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Abstract

This paper illustrates how a parsimonious macro-finance model can be ex-
ploited to investigate the frequency-domain properties of debt service implied
by various financing srategies. This orginal approach is valuable to public debt
managers seeking to assess the fiscal-hedging properties of the financing strate-
gies they implement. The model, inspired by Rudebusch and Wu (2008), is
estimated on euro-area data over the period 1999-2009. At business-cycle fre-
quencies, the variance of interest payments is lower when nominal long-term
bonds are issued. From a budget-smoothing perspective, debt service variabil-
ity plays a major role, but pro- or counter-cyclicality of debt service also matters.
In this respect, the results suggest that while interest payments associated with
medium- to long-term nominal bonds are negatively correlated with real activ-
ity, those associated with inflation-linked bonds and short-term nominal bonds
tend to be pro-cyclical.

JEL Codes: C51, E32, E43, G12, H63.

Keywords: macro-finance model, spectral analysis, term-structure of inter-
est rates, public debt management.

Résumé

Cet article montre comment un modèle macro-financier parcimonieux peut
être utilisé afin d’étudier les propriétés fréquentielles de charges de la dette résul-
tant de l’application de différentes stratégies de financement. La méthodologie
présentée permet notamment d’évaluer les performances de stratégies de finance-
ment en termes de lissage budgétaire. Le modèle s’inspire de celui développé par
Rudebusch et Wu (2008) et est estimé sur données relatives à la zone euro sur la
période 1999-2009. La variance de la charge de la dette est relativement faible
lorsque des obligations nominales de long-terme sont émises. Dans une optique
de lissage budgétaire, la variabilité de la charge de la dette joue un rôle majeur,
mais le caractère pro- ou contra-cyclique de la charge de la dette importe égale-
ment. A cet égard, les résultats suggèrent que la charge d’intérêt tend à être
pro-cyclique lorsque des obligations indexées ou des obligations nominales de
maturités courtes sont émises. A l’inverse, lorsque seules des obligations nom-
inales de maturités moyennes ou longues sont émises, la charge de la dette est
négativement corrélée au cycle économique.

Codes JEL: C51, E32, E43, G12, H63.

Mots clés: modèle macro-financier, analyse spectrale, structure par terme
des taux d’intérêt, gestion de la dette publique.



1. Introduction

Beyond trading purposes, encompassing derivative pricing and interest-rate exposure hedg-
ing, yield-curve modeling has been extensively used for policymaking. Apart from the
central banker, another natural user of yield-curve modeling is the public debt manager,
who has to decide continually what kind of instrument should be issued. Obviously, a good
understanding of yield-curve dynamics is necessary when it comes to managing significant
volumes of negotiable debt using fixed-income instruments.1

In this paper, I build on the recent developments in macro-finance modeling to develop a
framework aimed at investigating the dynamic properties of debt servicing. In particular,
this framework makes it straightforward to analyze the pro- or counter-cyclicality of inter-
est payments that are implied by various financing strategies. As suggested by Dai and
Philippon (2005) [23], once infra-year fluctuations are removed, primary-deficit variability
is mainly accounted for by inflation and real-activity shocks. Consequently, analyzing the
comovements between debt service and such macroeconomic variables is key if debt man-
agement is aimed at hedging against fiscal shocks. This kind of budget-smoothing objective
is consistent with the general concept of fiscal insurance that also encompasses optimal tax
smoothing or debt stabilisation and that recognizes that the role of debt management is
to support fiscal policy (see Faraglia et al., 2008a 37). In particular, according to the tax-
smoothing literature, the design of public debt should seek to minimize changes in tax rates,
which would otherwise be needed to meet unexpected changes in financing needs.2 Building
on such a framework, Lucas and Stockey (1983) [62], Chari et al. (1994) [17], Barro (1997)
[6] or Angeletos (2002) 3 assert that ideal debt instruments would be negatively indexed to
public spending and positively indexed to output. However, while some debt management
offices have qualitatively taken fiscal insurance into consideration at some point –notably
when introducing a new class of funding instruments like ILBs (see Coeuré, 2004 [21] or
Dudley, 2007 [30])– those principles do not constitute a primary concern for public debt
managers (Wolswijk and de Haan, 2004 [72]). This can be accounted for by the difficulty in
turning these conceptual objectives into plain and consensual quantitative measures or by
the fact that available attempts to exhibit “optimal” debt portfolio result in pratically un-
reachable debt structures, with asset positions that are large multiples of GDP (see Faraglia
et al., 2008b 38 or Buera and Nicolini, 2004 14). While the approach developed in this pa-
per is not normative (the analysis does not extend as far as the derivation of an optimal
debt portfolio, which would notably need to define government preferences), it is aimed
at facilitating the debt managers’ taking into account basic fiscal-insurance principles by
providing them with a tool to assess the business-cycle properties of debt servicing implied
by various financing strategies.

The framework proposed in this paper is guided by recent research suggesting that a joint
macro-finance modeling strategy provides a comprehensive explanation of movements in the
term-structure of interest rates.3 Pioneered by Ang and Piazzesi (2003) [1], this modeling
builds on the more general affine term structure models (ATSM), that were popularized by
Duffie and Kan (1996) [32], whose formalization encompasses earlier models due to Vasicek

1See e.g. Bolder (2006) [10], (2003) [11], (2006) [12], Bernaschi et al. (2007) [8], Anthony et al. (2008)
[4] or Hörngren et al. (2008) [55] for an overview of modeling tools and approaches used by public debt
managers.

2See e.g. Missale (1997) [63] and (1999) [64] for an in-depth presentation of tax smoothing and its
implications in terms of public debt management.

3Diebold et al. (2005) [29] provide a comprehensive view of macro-finance modeling.



(1977) [71], Cox, Ingersoll, and Ross (1985) [22], and Longstaff and Schwartz (1992) [61].
Another cornerstone regarding ATSM is provided by Dai and Singleton (2000) [24] who give
a detailed analysis of the affine models in a generalized formulation and, moreover, some
deep reasoning on their structure, that are supported by an empirical comparison grounded
on the U.S. interest rates of the last decades.4 ATSM are factor models, so only a small
number of sources of variation –four in the present model, inspired by Rudebusch and Wu
(2008)– underlie the pricing of the entire term structure of interest rates. Besides, these
models impose the standard no-arbitrage restriction from finance, which ensures that, after
accounting for risk, the dynamic evolution of yields over time and across state of nature is
consistent with the cross-sectional shape of the yield curve at any point in time. The role
of macroeconomic variables in no-arbitrage affine model is explored by several papers. In
particular, Piazzesi (2005) [68] shows that, relative to standard latent-factor models, using
macroeconomic information can substantially lower pricing errors. Besides, Hördahl et al.
(2006) [54] have also shown that their macro-finance model has superior forecasting power
for yields at all maturities.5 Beyond such properties, two major advantages of this type
of model should be stressed when it comes to public debt management. First, modeling
simultaneously interest rates and real activity is necessary if one wants to investigate the
debt service properties within the business cycle. Second, once the price of risk is specified,
it is potentially possible to price any products whose cashflows depend on the factors that
enter the model. For instance, the prices of ILBs of any maturity can be modeled as
soon as inflation enters the model. This turns out to be particularly relevant here since
inflation-indexed debt represents a significant part of public debt in many countries.6

While not intensively used in the recent literature, a technique that is useful in analyzing
data generated by econometric models is spectral analysis.7 Spectral analysis makes it
possible to conduct time series analysis in the frequency domain, where a stationary series is
thought of as being made up of sine and cosine waves of different frequencies and amplitudes.
In a univariate case, one is interested in determining how much of the total variance of
the series is determined by each frequency component, which is provided by the spectral
density function. In a multivariate setup, spectral analysis provides a description of linear
relationships between time series at different frequencies. To the extent that the model
boils down to a vector auto-regression model, it is straightforward to assess the frequency
domain properties of any linear combinations of the (lagged-)variables. This is exploited
so as to investigate the implications of some financing strategies on the business cyclical
behavior of debt charges.

