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Résumé

Nous étudions la relation entre les heures travaillées et le progrès technique en utilisant un

model structurel de cycle réel (RBC). Nous développons un modèle RBC avec une fonction de

production à élasticité de substitution constante, ce qui permet de distinguer les chocs de pro-

ductivité du capital des chocs de productivité du travail. Le modèle est estimé selon l’approche

bayésienne. Sur l’ensemble de l’échantillon, les résultats révèlent (i) des preuves solides en

faveur d’une élasticité de substitution des facteurs inferieure à un (rejetant ainsi la fonction de

production Cobb-Douglas), mais aussi (ii) le rôle majeur des chocs de productivité du capital

dans les fluctuations du cycle économique. Par ailleurs, et sur la base des estimations de sous-

échantillons, les résultats suggèrent que la transmission des chocs technologiques aux heures

travaillées a varié dans le temps, cette variation serait en effet due à une hausse de l’élasticité de

substitution entre les facteurs : le travail et le capital étant de moins en moins complémentaires,

le signe de la réponse des heures travaillées à un choc technologique a fini par s’inverser. On

estime enfin que ce changement est le résultat d’une variation du rapport emploi qualifié/emploi

non qualifié dans le total du facteur travail.

Mots clés: Heurs Travaillées et Cycle économique, Méthodes bayésiennes.

Abstract

We investigate the time varying relation between hours and technology shocks using a struc-

tural business cycle model. We propose an RBC model with a Constant Elasticity of Substitution

(CES) production function that allows for capital- and labor-augmenting technology shocks. We

estimate the model with Bayesian techniques. In the full sample, we find (i) evidence in favor

of a less than unitary elasticity of substitution (rejecting Cobb-Douglas) and (ii) a sizable role

for capital augmenting shock for business cycles fluctuations. In rolling sub-samples, we docu-

ment that the transmission of technology shocks to hours worked has been varying over time.

We argue that this change is due to the increase of the elasticity of factor substitution. That

is, labor and capital became less complementary throughout the sample inducing a change in

the sign and size of the the response of hours. We conjecture that this change may have been

induced by a change in the skill composition of the labor input.

Keywords: Real Business Cycles models, Constant Elasticity of Substitution production function,
Hours worked dynamics.

JEL classification: E32, E37, C53
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1 Introduction

One of the most controversial issues in business cycle theory regards the impact of technology shocks

on hours worked. The sign and size of the hours response to a productivity shock can have important

consequences for policy analysis. And the estimated response has also been interpreted as shedding

light on the ability of contrasting macro models to explain features of the business cycle. The

focus of most of this literature has been on the analysis of the response of hours in full samples.1

However, recent business cycle literature has moved the attention on the changing nature of some

key data moments since the works of Kim and Nelson (1999), McConnell and Perez-Quiros (2000),

and Stock and Watson (2003). Specifically concentrating on the time-varying relationship between

productivity and hours worked, Gambetti (2006), Stiroh (2009), and Gaĺı and Gambetti (2009)

unveil important changes in the sign and size of these responses in the US economy since the post-war

era. Technology shocks appear to have a strong negative effect before the 1980s and positive or non

significant afterwards, although this increase is not monotonic. Fernald (2007) also finds that, after

allowing for trend breaks in productivity, hours tend to fall when technology improves.2 Hence, the

time-varying structures has been considered as a possible statistical explanation for the instability

of the full sample SVAR estimates. Most of this literature, however, focuses on reduced form

representations that allow for limited structural interpretations in terms of deep model parameters.

In this paper, we propose a structural explanation for the time-varying nature of the reaction of

hours to technology shocks. We first provide further evidence on the changes in the impulse-response

of hours to technology shocks for the US economy using a standard SVAR with long-run restrictions.

