t = 0) exp(δSdi,t+1)

] ∏
i/∈PaRt

di,t+1,

where the proportionality coefficient depends on the conditioning variables. This implies
that under the risk-neutral probability:

i) the point processes (di,t), i = 1, . . . , I are independent conditional on (Ft), due to the
multiplicative decomposition of the joint density;

ii) state 1 is still absorbing;

iii) the risk-neutral p.d.f. fQ(di,t+1|Ft+1, di,t = 0) is the Esscher transform [Esscher (1932),
Gerber, Shin (1994)] of the historical p.d.f. fP (di,t+1|Ft+1, di,t = 0) associated with
parameter δS.

In particular fQ(di,t+1 = 0|Ft+1, di,t = 0) ≡ exp(−λQt+1) is proportional to fP (di,t+1 =

0|Ft+1, di,t = 0) ≡ exp(−λt+1) and fQ(di,t+1 = 1|Ft+1, di,t = 0) is proportional to [1 −
exp(−λt+1)] exp(δS).
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Therefore we get:

exp(−λQt+1) =
exp(−λt+1)

exp(−λt+1) + [1− exp(−λt+1)] exp(δS)

and Proposition 2 follows.�

ii) Proof of Proposition 3
The risk-neutral conditional p.d.f of Ft+1 given Ωt is obtained by summing on dt+1

the joint risk-neutral conditional p.d.f. of (Ft+1, dt+1) given Ωt, therefore the p.d.f. is
proportional to:

fP (Ft+1|Ωt) exp(δ′FFt+1)[
1∑

di,t+1=0

fP (di,t+1|Ft+1, di,t = 0) exp(δSdi,t+1)]
(I−Nt).�

Appendix A.4: Recursive Formulas for CaR Processes

We recall in this appendix the recursive formulas for computing the Laplace transform
of a (multidimensional) CaR process at the different prediction horizons [see e.g. Darolles,
Gouriéroux, Jasiak (2006)]. We write these formulas for a process (Yt), which will be either
Yt = Ft, or Yt = (F ′t , n

′
t)
′ in our applications.

Proposition A.1: For a CaR process such that:

Et[exp(u′Yt+1)] = exp[a(1, u)′Yt + b(1, u)],

we also have: Et[exp(u′
h∑
k=1

Yt+k)] = exp[a(h, u)′Yt + b(h, u)],

where the functions a(h, u), b(h, u) satisfy the recursive equations:

a(h, u) = a[1, u+ a(h− 1, u)], (a.1)

b(h, u) = b[1, u+ a(h− 1, u)] + b(h− 1, u). (a.2)

Proof: The recursive formulas are easily derived by applying the iterated expectation
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theorem. We get:

Et[exp(u′
h∑
k=1

Yt+k)]

= Et{exp(u′Yt+1)Et+1[exp(u′
h−1∑
k=1

Yt+1+k)]]

= Et{exp[u′Yt+1 + a(h− 1, u)′Yt+1 + b(h− 1, u)]}
= exp[a[1, u+ a(h− 1, u)]′Yt + b[1, u+ a(h− 1, u)] + b(h− 1, u)].

The recursive formulas of the Proposition are deduced by identification.�
The recursive formulas (a.1) - (a.2) can also be used to deduce recursively the expressions

of the derivatives w.r.t. argument u. We get:

∂a(h, u)

∂u′
=

∂a

∂u′
[1, u+ a(h− 1, u)][Id+

∂a

∂u′
(h− 1, u)], (a.3)

∂b(h, u)

∂u′
=

∂b

∂u′
[1, u+ a(h− 1, u)](Id+

∂a

∂u′
(h− 1, u)] +

∂b

∂u′
(h− 1, u). (a.4)

Example: The autoregressive gamma (ARG) process.

This process is the time-discretized Cox, Ingersoll, Ross process [Cox, Ingersoll, Ross
(1985)]. Zt follows an ARG of parameters (µ, ρ, ν) iff the conditional distribution of Zt/ν
given Zt−1 is γ(µ, ρZt−1/ν) where γ is the noncentral gamma distribution. The conditional
Laplace transform of an ARG process of parameters (µ, ρ, ν) is:

Et[exp(uZt+1)] = exp[
ρu

1− νu
Zt − µ log(1− νu)].

Thus we have: a(1, u) =
ρu

1− νu
, b(1, u) = −µ log(1 − νu). Besides, conditional mean and

variance of Zt are given by:

Et(Zt+h) =
1− ρh

1− ρ
νµ+ ρhZt; and Vt(Zt+h) =

(
1− ρh

1− ρ
ν

)2

µ+ 2ρh
1− ρh

1− ρ
νZt

38



Appendix A.5: Proof of Proposition 6

Et[exp(u′F

h∑
k=1

Ft+k + uS

h∑
k=1

nt+k)]

= Et{exp(u′F

h∑
k=1

Ft+k)Et[exp(uS

h∑
k=1

nt+k)|Ft+h]} (by iterated expectation)

= Et{exp(u′F

h∑
k=1

Ft+k)Π
h
k=1E[exp(uSnt+k]|Ft+k)} (by Assumption A.1)

= Et{exp(u′F

h∑
k=1

Ft+k)Π
h
k=1 exp[(β′Ft+k + γ)(expuS − 1)]} (by using the

expression of the Laplace transform of a Poisson variable)

= Et{exp([uF + β(expuS − 1)]′
h∑
k=1

Ft+k)} exp |hγ(expuS − 1)]

= exp{A[h, uF + β(expuS − 1)]′Ft +B[h, uF + β(expus − 1)] + hγ(expuS − 1)}.