The results suggest that the choice of the financing strategy strongly affects the properties
of debt charges. Overall, debt charges are more volatile when short-term bonds are issued,
which has a twofold explanation. First, long-term interest rates present a lower variance
than short-term rates. Second, lower amounts need to be renewed at each period when

4Bolder (2001) [10] provides a useful introduction to these models. For a review of dynamic term structure
modeling in general, see Dai and Singleton (2003) [26].

5See also Jardet et al. (2009) [56] for an investigation of the impact of econometric specifications –and
notably the treatment of nearly non-stationarity of interest rates– on forecast performances of these
models.

6At the end of 2008, the share of inflation-indexed debt in total bond outstanding was equal to 14% in the
US, to 25% in the United Kingdom, to 25% in Sweden, to 17% in France and to 7% in Italy (OECD,
2009 [67]).

7Spectral analysis was initially applied to engineering and physical science data where large data sets are
generated by experiments, and was imported to economic time series data much later (see Harvey, 1975
[49], Naylor et al., 1969 [65]).



the maturity of issued bonds increases, which tends to smooth the average interest rate.
Besides, the shorter the maturity of issued (nominal) bonds, the higher share of debt-service
variance is explained by business-cycle components, whose periodicity is comprised between
1.5 and 8 years.8 Because of inflation volatility, issuing ILBs implies more variable debt
service than when nominal bonds of the same maturity are issued. However, the difference
between debt-servicing volatility is lower when infra-year fluctuations are extracted. In
addition, it appears that debt charges associated with ILBs are more in phase with real
activity than debt service resulting from the issuance of nominal bonds with maturities
higher than 2 years, which gives ILBs a greater potential for budget smoothing proposes.

The paper is organized as follows. Section 2 describes the model. Section 3 presents the
data, as well as the estimation procedure and results. Section 4 briefly presents spectral
analysis and shows an application to public debt management. Section 5 concludes.

2. Model

In the model, four sources of variation underlie the pricing of the entire term structure
of interest rates. The factors are closely linked to a reduced-form macro-model which
incorporates explicitly some standard channels of transmission of inflationary shocks and
of monetary policy. Monthly inflation, denoted with π̃t (with π̃t = ln(Pt/Pt−1), where Pt

is the price index for month t), can be due to transitory (επ,t) or more persistent (εL,t)
inflation shocks that have a direct impact on prices. Inflation is also affected by demand
shocks (εy,t), which increase output above potential and create excess demand, denoted
with yt. Meanwhile, monetary policy can affect inflation via stimuli or restrictions of
aggregate demand, by modifying the real interest rates through monetary-policy surprises
(εS,t). The model includes an unobservable factor corresponding to a medium-term inflation
rate Lt, that Rudebusch and Wu (2008) [69] interpret as the inflation objective of the central
bank. While broadly following the lines of Rudebusch and Wu’s (2008) [69] model, the
specifications depart from theirs. In particular, the model does not include forward-looking
components.9

In the model, the one-period nominal interest-rate i1,t is set by the central bank and
breaks down into three components

i1,t = δ0 + Lt + St. (1)

The first component δ0 is a constant steady-state real interest rate, Lt corresponds to a
time-varying medium-term inflation rate and St is a cyclically responsive component. The
latter is given by a Taylor-type reaction function

St = ρSSt−1 + (1− ρS) [gyyt−1 + gπ(πt−1 − Lt−1)] + εS,t (2)

where πt represents year-on-year inflation. The process followed by medium-term inflation
reads

Lt = ρLLt−1 + (1− ρL)χπt−1 + εL,t, (3)
8Business cycles commonly refers to the components of a time series that passes through an ideal highpass

(or bandpass) filter. Hodrick and Prescott (1997) [51] define the business cycle in terms of periodic
components lasting 8 years or less. Baxter and King (1999) [7] define it in terms of components whose
periodicities range from 1.5 to 8 years.

9Regarding real activity, previous literature points to a relatively limited degree of forward-lookingness in
the Eurozone IS curve (see Hördahl and Tristani, 2007 [53] or Goodhart and Hofmann, 2005 [43]). As
regards inflation, the medium-term component Lt is aimed at capturing the inflation expectations.



meaning that this factor is the sum of the exponential smoothing of inflation and of an
autoregressive process of order one. The parameter χ (χ ∈ [0, 1[) is added in order to make
the model stationary.10 As regards monthly inflation π̃t, its dynamics take the form of an
aggregate supply equation, or "Phillips curve", relating consumer-price inflation to its own
lags, the medium-term inflation and excess demand –also termed with real activity in the
following–, according to

π̃t = Lt + απ(π̃t−1 − Lt−1) + αyyt−1 + επ,t. (4)

The investment-saving (IS) curve relates the excess demand variable to its own lags and
the real interest rate.

yt = βy(L)yt−1 − βr (i1,t−1 − Et−1(π̃t)) + εy,t. (5)

Equations (2) to (5) constitute a small-sized structural macroeconomic model with its
own dynamics. Using state-space vocabulary, equations (1), (4) and (5) constitute the
measurement equations and equations (2) and (3) constitute the transition equations.11 If
the different variables entering these equations –and some of their lags– are stacked in a
vector Ft, this model can read

Ft = ΨFt−1 + Σεt (6)

where the stochastic shocks εt are i.i.d. over time and have a standard normal distribution
(see Annex A).

Assets whose one-period-ahead returns are random can be priced once a stochastic dis-
count factor –or equivalently, once the risk-neutral dynamics of the factors– is specified.
The existence and uniqueness of a stochastic discount factor, or pricing kernel, is implied by
the assumption of no arbitrage.12 Following Duffie and Kan (1996) [32], Dai and Singleton
(2002) [25] and Ang and Piazzesi (2003) [1], among others, I assume that the stochastic
discount factor (or pricing kernel) is conditionally log-normal with functional form

mt+1 = exp
[
−1

2
Λ′tΛt − Λ′tεt+1 − i1,t

]
(7)

where, partly for the sake of tractability, the price of risk is assumed to be a linear
combination of the factors

Λt =
[

Λπ,t, Λy,t, ΛL,t, ΛS,t
]

= λ0 + λ1Ft.
(8)

Let bj,t and ij,t denote respectively the price and the yield to maturity of a nominal
j-period zero-coupon bond. In this framework, the logarithm of bj,t is given by a linear
combination of the factors

ln bj,t = Aj + B
′
jFt.

10With if χ equal to one, preliminiary estimations implied non-anchored inflation expectations. While this
feature can be desired to account for some structural breakdown in the data, our estimation period
(1999-2009) is supposed to make the estimation relatively immune to it.

11For a general description of state-space models and Kalman filtering techniques, see e.g. Hamilton (1994)
[47] or Kim and Nelson (1999) [66].