We then propose a parsimonious model that is potentially able to capture this observed time vari-

ation. Specifically, we propose a simple RBC model where we introduce a Constant Elasticity of Sub-

stitution (CES) production function where, as shown by Cantore, León-Ledesma, McAdam and Willman

(2010), the sign of the response of hours to a technology shock depends mainly on the relative mag-

nitude of the elasticity of capital-labor substitution and the capital intensity in production. The

model contains a preference shock and two technology shocks: a labor- and a capital-augmenting

shock. These shocks can be distinguished when the elasticity of capital-labor substitution differs

from one (the Cobb-Douglas case). We also study the properties of our specification over the full

sample. Several results stand out. First, we show that the proposed specification fits the postwar

US data on productivity and hours worked reasonably well, especially when compared to a stan-

dard Cobb-Douglas specification. Second, the elasticity of substitution between capital and labor
1There is a large literature on this issue that we do not aim to survey here. For comprehensive reviews, see

Gaĺı and Rabanal (2005) and Whelan (2009).
2Kahn and Rich (2007) and Roberts (2001) amongst other document two changes in labor productivity in US.

One in early 70’s and one during the mid 90’s. Fernald (2007) finds two breaks in private-business labor productivity

growth: 1973:2 and 1997:2. He finds also that the mean growth is similar before 1973 and after 1997. Hansen (2001),

using a simple first-order autoregressive model finds a break in February 1992.
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is statistically well below unity, supporting the increasing consensus in the empirical literature (see

Chirinko (2008)). Third, by looking at the historical decomposition of hours worked, we find a

sizable role for capital augmenting shocks in explaining business cycles fluctuations. In particular,

the level of productivity is mostly explained by the labor augmenting shock, and the level of hours

worked is mostly explained by the capital augmenting shock.

We then estimate the model using Bayesian techniques on rolling samples of the same length

as our SVAR, and find that there is a significant sign variation of the response of hours worked

to a positive technology shock. We find also that the time-varying impulse responses to a labor-

augmenting shock obtained from the estimated model track satisfactorily the changes observed in

the data-based SVAR, despite of the parsimonious nature of the model. Such variation is driven by a

change in the magnitude of the elasticity of factor substitution which, in our model, governs the sign

of the hours response. In particular, we observe an increase in the degree of factor substitution along

the sample. That is, labor and capital became less complementary throughout time. We conjecture

that these changes may be associated to the changing skill composition of the labor force. With

heterogeneous labor, an increase in the share of skilled workers or their relative productivity can lead

to an increase in the aggregate elasticity of substitution. We further explore the robustness of our

claim that the time varying response of hours crucially depends on the magnitude of the elasticity of

capital-labor substitution. Following Chari, Kehoe and McGrattan (2008), we study whether SVAR

estimates on data simulated from our structural model would lead to impact responses similar to

the ones obtained using actual data. We find little support for a significant difference between the

two. Finally, it is also important to highlight that, to the best of our knowledge, this is the first

attempt at directly estimating the (time-varying) elasticity of capital-labor substitution in a fully

fledged DSGE model accounting for both supply and demand blocks.3

It is worth emphasizing, however, that we do not view our interpretation as exclusive of other

potential sources of structural changes that may have led to time-variation in the hours-technology

correlation. One explanation that has received much attention is the well known change in monetary

policy at the beginning of the 80’s.4 However, this explanation is not free from criticism. For

instance, Canova and Gambetti (2009) find little support for the role of monetary policy changes

in driving output and inflation dynamics and point towards the potential importance of changes

in private sector behavior. Changes in the labor market can be another important source of time-

variation. Along these lines, Nucci and Riggi (2009) attribute changes in the response of hours

to an increase in performance-related pay schemes during the 1980s. Their model, however, can
3The literature on the estimation of CES parameters has focused almost exclusively on supply side static models

as in León-Ledesma, McAdam and Willman (2010).
4See amongst other Clarida, Gaĺı and Gertler (2000), Gaĺı, Lopez-Salido and Valles (2003) and Cogley and Sargent