This is an exponential affine function of Ft. This proves that the process (Ft, nt) is jointly
affine and the expressions of aF and b follow.�

Appendix A.6: Characterization of the joint probability of defaults

Lemma A.2: If N = d1 + . . . + dI , where the variables di, i = 1, . . . , I are exchangeable,
we have, for K ≤ I:

P [d1 = . . . = dK = 1] = E(d1 . . . dK) =
E[N(N − 1) . . . (N −K + 1)]

I(I − 1) . . . (I −K + 1)
.

Proof: i) Let us first consider the case of independent defaults. Then N ∼ B(I, p), where
p = P [d1 = 1]. It is easily deduced from the moment generating function of the binomial
distribution [see e.g. Johnson, Kemp, Kotz (2005)] that.

E[N(N − 1) . . . (N −K + 1)] = I(I − 1) . . . (I −K + 1)pK

= I(I − 1) . . . (I −K + 1)E(d1 . . . dK).

ii) In the general framework with possible default dependence, we know by de Finetti’s
theorem [see e.g. Feller (1971)], that any exchangeable sequence d1, . . . , dI of {0, 1} variable
is such that there exists a latent variable Z, say, such that d1, . . . , dI are i.i.d. Bernoulli
variables with probability p(Z) conditional on Z.
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We deduce that:

E[N(N − 1) . . . (N −K + 1)|Z] = I(I − 1) . . . (I −K + 1)E[d1 . . . dK |Z],

and by taking the expectation of both sides:

E[N(N − 1) . . . (N −K + 1)] = I(I − 1) . . . (I −K + 1)E(d1 . . . dK).�

Appendix A.7: Proof of Proposition 8

We have:

Et[exp(u′FFt+1 + u′Snt+1)]

= Et[exp(u′FFt+1) exp(
J∑
j=1

ujSnj,t+1)]

= Et{exp[u′FFt+1 +
J∑
j=1

[β′jFt+1 + c′jnt + γj][exp(ujS)− 1]}

= Et exp{[uF +
J∑
j=1

βj(expujS − 1)]′Ft+1} exp[
J∑
j=1

c′jnt(expujS − 1)]

exp(
J∑
j=1

γj[exp(ujS)− 1]).

Therefore:

Et[exp(u′FFt+1 + u′Snt+1)]

= exp{A′F [1, uF +
J∑
j=1

βj(expujS − 1)]Ft + A′S[1, uF +
J∑
j=1

βj(expujS − 1)]nt

+
J∑
j=1

c′j(expujS − 1)nt +B[1, ut +
J∑
j=1

βj exp(ujS − 1)]

+
J∑
j=1

γj[exp(ujS)− 1]}.

The result follows by identification.�
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Appendix A.8: Proof of Proposition 9

We have:

Π(N(u), h) = Et0 [Π
h
k=1mt0+k−1,t0+k exp(u′Nt0+h)]

= Et0{exp[hδ0 + δ′F

h∑
k=1

Ft0+k + (δS + u)′
h∑
k=1

nt0+k]}

= exp{aF (h, δF , δS + u)′Ft0 + aS(h, δF , δS + u)′nt0

+ b(h, δF , δS + u) + hδ0}.�

Appendix B: The dataset

Bank and Treasury yields-to-maturity are end-of-month data extracted from Bloomberg
(Tickers C070 for bank yields and C082 for Treasury yields). Bank yields are generic yields
computed as averages of yields-to-maturity of bonds issued by BBB-rated banks. After
extraction, bootstrap techniques are applied on these coupon-bond yields so as to get zero-
coupon yields. The defaultable-bond yields have to be corrected for non-zero recovery rates.
Assuming that potential recovery payments take place at maturity, and denoting by R the
recovery payment, one can reconstruct a riskfree bond with a defaultable bond issued by
debtor i and a CDS written on the same entity:

Π(1, h) = exp(−h× yNZi,h ) + (1−R)Π(di, h),

where yNZi,h is the yield-to-maturity of a defaultable zero-coupon bond issued by entity i

with a residual maturity of h and R is the recovery rate. Market prices of Π(di, h) are then
obtained using the previous formula. For that, we fix the recovery rate at 40%, consistent
with the industry practice [see e.g. Merril Lynch (2006) or Crédit Suisse (2007)].
Finally, st,h is defined through h