12More precisely, existence and uniqueness of the stochastic discount facor is implied by three assump-
tions: existence and uniqueness of a price, linearity and continuity of a price and absence of arbitrage
opportunity (see Hansen and Richard (1987) 48 or Bertholon et al. (2008) 9.



Equivalently, if Aj = −Aj/j and Bj = −Bj/j, the –continuously compounded– yields
are given by:

ij,t = Aj + B′
jFt. (9)

Matrices Aj and Bj can be calculated numerically by solving a series of linear difference
equations (see Annex B). Formally

{
Aj = Aj−1 − δ0 + 1

2B
′
j−1ΣΣ′Bj−1 −B

′
j−1Σλ0

B
′
j = −δ′1 + B

′
j−1Ψ−B

′
j−1Σλ1

(10)

with
{

A1 = −δ0

B1 = −δ1

It is important to note that the pricing kernel allows one to price any security. In
particular, denoting with br

j,t the price of a real bond that provides us with the payoff
Pt+j/Pt in period t + j, this price is given by13

br
1,t = Et

(
mt+1

Pt+1

Pt

)

= Et (mt+1 exp(π̃t+1))
= exp

(
−δ0 + 1

2ΓΣΣ′Γ′ − ΓΣλ0 + (−δ′1 + ΓΨ− ΓΣλ1)Ft
)

(11)

where the vector Γ is such that ΓFt = π̃t. Then, remarking that br
j,t = Et

(
mt+1br

j−1,t+1Pt+1/Pt

)
,

it can be shown that A
r
j and B

r
j are recursively obtained by

{
A

r
j = A

r
j−1 − δ0 + 1

2(Br′
j−1 + Γ)ΣΣ′(Br

j−1 + Γ′)− (Br′
j−1 + Γ)Σλ0

B
r′
j = −δ′1 + (Br′

j−1 + Γ)Ψ− (Br′
j−1 + Γ)Σλ1

(12)

with (from equation 11),
{

A
r
1 = −δ0 + 1

2ΓΣΣ′Γ′ − ΓΣλ0

B
r
1 = −δ1 + Ψ′Γ′ − λ′1Σ′Γ′.

These iterative equations define the real-term structure of interest: if Ar
j = −A

r
j/j and

Br
j = −B

r
j/j, the yield to maturity of a j-period inflation-linked zero-coupon bond is given

by

irj,t = Ar
j + Br′

j Ft. (13)

All variables in the model follow Gaussian processes, including yields. It would have
been possible to allow for conditional heteroskedasticity, for example, using auto-regressive
gamma processes (which is a discretized version of the CIR processes, see Gourieroux and
Jasiak, 2006 [44]). However, while the fit of the data would then be improved, this would
add mathematical complexity and increase the over-parameterization risks underlined by
Kim (2008) [59]. Following Ang and Piazzesi (2003) [1], Ang et al. (2006) [2] and Campbell
and Viceira (2001) [16], I expect this to be a sufficient first approximation of the joint
dynamics of the yield curve and macroeconomic variables. In addition, this is consistent
with the limited length of the estimation period (see next Section).

13Since the nominal one-month rate is equal to δ0 + δ′1Ft, it comes from equation (11) that the difference
between the nominal and real short rates includes the one-period inflation expectation (ΓΨFt), the
inflation risk premium (−ΓΣ(λ0 + λ1Ft)) and a convexity term 1

2ΓΣΣ′Γ′.



3. Data and estimation

3.1. Data

The data are monthly and cover the period from January 1999 to June 2009, except for
the real yields that begin in 2004 (see section 3.2 for details about the treatment of missing
observations).14

[Insert Figure 1 about here]

Real activity is represented by the first principal component of a set of 5 business confi-
dence indicators corresponding to quanta of European Commission short-term qualitative
surveys (industrial confidence, construction confidence, retail trade confidence, service con-
fidence and consumer confidence). On average across the variables, 75% of the variance is
explained by the first principal component. As regards inflation, the choice of the series is
guided by the index that is used for inflation-linked products, that is, the HICP excluding
tobacco (HICPxT, see e.g. Garcia and van Rixtel, 2007 [42]). The inflation series is de-
meaned and seasonally adjusted using the multiplicative Census X12 procedure. In order
to price nominal and real bonds, I am required to use a volatile one-period (i.e. one-month)
rate of inflation (see equation 11). It is worth noting here that modeling two kinds of
inflation (a monthly inflation π̃t and a medium-term inflation Lt) partially alleviates the
"spanning" criticisms addressed by Kim (2008) [59]. According to Kim, the presence of
a short-run component that is not related to yield curve movements may undermine the
validity of models using raw inflation as a state variable, since much of the "spanned" com-
ponent of inflation –i.e. the part of inflation that is effectively related to the yield curve–
is about the trend component. Breaking down inflation into a short- and a medium-term
component (Lt) makes it technically possible to use only the spanned component of infla-
tion to explain yield-curve deformations. Following D’Amico et al. (2008) [27] and Hördahl
(2008) [52], I include survey data amongst the observations. This is aimed at overcoming
the underestimation of the variability of long-term expectations that arises when dealing
with small samples (see Orphanides and Kim, 2005 [60]). As explained by Hördahl (2008)
[52], when including information from survey data, the parameter configurations that imply
model expectations that deviate from survey expectations are penalised in the estimation.
Specifically, one-, two- and five-year ahead expectations for the rate of inflation are taken
from the quarterly ECB Survey of Professional Forecasters.15

Yields are derived from end-of-month French yield curves and European inflation swaps.
French yields are seen as a proxy for AAA-rated euro area central government bond.16 The
nominal zero-coupon yields are bootstrapped from a coupon yield curve based on CNO
TEC indices. The TECn index corresponds to a hypothetical n-year yield obtained by
interpolation of hte two benchmark bonds with maturities closest to n years (see Favero et
al., 2000 [39]). A cubic spline is first applied to the TECn indices to get a full par-yield

14Macroeconomic data are taken from Eurostat, survey data from the ECB and yield data come from
Bloomberg (inflation saps) and Datastream (TEC indices).

15The forecast horizons are approximately one-month shorter than 1, 2 and 5 years due to deadlines for
questionnaire responses that are usually at the end of the first month of a quarter (see Bowles et al.,
2007 [13]).

16Since the end of 2006, the ECB publishes daily yield curves for average AAA-rated euro area central
government bonds: over the period common with our sample (from January 2007 to June 2009), the
correlation of the 10-year yields (TEC10 on the one hand and 10-year ECB-estimated yield on the other)
is 0.99 and the standard deviation is 4 bp.



curve required by the bootstrapping procedure. The maturities of the nominal zero-coupon
used in the estimation are as follows: 1 month, 3 months, 6 months, 1 year, 2 years, 3 years,
5 years, 7 years and 10 years.

Real yields are obtained as the difference between nominal yields and inflation swap rates.
The latter can indeed be seen as inflation break-even rates. Because of inflation lags inherent
in inflation swaps, the data are treated in order to exclude the known part of inflation that
is included in the break-even.17 For Eurozone inflation products, the inflation index is the
3-month lagged HICPxT. Consequently, the rise in these consumer prices between month
m − 3 and m is extracted from the inflation swap rate. The procedure hence implicitly
suggests that the price index of month m is known at the end of m, which is not the case in
practice.18 The resulting error is assumed to be taken into account by the measurement error
of the state-space model. Note that the HICPxT that is extracted is seasonally-adjusted:
to the extent that inflation swaps should not in principle be affected by seasonality (because
they refer to full-year maturities), extracting a 3-month non-seasonally-adjusted inflation
from it would indeed induce seasonality in the remaining break-even.19 An implication
of this procedure is that the maturities of the resulting zero-coupon break-evens are no
longer integer numbers of years (but respectively 9 months, 21 months, 57 months and 117
months for 1-year, 2-year, 5-year ad 10-year inflation swaps). In order to compute real rates,
nominal rates of the same maturities are therefore needed. The latter rates are obtained
by applying a cubic spline on the above-mentioned nominal zero-coupon yield curve.