(2005).
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account for a reduction in the negative response of hours to a technology shock but not for a sign

switch. In parallel to increased labor market flexibility we also observe another important change

in the labor market that may have shaped aggregate hours responses. As reported by Acemoglu

(2002) and Acemoglu and Autor (2011), the US labor market experienced significant changes in its

skill composition. These changes can affect the elasticity of capital-labor substitution and hence

the response of hours to technology shocks.5 These effects, however, have received little attention

as potential sources of time-variation in labor market data moments. Our setup is deliberately

parsimonious since the time variation of the response of hours can be seized by the change in the

relative magnitude of the parameters entering the production function. For this reason, we analyze

how far changes in few crucial parameters can go to explain the time-variation of hours responses. We

do not go as far as claiming, however, that frictions and macroeconomic policies cannot potentially

play an important role.

The paper in organized as follows. Section 2 presents some empirical evidence. Section 3 presents

the model and study the response of hours with a sensible calibration exercise. Section 4 describes

the estimation strategy and presents the full sample estimates. The dynamics of hours worked and

productivity are reported in Section 5. Section 6 offers a theoretical discussion of potential sources

of changes in capital-labor substitutability. Finally, Section 7 concludes.

2 Empirical Evidence

While there is a large literature documenting the changes in the second moments of various US

times series, here we focus on response of hours worked to a technology shock. Data ranges from

1948:Q1 until 2006:Q1 and was obtained from the FRED database. The times series include output

in the non-farm business sector (OUTNFB), and hours of all persons in the non-farm business sector

(HOANBS). Both series are normalized by the the civilian non-institutional population of 16 years

and over (CNP16OV). Labor productivity is computed as the ratio between the measure of output

and hours, and we take logarithms of both series. We indicate with pt labor productivity and with

hobst hours 6.

To identify a technology shock we adopt the long-run restriction proposed by Blanchard and Quah

(1989) where we assume that only the technology shock has a permanent effect on the level of pro-

ductivity (as in Gaĺı (1999)). We estimate the structural VAR (SVAR) model on rolling windows of

fixed length, starting from the sample [1948Q1,1967Q4], and repeating the estimation moving the

starting date by one year. We obtain 39 estimates of the coefficients of the reduced from VAR and
5During this period, we can also observe an important process of de-unionization, although this may well be the

consequence of changes in skill composition of the labor force due to the introduction of skill-biased technologies as

argued by Acemoglu, Aghion and Violante (2001).
6See the appendix for the data construction
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of the identified impact matrix (one for each window) and compute the impulse response of hours

to a technology shock. We considered different lag lengths for the VAR and rolling windows sizes

and the results remained unchanged.7 We report here the results with 80 quarters and four lags in

the VAR. More formally, the reduced form VAR of can be represented as

xt = A0 + A1xt−1 + ... + Apxt−p + ut

where ut are i.i.d. zero mean normal shocks with covariance matrix Σ. We assume that ut = Kεt

where εt = [εs
t , ε

d
t ] is a normal i.i.d. shock with E(εtε

′
t) = I, and where εs

t is the technology shock

and εd
t a non technology shock. It follows from the assumptions that Σ = KK ′.

We consider xt = [∆pt, hobst] in estimation.8 For exposition purposes it is more convenient to

rewrite the system in a companion form

zt = µ + Bzt−1 + et

where zt = [x′t, x
′
t−1, ..., x

′
t−p+1]

′, et = [u′t, 0, ..., 0]′, µ = [A′0, 0, ..., 0]′, and B is the companion form

matrix. The long run restriction implies that the impact matrix of cumulative effects of the shock

on labor productivity has a Cholesky factor, i.e. the matrix F =
∑∞

k=0 S2,2(Bk) K has a lower

triangular structure where S2,2(.) is a selection matrix that picks the first two rows and columns of

matrix Bk.