12
st,hΠt(1, h) = Πt(d1, h); it is such that the credit swap

whose payoff at date t + h is di,t+h − h/12st,h is worth zero at date t. The reason why
we consider annualized value (introducing the multiplicative factor 12/h) is to make st,h
commensurate with usual CDS or bond spreads, that are expressed in annualized terms.
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Figure 1: Sample vs. Model-Implied Averages of Yields and Spreads

Bond issued by the U.S. Treasury are considered as riskfree. Circles correspond to sample means of Treasury
yields (upper plot) or spreads (lower plot). Solid lines are under Q, dashed lines are under P . On the lower
chart, the grey and black dashed lines are confounded since both models are consistent with the same
unconditional default frequency (of 0.4%).
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Figure 2: 1-year Probability of Default

The dashed line shows the time series of the observed spread over a one-year horizon; formally, for date
t, it shows EQ∗

(di,t+1year = 1|di,t = 0,Ωt) = Π(d1, 1year)/Π(1, 1year). Solid lines show implied physical
probabilities of default.

Figure 3: Heterogenous Pool: Simulated Paths of Factors and Default Counts
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FB,t is drawn from a Bernoulli distribution with parameter ν = 5%. Conditional on Ω∗t = (Ft+1,Ωt),
n1,t+1 ∼ P(0.4 × FN,6,t + FB,t) and, for i > 1, ni,t+1 ∼ P(0.4 × FN,i−1,t). In addition, FN,i,t = 0.8 ×
FN,i,t−1 + ni,t−1. A high value of factor FB may immediately generate defaults in segment 1, and these
defaults propagate to the other segments by contagion.
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Figure 4: Heterogenous Pool: CDS Prices and Probabilities of Default
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In the upper charts of Panel A to D, the black solid line indicates the probabilities that entity i defaults
between t and t+ h (where t is either 1 or 45); the grey solid line plots the forward prices of CDS (that are
the same probabilities under the forward-neutral measure) and the dotted line corresponds to the forward
price of CDS computed with the s.d.f. m̃t,t+1 that ignores the pricing of default events. The lower charts
in Panel A to D display the first differences of the curves plotted on the upper chart and is related to the
event of a default of entity i at specific future dates t+ h.
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Table 1: Model calibrations

µ1 ν1 ρ1 µ2 ν2 ρ2 δF,1 δF,2 δF,3 δF,4 δS δ0
M1 1.55 0.022 0.95 0.428 0.004 0.95 1 -0.974 3.045 -5.063 1.163 -0.044
M2 3.26 0.021 0.95 0.267 0.006 0.95 1 -0.972 5.681 -5.589 - -0.081

M1 (resp. M2) is the model pricing the default-event surprise, i.e. with δS 6= 0 (resp. δS = 0). F1,t and F2,t

follow independent autoregressive gamma processes of respective parameters (µ1, ρ1, ν1) and (µ2, ρ2, ν2);
the sdf is given by mt,t+1 = exp(δ0 + δ′FFt+1 + δSnt+1) where Ft = [F1,t, F1,t−1, F2,t, F2,t−1]′ and the
conditional distribution of nt given Ft, nt−1 is Poisson P(F2,t).

Table 2: Fitting properties of the model

Panel A - Unconditional moments
Treasuries (riskfree) yields Spreads (Banks vs. Treas.) Correlations

1 mth 1y 3y 5y 1y 3y 5y 1y 3y 5y
ω 50 50 50 50 100 100 100 0.05 0.05 0.05
S 2.7/2.1 3.1/2.2 3.5/2.0 3.9/1.8 2.0/1.6 2.5/1.8 2.8/2.0 -60 -70 -65

M1 2.7/2.2 3.1/2.1 3.6/1.9 3.9/1.8 1.7/1.9 2.3/1.8 3.1/1.8 -65 -65 -65
M2 2.6/1.7 3.1/1.7 3.8/1.8 3.8/2.3 0.6/0.9 1.3/1.3 2.6/2.4 -47 -54 -70

Panel B - Time-series fit (MSE divided by series variances, in %)
Treasuries (riskfree) yields Spreads (Banks vs. Treas.)

1 mth 1y 3y 5y 1y 3y 5y
M1 8.6 2.8 0.2 3.1 11.1 1.2 7.2
M2 16.3 9.2 1.0 36.3 57.8 19.5 24.2

Panel A reports sample moments (row S) as well as the unconditional moments implied by the two cali-
brated models (rows M1 and M2); M1 (resp. M2) is the model pricing (resp. not pricing) default-event
surprises. Rows S, M1 and M2 show the means / standard deviations of yields and spreads. These
models are estimated by weighted-moment methods with weights provided in row ω (while imposing an
unconditional monthly default rate of 0.4%/12). Panel B reports the ratios of mean squared pricing errors
(MSE) to the sample variances of corresponding yields/spreads. The computation of pricing errors is based
on estimates of the factor path (Ft) (see Footnote 15).
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