3.2. Estimation procedure

As Ang and Piazzesi (2003) [1], I use a two-step estimation procedure. In the first step,
the macro-model parameters are estimated by maximizing the log-likelihood obtained by
applying the Kalman filter on system (6), enlarged with survey-data measurement equations
(11-month, 23-month and 59-month inflation expectations). Measurement errors regarding
survey data are assumed to be normally, identically and independently distributed. Starting
values for the numerical optimization –conducted using Scilab, employing the quasi-Newton
algorithm– are based on ordinary least square regressions, using an exponential smoothing
of inflation in place of Lt. In order to obtain both convergence and plausible estimates,
three parameters have been calibrated. First, the inflation parameter entering the Taylor
rule is taken equal to 0.5, which corresponds to its original value (see Taylor, 1993 [70]).
Second, the two parameters defining the dynamics of medium-term inflation (equation 3)
–namely the autoregressive parameter ρL and the parameter χ , that allows for inflation
anchoring– are respectively taken equal to 0.95 and 0.5.20

In a second step, the state-space model is enlarged by adding nominal and real yields
amongst the observed variables, their dynamics being given by equations (9) and (13).
Annex A gives the state-space form of the complete model. The prices of risk and the
standard deviations of the yield measurement errors are then estimated while holding all

17Evans (1998) [36], D’Amico et al. (2007) [27] or Kandel et al. (1996) [58] use a method for correcting
from the indexation lag. However, these papers abstract from the impact of seasonality.

18While a Flash Estimate is released by Eurostat by the end of the month, the final index is released two
weeks later.

19Ejsing et al. (2007) [33] provide a comprehensive view of HICPxT seasonality and its implication on
break-even measurement.

20Robustness tests suggest that the overall results are fairly insensitive to the choice of these calibrated
values.



pre-estimated parameters fixed. In this second step, the standard deviations of survey-data
measurement errors are enlarged (×2) in order not to constraint too much the estimation
of the prices of risk. This approach can be seen as a very simple attempt of dealing with
possible discrepancies between the information sets of survey respondents and financial
market participants (see Christensen et al., 2008 [20]). To avoid the implication of the
model that arbitrarily-chosen bond returns are driven by the factors only, I assume that
all bond yields are measured with error.21 The errors in yields are normally distributed,
serially uncorrelated and uncorrelated across bonds. Following a common practice in the
specification of macro-finance models, I set the coefficients of the market price of risk (λ1

matrix) that load on lagged macro variables to zero (e.g. Ang and Piazzesi, 2003 [1] and
Hördahl et al., 2006 [54]), leaving twenty price-of-risk parameters to be estimated.

The facts that (a) real yields are only available from 2004 onwards and that (b) the survey
data are at the quarterly frequency give rise to a missing-data problem. This problem
is alleviated by Kalman-filter techniques. For each period, the Kalman filter calculates a
prediction of the state variables and computes the covariance matrix of the errors (prediction
step). For these calculations, only the dynamic properties of the state variables are used,
which do not depend on the number of observable variables. The filter then incorporates
the new information given by the vector of observable variables (updating step), which
leads to optimal estimates of the state vector and of the covariance matrix. What is key is
that the number of observations can vary with time. Of course, the greater the number of
observations available to update the filter, the better the accuracy of the estimation.22

3.3. Estimation results

Parameter estimates of the first and second steps of the estimation are reported in Table
1. The standard errors of the parameter estimates are based on the information matrix
computed using Engle and Watson’s (1981) [34] formula. All of the estimates are reasonable
with respect to sign and size. The estimate of ρS , equal to 0.95, indicates a significant degree
of interest rate smoothing by the central bank, which is in line with previous results in the
literature. As illustrated in Figure 2, the model achieves to reproduce the main correlations
observed in the historical data.

[Insert Table 1 about here]

[Insert Figure 2 about here]

The forecast error variance beakdown is presented in Table 2. It is worth noting that, in
comparison with nominal yields, a larger share of real yield variations is explained by the
demand shock shockεy,t at all horizons. On the contrary, while a significant share of the
unconditional variance of long-term nominal yields is accounted for by persistent inflation
shock εL,t, the contribution of this shock to long-term real yield varitions is far lower. Apart
from the short interest rate, only a slight share of variances is accounted for by monetary
surprises εS,t.

[Insert Table 2 about here]

21See e.g. Jegadeesh and Pennacchi (1996) [57] or De Jong and Santa-Clara (1999) [28]. An alternative
approach consists in assuming that some of the yields are assumed without error (e.g. Chen and Scott,
1993 [18], Duffee, 2002 [31], or Ang and Piazzesi, 2003 [1]).

22See e.g. Harvey and Pierse (1984) [50], Burmeister et al. (1986) [15] or Feldhütter and Lando (2008) [40].



Figure 3 presents the impulse responses of the macroeconomic variables, selected bond
yields and break-even rates to the four shocks of the model. Although the matrix Ψ contains
only stable roots, several of them come in complex conjugate pairs, which results in the
fact that some of the impulse responses will not take a direct way back to zero but will
cross the zero line before dying out. The impulse responses suggest that the negative effect
on the output gap and inflation of a surprise in the policy interest rate reaches its highest
about 1.5 year after the policy tightening. As expected, a demand shock results in a rise in
inflation and in policy interest rates. Following those shocks, the longer-term interest rates
move in the same direction as the short-term interest rate, but while the yield curve tends
to flatten in response to a medium-term inflation shock and a medium-term inflation shock,
it slopes upward following a short-term inflation shock. A demand shock results in a short-
lived steepening of the yield curve, followed by a flattening due to rising short-term interest
rates. The rigt-hand side plots of Figure 3 compare the responses of the 5-year break-even
rate with those that would be obtained if all prices of risk were equal to zero. The difference
between these two response functions correspond to the inflation risk premium responses. It
turns out that the inflation risk premium reacts positively to both short-and medium-term
inflation shocks as well as to demand shocks.

[Insert Figure 3 about here]

The estimates of inflation risk premiums over the estimation period are reported in the
upper-left panel of Figure 4. Owing to the affine structure of the model, the inflation risk
premiums are also affine functions of the state vectors. A 95% confidence band is also
reported. This confidence band takes into account the uncertainty associated with the
second estimation step as well as with Kalman-filtering uncertainty.23 Its narrowness is
mainly due to the fact that significant sources of uncertainty are not taken into account by
this confidence interval.24 Calibrated parameters (gπ, ρL and χ) are indeed taken as certain,
as well as the estimated parameters resulting from the first estimation step. Inflation risk
premiums included in hypothetical 5-year zero-coupon bonds were on average equal to 50
bp during the period 1999-2009.25 Lower panels of Figure 4 show the unconditional term
structure of nominal and real zero-coupon yields (left panel) and the unconditional term-
structure of inflation premiums and term premiums (right panel).