Figure 1 plots the response of hours worked to a technology shock. The response of hours worked

displays significant time variations. In fact, the impact response is negative in early samples, in-

creases up until the mid-1970s, then falls, and then increases steadily thereafter. These results are

similar to those of a more parameterized set up, as in Gaĺı and Gambetti (2009), using a VAR with

time-varying coefficients and stochastic volatility, the same specification of hours, and the same

identification scheme (see also the appendix B for comparisons). To ease the visual analysis, figure

2 reports the impulse responses for selected sub-samples. As it clearly stands out, the response of

hours worked to an identified technology shock has changed over time. In particular, while it was

negative during the 60s on impact, hours increase following a technology shock if we consider the

sample including the 1990s for estimation.

In all, these results confirm the existence of important changes in the short-run technology-hours

correlations in the US over the post-war period.
7We used rolling windows of 60, 70, 80, and 90 quarters and four lag lengths.
8We also considered hours in first difference, i.e. xt = [∆pt, ∆hobst]. While we find time variations, we do not

detect any sign switch. This result is due to the fact that first differencing removes the long run frequencies of hours

worked. As shown in Canova, Lopez-Salido and Michelacci (2010), if secular cycles are removed from the raw series

of hours worked, hours respond negatively to technology.
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Figure 1: Response of the growth rate of productivity and of hours worked to a technology shock.
The level of hours is used in estimation.
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Figure 2: Response of the growth rate of productivity and of hours worked to a technology shock
for selected sub-samples. The level of hours is used in estimation.

3 The Structural Model

We consider a closed economy Real Business Cycles (RBC) model. The novelty of the model is that

it features a Constant Elasticity of Substitution (CES) production function, which is characterized

by two sources of fluctuations, a labor- and a capital-augmenting stochastic shift to the production

frontier. The model is otherwise standard, it is a single good optimizing agent framework. The
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advantage of this model is that, with an elasticity of capital-labor substitution that differs from

unity (the Cobb-Douglas case), even in the canonical RBC model the response of hours to a labor-

augmenting technology shock can be positive or negative. Cantore et al. (2010) show analytically

that the sign of the response depends on the relative magnitudes of the elasticity of substitution and

the capital share.9

The representative household is characterized by the following preferences10

Ut = ln Ct − Vtξ
H1+γ

t

1 + γ
, (1)

where Ct denotes consumption, Ht hours worked, β is the discount factor, γ is the inverse of the Frisch

elasticity, ξ affects the marginal rate of substitution between consumption and leisure and determines

the steady state hours and Vt is a preference shock process that has an AR(1) representation, i.e.

(in log deviations from the steady state)

vt = ρvvt−1 + ηv
t ηv

t ∼ N(0, σv). (2)

The production is CES and presented in normalized form as in Cantore et al. (2010)11

Yt = y


α

(
Zk

t Kt−1

k

)σ−1
σ

+ (1− α)
(

Zh
t ht

h

)σ−1
σ




σ
σ−1

(3)

where, as usual, output is produced by a combination of two factors, Kt−1 the installed physical

capital at time t, y and k are the steady state values of output and capital re-scaled by the labor

augmenting process, and h is the steady state value for hours. α and σ are parameters controlling

the capital intensity in production and the degree of substitutability between factors. As σ → 0,

factors are net complements, and the production function is Leontief. If σ → ∞ factors are net

substitutes and the production function is linear. As σ approaches 1, we have a Cobb-Douglas

production function. The CES production function encompasses two types technological change, i.e.

the capital augmenting, Zk
t , and the labor augmenting technological process, Zh

t . We assume that

capital-augmenting technology has an AR(1) representation, i.e. (in log deviations from the steady

state)

zk
t = ρkzk

t−1 + ηk
t ηk

t ∼ N(0, σk), (4)

where ρk < 1 to ensure the existence of a balanced growth path. For the labor-augmenting shock we

adopt a flexible specification similar to Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko and Santaeulália-Llopis
9The response also depends on the reaction of consumption. Cantore et al. (2010) also show that a similar change

in the sign of responses can occur in a New Keynesian model, but in this case for a capital-augmenting shock.
10We assume a log preference in consumption to guarantee a balanced growth path.
11Normalization is required to compare responses when we change the elasticity of substitution. Also, it allows us

to interpret directly the share parameter α as the capital income share at the point of normalization (the steady state

in this case).
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(2009), where it follows an AR(2) process, i.e.