[Insert Figure 4 about here]

4. A frequency domain application to debt management

4.1. The approach

The previous model depicts a stochastic framework that parsimoniously describes the joint
dynamics of macroeconomic and financial variables. Such a framework is rich enough to

23The two kinds of uncertainty are jointly taken into account following Hamilton (1986) [46].
24Taking these sources of uncertainty into account would raise major computation issues since second-step

estimates are conditional on the first-step and calibrated ones (the joint distribution of all parameters
is not directly available).

25Note that owing to the data used for the estimation, these risk premiums are associated with inflation swap
rates rather than sovereign ILBs. As stressed by Ejsing et al. (2007) [33], the fixed leg of inflation swaps
is on average higher than the breakeven extracted from sovereign bonds because the former are more
flexible than ILBs to create an inflation-hedging portfolio (before 2007, the spread was approximately
equal to 10 bp but has often reached several tens of basis points over the last two years).



analyze many aspects of monetary or fiscal policy. In this section, I focus on debt manage-
ment and I propose an analysis of financing-strategy performances in the frequency domain.
Although not often used in the recent literature, spectral analysis proves to be useful in
analyzing data generated by econometric models (see e.g. Naylor et al., 1969 [65] Harvey,
1975 [49], Forni and Reichlin, 2001 [41], Hallett and Richter, 2004 [45] or Assenmacher-
Wesche and Gerlach, 2008 [5]). For the purpose of describing the behavior of a stochastic
variable over time, the information content of spectral analysis is indeed greater than raw
second-order moments. More precisely, spectral analysis breaks down the overall covariance
into components at different frequencies (see Annex C for a formalized presentation of the
spectral analysis tools used here). The approach leads to a comprehensive view of the vari-
able (co-)dynamics and hence makes it possible to conveniently compare some implications
of alternative economic policies in a given econometric model. Besides, spectral analysis
makes it easy to to filter out the fluctuations associated with some frequencies.

In the frequency domain, a time series is viewed as a weighted sum of many cosine or
sine functions of time with different periodicities. The spectral density, being a function
of frequency ω, measures the importance of that frequency as a component of the time
series. The spectral density function is obtained by way of the auto-covariance function
of a times series (that is readily available as soon as the model can be written as a vector
auto-regression) and a similar operation on the cross-covariance is carried out to obtain a
cross-spectral density function that shows the relations between the cyclical movements of
two time series. The cross-spectral density is a complex function whose real and imaginary
parts are respectively called cospectrum and quadrature spectrum. Evaluated at ω, the
cospectrum is proportional to the portion of the covariance between two variables that
is attributable to cycles with frequency ω. It is convenient to describe the cross-spectral
function in polar coordinate form, with a gain R(ω) and a radian angle ϕ(ω). The latter
function is also termed as the phase-difference cross-spectral density. For a given couple of
series, it shows that the first one lags behind the second time series by ϕ(ω)/ω periods –or
by ϕ(ω)/2π cycles– in relation to the cyclical component of frequency ω. The gain R(ω)
measures the covariance between the periodic components of frequency ω in the two time
series, once their phase-difference is ironed out.26

4.2. Modeling the financing strategies

At this stage, the model depicts the joint dynamics of the nominal and real term-structure of
interest rates, inflation and real activity. As soon as the frequency-domain representations
of these variables are known, it is straightforward to carry out the frequency analysis of
linear combinations of these variables and their lags (see Annex C). This is exploited here
in order to analyze the frequency domain properties of debt servicing.

Assume that one has to fund an amount D of debt. If (a) one chooses to fund it on
a monthly basis and (b) the debt stock is not fed back by interest payments, then the
debt service of the rolling strategy is proportional to i1,t−1. Next, suppose that funding
is based on 3-month bills and that future redemptions are evenly spread over the quarter
–so that one third of total debt outstanding has to be rolled over every month–, then
accrued interest payments are proportional to 1/3 × (i3,t−1 + i3,t−2 + i3,t−3). As a rule, if

26Cycles of frequency ω may be quite important for both time series individually but yet fail to produce
much contemporaneous covariance between the variables because at any given date the two series are
in a different phase of the cycle.



nominal n-month bonds are used to fund the debt, interest payments are proportional to
1/n× (in,t−1 + . . . + in,t−n).

Turning more specifically to public debt management, let denote with Dt the debt out-
standing at the end of month t: it includes the issuances of month t (denoted with It) but
excludes those bonds that fall due in month t). Potential output is denoted with GDP ∗

t

and is assumed to grow at a constant positive pace of g%.
Defining a financing strategy consists in determining what kinds of bonds are issued

at each period in order to face the financing needs of government (see e.g. Bolder, 2003
[11]). For instance, issuing nominal n-period bonds constitutes a financing strategy. More
generally, a financing strategy that consists in issuing at each period a constant fraction,
defined by weights wp (with p ∈ {1, . . . , q}), of τp-period bonds results in the following debt
service (in percentage of potential GDP):27

ηt =
1

GDP ∗
t

q∑

p=1

τp∑

j=1

ϑτp,t−jwpIt−j .

with ϑτp,t−j = iτp,t−j if class-p bonds are nominal τp-period bonds and ϑτp,t−j = rτp,t−j +
π̃t if class-p bonds are τp-period ILBs. Let further assume that issuances It grow also at
the g% pace.28 Then, the ratio It/GDP ∗

t is constant and, denoting it by γ, last equation
reads

ηt =
It

GDP ∗
t

q∑

p=1

wp

τp∑

j=1

ϑτp,t−j

(1 + g)j

= γ
q∑

p=1

wp

τp∑

j=1

ϑτp,t−j

(1 + g)j
. (14)

Therefore, in this context, accrued interest payments in percentage of potential GDP
–and in percentage of the debt outstanding– takes the form of a weighted moving average
of yields (and of inflation if ILBs are involved in the financing strategy). Consequently, debt
service is an affine function of the factors, which makes the computation of its frequency-
domain representations immediate. 29

4.3. Results

In the following, I investigate the frequency-domain features of debt servicing that result
from the implementation of some particular financing strategies in the simplified economy
presented above. This is done without normative objective, that is, I do not look for
the implications of the model in terms of optimal debt structure. Doing so would require
defining the government’s preferences, notably in terms of cost–risk trade-off, and to expand
the modeling of taxes and public expenditures, which is beyond the scope of this paper.
27The next equation implicitly assumes that interest payments are accounted for on an accrual basis. Such

an accounting treatment is consistent with the reference framework of the European System of Integrated
Economic Account (ESA95, Eurostat, 2002 [35]).

28If issuances grow at a constant pace which is lower (respectively larger) than g%, the debt-to-potential-
GDP converges to zero (respectively explodes). One can also show that the debt-to-potential-GDP ratio
is constant when the growth of It is of g%,

29This aspect is not negligible since experiments have shown that computing those frequency-domain rep-
resentations using empirical formulae –based on Monte-Carlo-simulated debt service– is computational
intensive.



However, since this framework makes it possible to analyze the comovements of debt charges
and business cycles, the results can be linked to the tax smoothing literature. Specifically, to
the extent that primary deficit fluctuations are countercyclical, I argue that those financing
strategies that result in larger debt charges during expansion periods –and vice versa– have
potential to meet tax smoothing objectives.

The spectral density functions of inflation and real activity are shown in the upper plots
of Figure 5. The spectral densities are presented for frequencies ranging from 0 to π/12,
that correspond respectively to infinite-period cycles and to 2-year-period cycles.30 The
spectrum of real activity presents a peak for cycles with periods of about 9 years. This
peak also emerges for inflation, albeit only as a local optimum. Inflation indeed appears to
be mainly driven by low-frequency cycles. As expected, while low-frequency components
of monthly and year-on-year inflation are identical, monthly inflation is more affected by
higher-frequency components.

[Insert Figure 5 about here]

The lower part of Figure 5 shows the spectral densities of (individual) debt charges
associated with selected financing strategies. The strategies that lead to the bottom-left
spectral densities involve only nominal constant-maturity zero-coupon. Three maturities
are considered: 2 years, 5 years and 7 years. The fact that the 2-year spectral density curve
is on average above the others indicates that the unconditional variance of debt charges
is more important when shorter-maturity bonds are issued (this can also be read in the
upper pat of Table 3). Besides, it appears that a large share of the debt service variance
is accounted for by business-cycle components –defined as those components with periods
comprised between 2 and 8 years– in the case of the 2-year financing strategy. As a rule, the
lower the maturity of bonds issued, the larger the share of debt service variations explained
by business-cycle components (see Table 3).31 The bottom-right plot of Figure 5 shows the
spectral densities of debt service implied by strategies involving 10-year zero-coupon bonds.
A first strategy involves nominal bonds only, a second strategy uses ILBs only and the two
kinds of bonds (30% of ILBs and 70% of nominal bonds) are mixed in the case of a third
strategy. At all frequencies, debt service is more variable when ILBs are issued. Besides,
the share of the debt-servicing variance explained by high-frequencies components tends
to be higher when funding is based on ILBs (see the upper part of Table 3). Once those
components whose period is lower than a year are removed, the differences in variances
between nominal and inflation-linked bonds are less dramatic.32

[Insert Figure 6 about here]

The analysis is completed by measuring the comovements between, on the one hand,
debt service associated with some financing strategies and, on the other hand, real activity.
To that end, cospectrum (upper-left plot), quadrature spectrum (upper-right spot), gain
(bottom-left plot) and phase (bottom-right plot) of interest payments implied by four dif-
ferent strategies are reported in Figure 6. The strategies still consist in issuing only one
type of bond at each period: 10-year nominal bonds for the first strategy, 10-year ILBs for
the second, 2-year nominal bonds for the third and 6-month bills for the fourth strategy.
30If the frequency of a cycle is ω, its period is given by 2π/ω.
31While such a result partly stems from the gain shape of the weighted-moving-average filter implicitely

applied to interest rates (see equation 14), counterfactual experiments –consisting in systematically
replacing long-term yields by the short-term ones inequation (14)– showed that specific frequency-
domain properties of the yields matter to the quantitative results.

32See the line named "Excl. infra-year [frequencies]" in Table 3.



[Insert Table 3 about here]

The gain plots indicate that once the phase differences are ironed out, the most important
covariance between debt service and real activity is obtained with the 6-month strategy and,
to a slightly lesser extent, with the 2-year strategy, followed by the 10-year indexed strategy.
It is worth noting that these differences mainly stem from the differences observed in the
quadrature spectrum (recall that the gain is the modulus of the vector whose coordinates
are the cospectrum and the quadrature spectrum).

The upper-left panel of Figure 6 plots the cospectrum, that depicts the covariance between
the variables when phase differences are not withdrawn. At business-cycle frequencies –i.e.
with cycles between 1.5 and 8 years–, while the correlation between real activity and debt
charges is negative when nominal bonds with maturities larger than 2 years are issued, it
is positive if bills –with maturities lower than 1 year– or ILBs are issued (see also Table
3 for intermediate maturities not reported in Figure 6). This can be accounted for by the
lead-lag relationships between debt charges and real activity, as represented by the phase
plot (bottom-right plot in Figure 6). At business-cycle frequencies, debt charges implied
by the issuance of nominal bonds follow real activity with a delay of more than a quarter
of cycle, which results in the contra-cyclicality of these debt charges33. On the contrary,
when issuing bills or ILBs, the phase difference is lower, which tends to make debt charges
pro-cyclical. As shown in Table 3, this is particularly marked at business-cycle frequencies:
when focusing on the components of interest payments with periods ranging from 1.5 to 8
years, the correlations between real activity and interest payments are equal to 0.17 and
-0.18 for strategies that are respectively based on 10-year ILBs and 10-year nominal bonds.

5. Conclusion

In this paper, I present an approach aimed at assessing the business-cycle properties of
debt service implied by various funding strategies. To the extent that the primary deficit is
significantly linked to real-activity fluctuations, such an assessment is necessary to test if a
financing strategy is consistent with fiscal-hedging principles. To this respect, this approach
may contribute to narrow the significant gap between theory and practice regarding debt
management.

The analysis is conducted in the frequency domain, the affine structure of the model –
estimated over the last decade on euro-area data– making it straightforward to compute the
spectral properties of any linear combination of the variables (and their lags). This is ex-
ploited to assess the business-cycle behavior of debt charges implied by financing strategies
based on the issuance of any-maturity, nominal or inflation-linked bonds.

The results suggest that when nominal short-term bonds are issued, a large share of
debt-servicing variance is accounted for by components at business-cycle frequencies. When
nominal longer-term bonds are issued, debt charges present a lower unconditional variance
and are relatively more driven by low-frequency components. In comparison with nominal
bonds, inflation-linked bonds imply more volatile debt charges because of inflation volatil-
ity. However, in the latter case, debt charges are also more in phase with real activity:
whereas the correlation between interest payments and real activity is negative when nom-

33As a rule, if the lead (or lag) is smaller than a quarter of a cycle (i.e. if |ϕ/2π| < 1/4), the correlation
between the two variables is positive. The correlation is null if the lead (or lag) is equal to a quarter of
cycle and negative otherwise.



inal medium- to long-term bonds are issued, the correlation is positive for inflation-linked
bonds. This last result is the most pronounced at business-cycle frequencies.
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A. State-space form

Let denote with Xt and Zt the respective vectors of observable and unobservable variables
of the complete model. The first elements of Xt correspond to monthly inflation, real
activity, short term interest rate and some of their lags. This first part of Xt, which is
denoted by X∗

t , is completed by (a) survey data of inflation expectations and (b) observed
nominal yields and real yields, gathered respectively in vectors XSPF

t and Xi
t and Xr

t . The
complete state-space model is given by the following measurement and transition equations:

Xt = µ + ΘXXt−1 + GZt + Mυt

Zt = ΘZXt−1 + HZt−1 + Nξt

Since Xt contains the observed interest rates, the matrices ΘX , ΘZ , G and H depend
on the matrices A, B, Ar and Br, whose computation is based on the knowledge of Ft’s
dynamics, where Ft = [X∗

t Zt]′ (see Annex B). The dynamics of XSPF
t is also based on

Ft’s one. As a result, a first step consists in writing a smaller state-state model depicting
the dynamics of Ft only. This model reads:

X∗
t = Θ∗

XX∗
t−1 + G∗Zt + M∗υt

Zt = Θ∗
ZX∗

t−1 + HZt−1 + Nξt.

Substituting Θ∗
ZX∗

t−1 + HZt−1 + Nξt for Zt in the first of the last two equations, the
dynamics of Ft is given by

Ft = ΨFt−1 + Σεt

where
Ψ =

[
Θ∗

X + G∗ΘZ G∗H
Θ∗

Z H

]
, εt =

[
υt

ξt

]
and Σ =

[
M∗ G∗N
0 N

]
.