zh
t = ψ1,h(1− ψ2,h)zh

t−1 + ψ2,hzh
t−2 + ηh

t , (5)

with zh
t = ln ZH

t − ln ZH
0 and the original autoregressive processes is rewritten in terms of partial

autocorrelations ψ1,h and ψ2,h.12 If ψ1,h = 1, then labor-augmenting technology shocks have a

permanent effect and the labor-augmenting technology process is stationary in first differences with

autoregressive coefficient −ψ2,h. If 0 < ψ1,h < 1 and ψ2,h = 0, then the labor-augmenting technology

process is persistent but stationary and follows an AR(1) process. The model is then closed by

assuming that capital depreciates at rate δ and that the economy’s resource constraint is given by:

Yt = Ct + Kt − (1− δ)Kt−1. (6)

As mentioned, this model has the property that the capital intensity in production and the elasticity

of factor substitution, α and σ, are the main drivers of the dynamics of output and hours worked

conditional on a labor augmenting technology shock.

By means of a sensible calibration exercise, we can study the impact of a labor augmenting

technology shock to hours worked for different values of the capital-labor elasticity. Without loss of

generality, we assume that the labor augmenting technology process is stationary, i.e. ψ2,h = 0 and

ψ1,h = 0.8. Moreover, we set the time discount factor, β, to 0.99, and the depreciation rate, δ, to

0.025, and the inverse of the Frisch elasticity, γ, to 1. We let the capital-labor elasticity vary between

0.1 and 1, and we fix the capital intensity in production to 0.33. Figure 13 (left panel) reports the

impulse response of hours worked to a labor-augmenting technology shock for different values of σ

and keeping the value of α fixed at 0.33. Approximately, when σ > α the response of hours to a labor

augmenting technology shock is positive. However, hours worked decrease if σ < α. The right panel

of Figure 13 displays the instantaneous response of hours worked to a labor-augmenting technology

shock for different values of σ and α. We let the value of capital intensity vary between 0.2 to 0.6.

Thus, approximatively for values of σ larger than 0.7 and close to the Cobb-Douglas specification,

the response of hours is positive regardless of values of α. The intuition behind the result is that

the shock induces a substitution effect that reduces the demand for labor and a quantity effect that

increases the demand for labor. Depending on the strength of these two, hours may increase or

decrease.
12By assuming

(ln ZH
t − ln ZH

0 ) = ρ1,h(ln ZH
t−1 − ln ZH

0 ) + ρ2,h(ln Zh
t−2 − ln Zh

0 ) + ηh
t

if ρ1,h + ρ2,h = 1, then technology has a unit root and the serial correlation of its growth rates is −ρ2,h. We can

re-parameterize them in terms of partial autocorrelations ψ1,h and ψ2,h by setting:

ρ1,h = ψ1,h(1− ψ2,h)

ρ2,h = ψ2,h
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values of σ and α = 0.33 (Left panel). Instantaneous response of hours worked to a labor-augmenting
technology shock for different values of σ and α (Right Panel).

Despite of its parsimonious nature, the model is a priori able to capture switches in the sign of

the response of hours. And the capital-labor elasticity is the crucial parameter which might capture

the time varying response observed with the SVAR analysis. Being the first attempt to estimate σ

in a general equilibrium model, it is legitimate to wonder whether such parameter is identifiable. To

this end, in a controlled experiment we obtain that the information contained in hours worked and

productivity is sufficient to identify σ in estimation (see the appendix D).