It remains to specify the composition of the different vectors and matrices:34

Xt =
[

X∗
t XSPF

t Xi
t Xr

t

]
with

X∗
t =

[
π̃t . . . π̃t−11 yt . . . yt+1−py i1,t

]

XSPF
t =

[
Et

(
1
10

∑i=10
i=1 π̃t+i

)
Et

(
1
22

∑i=22
i=1 π̃t+i

)
Et

(
1
58

∑i=58
i=1 π̃t+i

) ]

Xi
t =

[
iτ2,t . . . iτn,t

]

Xr
t =

[
rς1,t . . . rςq ,t

]

Zt =
[

Lt St Lt−1 St−1 Lt−2 Lt−3 Lt−4
]

34Matrices GSPF , ΘSPF
X and MSPF –that appear below in the definition of respectively G, ΘXand M– are

derived from the VAR representation of F ′
ts dynamics. More precisely, the derivation of these matrices

is based on an extensive use of Et (eπt+i) = ΓΨiFt where Γ = [ 1 0 · · · 0 ], since the first element
of Ft is the monthly inflation).



G∗ =





1 0 −απ,1 0 −απ,2 −απ,3 −απ,4

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 βr(ρL − απ,1) 0 −βrαπ,2 −βrαπ,3 −βrαπ,4

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0





Θ∗
X =





α′π αy 0 0 0
I 0 0 0 0

βr

(
χ1−ρL

12 + α′π

)
βy,1 + βrαy · · · βy,py −βr

0 I 0 0 0
0 0 1 0 0
0 0 0 0 0





M∗ =





σπ 0

0
...

...
0
σy

... 0
0 0





H =





ρL 0 0 0 0 0 0
−(1− ρS)gπ ρS 0 0 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0





Θ∗
Z =





(1− ρL)χ/12 · · · (1− ρL)χ/12 0 · · · 0
(1− ρS)gπ/12 · · · (1− ρS)gπ/12 (1− ρS)gy 0 · · · 0

0 · · · · · · 0
...

...
0 · · · · · · 0





N =




σL 0
0 σS

0





G =





G∗

GSPF

BXG∗ + BZ

Br
XG∗ + Br

Z



 , µ =





0
0
A
Ar



 , ΘX =





ΘX

ΘSPF
X

BXΘX

Br
XΘX



 , M =





M∗

MSPF

BXM∗

Br
XM∗





B. Computation of the matrices A and B

By definition, in period t + 1, a zero-coupon nominal bond that was bought bj,t in period t
has a price equal to bj−1,t+1. The pricing kernel mt+1 is such that

bj,t = Et (mt+1bj−1,t+1)



Assume that there exist some Aj and Bj matrices such that ln br
j,t = Aj + BjFt for any

state Ft, any period t and any maturity j. Then the last equation writes

1 = Et

(
mt+1 exp

[
Aj−1 + B

′
j−1Ft+1 −Aj −B

′
jFt

])

= Et

(
exp

[
−1

2
Λ′tΛt − Λ′tεt+1 − δ0 − δ′1Ft + Aj−1 + B

′
j−1Ft+1 −Aj −B

′
jFt

])

= exp
[
Aj−1 −Aj −B

′
jFt + B

′
j−1ΨFt −

1
2
Λ′tΛt − δ0 − δ′1Ft

]

× exp
[
1
2
(B′

j−1Σ− Λ′t)(B
′
j−1Σ− Λ′t)

′
]

= exp(Aj−1 −Aj −B
′
jFt − δ0 − δ′1Ft + B

′
j−1ΨFt +

1
2
B
′
j−1ΣΣ′Bj−1 −B

′
j−1Σ (λ0 + λ1Ft))

which gives

Aj−1 −Aj − δ0 +
1
2
B
′
j−1ΣΣ′Bj−1 −B

′
j−1Σλ0 =

(
B
′
j + δ′1 −B

′
j−1Ψ + B

′
j−1Σλ1

)
Ft.

Equations of system (10) result from the fact that the last equation must be satisfied for
any period t and state F . Similar calculations yield to system (12).

C. Spectral Analysis

When using spectral analysis, one assumes that the fluctuations of the underlying process
are produced by a large number of elementary cycles of different frequencies, and that the
contribution of each cycle is constant throughout the sample. Accordingly, the spectral
density, being a function of frequency, measures the importance of the cosine function of
that frequency as a component of a time series. For a general presentation of spectral
analysis and its applications, see Hamilton (1994) [47] and Chow (1975) [19].

The spectral density function can be obtained by way of the auto-covariance function,
which are readily available as soon as the model can be written as a vector auto-regression
model with stable roots. Specifically, for a nV -dimensional covariance-stationary process
Vt, whose mean is given by V , the spectral density function –or population spectrum–,
which associates an nV ×nV matrix of complex numbers with the real scalar ω, is given by

sV (ω) =
1
2π

∞∑

k=−∞
Γke

−iωk

where ΓV
k = E

[(
Vt − V

) (
Vt−k − V

)′]. Thus, if Vt follows a VAR(1) process

Vt = ΦVt−1 + Ωεt,

then, given that ΓV
−k = ΓV ′

k and that gamma ΓV
k = ΦkΓV

0 , it comes

sV (ω) =
1
2π

ΓV
0 +

1
2π

∞∑

k=1

(ΦkΓV
0 e−iωk + ΓV

0 Φk′eiωk)

where (since Vt = Ωεt + ΦΩεt−1 + Φ2Ωεt−2 + . . . + ΦkΩεt−k + . . .)

ΓV
0 = ΩΩ′ + ΦΩΩ′Φ′ + Φ2ΩΩ′Φ2′ + . . . + ΦkΩΩ′Φk′ + . . .



On the diagonal of the population spectrum matrix sV (ω), one finds the spectral density
functions of the variables that constitute the vector Vt. These functions are real-valued
periodic functions of ω. Intuitively, for a given frequency ω, their values correspond to the
contribution of frequency-ω cycle to the variance of the variables in Vt. The off-diagonal
elements of sV (ω) are complex conjugate of each other. The real part of the latter ele-
ments are known as the cospectrum and the imaginary part is known as the quadrature
spectrum. The cospectrum cV (ω) evaluated at ω is proportional to the portion of the co-
variance between two variables that is attributable to cycles with frequency ω. However,
the cospectrum only looks for evidence of in-phase cycles. The quadrature spectrum qV (ω)
then complete the picture by looking for evidence of out-of-phase cycle. A dual represen-
tation of both the cospectrum and the quadrature spectrum is provided by the gain R(ω)
and phase measures ϕ(ω). The former corresponds to the modulus of the complex elements
in the population spectrum and the latter corresponds to their phases.

Denoting with L the lag operator and with {Hk}∞k=−∞ an absolutely summable sequence
of nW × nV matrices, let Wt denote a nW -dimensional vector process given by

Wt = H(L)Vt =
∞∑

i=−∞
HiVt−i.

Then, the population spectrum of Wt is related to the population spectrum of Vt according
to (see Hamilton, 1994 [47])

sW (ω) =
[
H(e−iω)

]
sV (ω)

[
H(eiω)

]′
.