4 Full sample estimates of a CES production technology.

We now analyze the behavior of the model when confronted with observed data on US productivity

and hours worked. In particular, we are interested in verifying that the model presented fits the data

reasonably and that its performance is comparable with the fit of more parsimonious yet standard

specifications. Hence, we confront two specifications: an RBC model with a CES production function

and an RBC model with a Cobb-Douglas production technology (i.e. σ = 1 and only the labor-

augmenting technological process). We verify whether data favors a less parameterized model and

thus the CES specification is redundant, or whether the latter helps characterize the data better.

Since the raw series of labor productivity displays a clear upward trend, we bridge the model to

data by imposing permanent labor-augmenting technology shocks. Hence, real variables grow at the

rate of the technological process and hours worked are stationary.13 These assumptions imply that
13If we assume that innovations to the labor-augmenting technology process have a permanent effect on the economy,

we need to generate stationary variables in the model using the following transformations: Yt

ZH
t

Kt

ZH
t

Ct

ZH
t

Wt

ZH
t

Ht Rt

where Wt is the real wage and Rt is the rental price of capital.The log-linearized equilibrium conditions are reported

in Appendix ??.
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ψ1,h = 1 and that the following measurement equations hold14

∆pt = ∆(yt − ht) + ∆zh
t

hobst = ht

Table 1 reports prior and posteriors statistics for the full sample. The choice of the priors is stan-

dard. We assume inverse gamma for standard deviations, beta distributions for the autoregressive

parameters, a normal distribution for the inverse of the Frisch elasticity, γ, and for the capital in-

tensity in production, α. The prior for σ follows a gamma distribution centered around one and

with a loose precision. While posterior distributions of σ are very similar using a flat prior (i.e. the

posterior mean is centered around 0.15 and has a tight credible set), we prefer to use a proper priors

for marginal likelihood comparisons.

A few things are worth noting. First, for many parameters, posterior distributions have different

locations, spread and shape relative to the prior assumptions. This is indicative that data provide

relevant information for estimation. Moreover, in most cases, the mean and median coincide ruling

out asymmetric posterior distributions (not shown here). Third, the standard deviations of tech-

nology shocks are a posteriori significant implying that data favors the mechanisms induced by the

CES production function.

Prior CD CES 3 CES 2
Distr mean sd median sd median sd median sd

α Normal 0.30 0.05 0.29 0.0373 0.33 0.051 0.35 0.041
σ Gamma 1.00 1.00 - - 0.14 0.031 0.13 0.023
γ Normal 1.00 0.10 1.04 0.0949 1.00 0.100 0.98 0.100
ρv Beta 0.50 0.20 0.97 0.0113 0.95 0.019 - -
ρk Beta 0.70 0.20 - - 0.96 0.016 0.96 0.013
ψ2,h Beta 0.50 0.20 0.04 0.0220 0.07 0.037 0.05 0.027
σh Igamma 0.010 2.00 0.01 0.0010 0.010 0.001 0.010 0.001
σk Igamma 0.010 2.00 - - 0.019 0.002 0.018 0.001
σv Igamma 0.010 2.00 0.01 0.0010 0.012 0.004 - -

Log ML 1424 1430 1432

Table 1: Prior, posterior statistics and marginal likelihoods across specifications. Igamma stands
for the inverse gamma distribution. CES 3 and 2 refers to the number of shocks.

Concerning the parameters of interest, the posterior median of the degree of factor substitution

is centered around 0.13 and the posterior distributions is quite tight in absolute terms and relative

to the prior. This suggests that the data favors a more general specification for the production

function. The capital share is estimated around the standard value in the RBC literature, i.e. 0.34,
14Both series are demeaned to guarantee consistency with the log-linearized variables in the model that fluctuate

around a value of 0 in steady-state.

11



thus larger than the elasticity of substitution. This implies that, assuming no time-variation along

the full sample, the point estimate of the correlation between hours worked and productivity is

negative conditional on a labor augmenting technology shock. A formal comparison between the

two models is reported at the bottom of Table 1 where we contrast the log of the marginal likelihood

using the modified harmonic mean (see Geweke (1999)). If the two sources of technological progress

and a non-unitary elasticity of substitution between inputs were not important to characterize the

dynamics of output and hours, a more parsimonious model would be preferred by means of marginal

likelihood. In order to favor a Cobb-Douglas production function we need a prior probability for the

model with Cobb-Douglas 403 (= e6) times larger than the one associated with a CES production

function (in other words, CES beats the CD production function with posterior model probabilities

of 0.9975:0.0025). Moreover, we find that regardless of the number of shocks the CES structure

is preferred to the Cobb-Douglas production specification15. Given the feeble role of preference

shocks in a CES setting, we expect to observe a completely different historical decomposition of the

observable variables among specifications. Figure 4 reports the decomposition of hours worked in

terms of structural residuals. Under the Cobb-Douglas specification, where the capital augmenting
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Figure 4: Historical decomposition of hours. Top panel CES specification, bottom panel Cobb-
Douglas specification.

shock is absent, the preference shock plays the most important role in the historical evolution

of hours worked. When we turn to the CES, the contribution of the preference shock vanishes

and the capital-augmenting shock contributes significantly to the observed levels of hours worked.
15 We notice that the difference in terms log marginal likelihood is not sufficient to strictly prefer the CES specifi-

cation with two shocks to the specification with three shocks. The literature adopt as a cutoff value 3, see amongst

others Jeffries (1996) and Kass and Raftery (1995)).
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The decomposition of productivity is similar across the two settings (not shown here), where the

labor-augmenting shock represents the dominant source of the observed fluctuations of productivity.

Hence, if we adopt a more general specification of the production function, we obtain that the full

set of technological shocks account for the entire portion of historical fluctuations of productivity

and hours experienced by the US economy within this RBC setting.

5 Time-varying dynamics

We want to investigate the dynamics of hours and technology over time through the lens of the

structural model. To this end, we estimate the model on rolling windows of the same fixed length of

our SVAR and we look closely at propagation mechanism of the structural shocks. Let the solution

of the DSGE model be of the from,

y†t+1 = Φ(ϑ)y†t + Ψ(ϑ)ηt+1,

where the the vector y†t contains the endogenous variables of the model and ηt the structural vector

of innovations with zero mean and diagonal covariance matrix Ση. Φ and Ψ are matrices which are

non-linear functions of the structural parameters of the model, ϑ. Since we have a unique mapping

from the structural parameters of the model to the reduced form matrix, we can back out the ‘deep’

parameters responsible for the changes (if any) in the transmission of shocks. Then, we look closely

at the time pattern of the estimated structural parameters and try to provide intuition for such

changes. Finally, we perform a ‘reverse’ exercise in the same spirit of Chari et al. (2008). We ask

whether the estimates of SVAR on data simulated from our structural model would bring us to the

same results of the SVAR on actual data. We find little support for a difference between the two.

5.1 The transmission of technology shocks

One key fact that our setup would like to explain is the time varying relationship between hours

worked and technology shocks and, in particular, if the model is able to reproduce the patterns

found using the SVAR model. Figure 5 plots the response of hours worked to a labor augmenting

technology shock.16 The response of hours worked shows clear shape and sign variations along the

sample. Taken literally, the very early samples are characterized by a negative response. Then,

for samples that include mainly the 1970s hours react positively to technology shocks. Then, the

reaction of hours turns negative and positive again in the last ten rolling windows. The resemblance

with the SVAR evidence is striking. On impact, the the signs of the response of hours are correctly

identified. Figure 6 plots the 68% credible sets around the instantaneous response of hours with the
16While there are variations in the level of the response, we do not detect any changes in the pattern of the response

of output to a capital augmenting technology shock (not shown here). Thus, we do not report it.
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Figure 5: Impulse responses of hours to a positive labor augmenting technology shock.
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Figure 6: On the left panel credible sets of the contemporaneous impact of hours to a technology
shock in the SVAR (solid line) and in the RBC with CES (dotted line). On the right panel, the
median estimates of σ, α and the instantaneous impact of technology shock on hours across windows.