Table 1: Parameter estimates

α1 αy σπ
×103

β1 β4 βr σy
×103

0.21 0.043 1.52 1.14 -0.14 0.06 0.35
(0.05) (0.013) (0.1) (0.04) (0.04) (0.03) (0.02)

ρS gπ gy σS
×103

ρL χ σL
×103

0.95 0.50 0.83 0.117 0.95 0.50 0.050
(0.018) (-) (0.24) (0.009) (-) (-) (0.01)

λ0 λ1

πt yt Lt St

επ
t -0.01 0 -83 -55 -59

(-0.022) (2.4) (0) (-1.9) (-11.3)
εy
t -0.69 -169 436 -319 73

(-0.063) (0) (3.3) (-4.3) (1.1)
εL
t 0.11 -168 -32 -226 -20

(0.036) (-0.2) (-7.2) (-1.3) (-1.5)
εS
t -0.13 -48 49 -138 60

(-0.029) (-7.6) (7.8) (-0.3) (3)

σ3mth
×104

σ6mth
×104

σ1yr
×104

σ2yr
×104

σ3yr
×104

σ5yr
×104

σ7yr
×104

σ10yr
×104

0.78 1.21 2.00 2.35 1.83 1.27 0.84 2.17
(0.05) (0.08) (0.13) (0.15) (0.12) (0.09) (0.08) (0.15)

σr
1yr

×104

σr
2yr

×104

σr
5yr

×104

σr
10yr
×104

σSPF
1yr
×104

σSPF
2yr
×104

σSPF
5yr
×104

4.82 4.35 2.91 2.20 0.88 0.60 0.38
(0.44) (0.37) (0.26) (0.2) (0.13) (0.07) (0.05)

Note: The estimated parameters define the Taylor rule (equation 2), the medium-term inflation
dynamics (equation 3), the Phillips curve (equation 4), the investment-saving curve (equation 5)
and the price of risk specification (equation 8). Brackets indicate the asymptotic standard errors,
which are based on the information matrix calculated using Engle and Watson’s (1981) [34] formula.
The σi’s, σr

i ’s and σSPF
i ’s refer to the standard deviation of the measurement errors for the nominal

yields, the real yields and the SPF inflation expectations, respectively.



Table 2: Variance decomposition
Forecast horizon

1 month 6 months 1 year 2 years 5 years ∞
Y-o-y inflation 15 46 70 74 78 79

επ 1.00 0.99 0.97 0.91 0.86 0.85
εy 0.00 0.00 0.01 0.04 0.05 0.06
εL 0.00 0.01 0.02 0.06 0.09 0.09
εS 0.00 0.00 0.00 0.00 0.00 0.00

Real activity 3 11 18 23 25 27
επ 0.00 0.00 0.00 0.00 0.01 0.01
εy 1.00 0.99 0.99 0.96 0.94 0.93
εL 0.00 0.00 0.00 0.00 0.00 0.00
εS 0.00 0.00 0.01 0.03 0.06 0.06

1-mth yield 15 36 66 126 174 186
επ 0.00 0.03 0.09 0.08 0.05 0.05
εy 0.00 0.15 0.51 0.80 0.85 0.86
εL 0.15 0.12 0.06 0.03 0.02 0.02
εS 0.85 0.69 0.33 0.09 0.08 0.08

1-yr nom. Yield 29 54 76 126 156 165
επ 0.10 0.16 0.16 0.11 0.08 0.08
εy 0.05 0.32 0.57 0.77 0.80 0.81
εL 0.05 0.08 0.06 0.04 0.03 0.03
εS 0.12 0.19 0.11 0.04 0.06 0.06

5-yr nom. Yield 26 54 66 93 107 114
επ 0.40 0.42 0.40 0.34 0.31 0.30
εy 0.07 0.19 0.29 0.42 0.43 0.44
εL 0.17 0.27 0.25 0.21 0.21 0.21
εS 0.02 0.02 0.01 0.01 0.03 0.03

10-yr nom. Yield 38 66 85 107 126 131
επ 0.33 0.41 0.43 0.41 0.40 0.39
εy 0.04 0.11 0.17 0.24 0.24 0.25
εL 0.16 0.30 0.30 0.29 0.30 0.30
εS 0.00 0.00 0.00 0.00 0.02 0.02

5-yr real Yield 35 38 38 54 66 66
επ 0.01 0.04 0.07 0.08 0.07 0.06
εy 0.00 0.06 0.19 0.44 0.55 0.58
εL 0.00 0.01 0.02 0.02 0.02 0.02
εS 0.01 0.03 0.04 0.02 0.04 0.04

10-yr real Yield 27 31 35 38 54 54
επ 0.04 0.13 0.18 0.20 0.19 0.19
εy 0.01 0.06 0.15 0.31 0.37 0.39
εL 0.02 0.07 0.10 0.11 0.12 0.12
εS 0.00 0.01 0.01 0.01 0.02 0.02

Note: This table presents the contribution of the shocks επ, εy, εL and εS to the h-period ahead
forecast variance of different variables. For each variable, the standard deviations are given in the
first line and the variance breakdown is reported the four subsequent lines. As regards inflation and
interest rates, standard deviations are expressed in basis points per year. Some variance breakdowns
do not sum to one: the remaining share is explained by the measurement errors.



Table 3: Spectral decomposition

Bonds issued: Nominal Indexed
6-mth 1-yr 2-yr 5-yr 10-yr 5-yr 10-yr

A- Variance decomposition of debt service

Frequencies Standard deviation of debt service (in bp)
All 185 167 132 93 97 202 201

Business-cycle 96 84 58 16 9 66 67
Excl. infra-year 181 163 127 85 84 115 111

Cycle’s length Variance decomposition
> 8 yrs 0.68 0.69 0.73 0.79 0.71 0.11 0.09

1.5 yr << 8 yrs 0.27 0.25 0.19 0.03 0.01 0.11 0.11
1 yr << 1.5 yr 0.01 0.01 0.01 0.02 0.03 0.10 0.11

< 1 yr 0.05 0.05 0.07 0.17 0.25 0.68 0.69

B- Covariance decomposition (debt service – real activity)

Frequencies Covariance (×107)
All 21.0 16.0 6.0 -1.0 0.1 3.0 4.0

Business-cycle 5.0 3.0 -1.0 -1.0 -0.2 0.9 2.0
Excl. infra-year 20.0 15.0 6.0 -2.0 -0.3 3.0 4.0

Frequencies Correlation
All 0.51 0.43 0.22 -0.07 0.00 0.06 0.09

Business-cycle 0.34 0.21 -0.12 -0.57 -0.18 0.09 0.17
Excl. infra-year 0.51 0.43 0.21 -0.10 -0.01 0.10 0.16

Cycle’s length Covariance decomposition
> 8 yrs 0.71 0.75 1.17 1.00 -0.68 0.69 0.50

1.5 yr << 8 yrs 0.24 0.19 -0.17 1.00 -2.33 0.31 0.50
1 yr << 1.5 yr 0.00 0.00 0.00 0.00 0.39 0.00 0.00

< 1 yr 0.05 0.06 0.00 -1.00 3.62 0.00 0.00

Note: Business-cycle frequencies correspond to cycles with periods ranging from 1.5 to 8 years
(see Baxter and King, 1999 [7]). The standard deviations are expressed in basis points per year
(debt service can be considered here as a weighted average rate). While the upper part (part A)
of the table deals with debt service variability, the lower part (part B) depicts the covariances and
correlations between debt service and real activity.
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