SVAR estimates and the RBC-CES ones. If the instantaneous response of hours were different in

the two settings, we would observe windows with non overlapping bands. Looking at Figure 6, we

detect no significant difference of the contemporaneous response of hours between the estimates of

the SVAR and the estimates of the RBC with CES production function17.

The question that follows is what are the driving parameters behind the change in the propagation

mechanism.

Since the impulse response is computed as the marginal impact of a structural innovation to a

variable, we can rule out changes in the standard deviations of the structural shocks as responsible

for such variations. Even if the model is very stylized, the CES production function allows us

to disentangle the scenarios where hours increase (decrease) in response to a technology innovation

17It is worth noting, however, that the lack of persistence of the structural model has to do with the lag structure of

the solution of the DSGE model, which makes it difficult to replicate the hump shaped response of a four lags VAR.
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because the degree of factor substitution is larger (smaller) than the capital share in production. We

find that there are large variations in the posterior estimates of the degree of factor substitutability,

in absolute terms and relative to the capital share parameter in production, α. Figure 6 (right

panel) plots the posterior mean of the elasticity of substitution and the capital share in each of the

sub-samples. Changes in the hours-technology conditional correlation on impact are associated to

changes in the elasticity of capital-labor substitution.

Two things are worth mentioning.

First, the variation in the estimates of σ are significant but abrupt. This is partly due to the non

parametric approach we adopt and to the uniform weighting scheme we impose on each window. One

way to smooth the estimates of σ is to downsize the impact of sub-sample endpoints. As in the sample

spectrum estimation (see Priestley (1982), Ch.5), we could design a bell shape distribution so that

break points would have milder impact on structural estimates. However, we preferred to be agnostic

and to give priority to the observables without imposing any ad hoc weighting scheme. The other

approach is to parameterize the changes in σ by assuming that the capital-labor elasticity follows

a slow moving exogenous process (i.e. an autoregressive process). Since first order approximations

are insufficient to capture such process, higher order approximation are required. With higher order

solutions the implied state space system is nor linear nor gaussian, and we need to move to particle

filters to extract the likelihood. Despite important achievements have been done in this direction (see

Fernndez-Villaverde and Rubio-Ramirez (2008)), the estimation of time-varying structures is still

computationally burdensome and difficult to handle. Given these constraints, and for comparison

with our SVAR results, we study what a computationally less intensive yet intuitively appealing

structural method could tell us about the time varying relation between hours and productivity.

The second observation has to do with the interpretation of the changes in σ. In our estimates,

we find periods where the sign of the response of hours switch sing, from negative to positive. These

periods coincide with episodes of relatively large estimates of σ. We observe a spike in two windows

that includes the 70s (i.e. the window from 1962 to 1982 and the one from 1963 to 1983) and a

protracted period in the final part of the sample, i.e. the last 10 windows. The two sub-samples

that includes the 70s contain very eventful years. In fact, during the 70s the US economy was

hit by a sequence of negative oil price shocks. And the beginning of the 1980s is characterized by

the change in the monetary policy stance. As a consequence, we suspect that the variation in σ

during these windows is contaminated by the turbulence of the seventies. After 1982, however, the

US economy entered in a relative quite period of time, where either ‘good policy’ or ‘good luck’

(or both) contributed to render the macroeconomic environment less volatile and more predictable.

We thus believe that neither policy nor changes in the structure of the shocks are corrupting the

estimated changes in the capital-labor elasticity in the latest samples. However, during the same
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years, the US economy was experiencing important changes in the labor market. The literature has

documented a sizable increase in the relative supply of skilled workers over time. We are prone to

interpret these changes as the source of the observed changes in the estimates of the capital-labor

degree of substitution. We will return to this issue in Section 6.

5.2 Is the story of change in capital-labor elasticity consistent with a

SVAR ?

The time-varying relationship between hours and technology identified by a SVAR with long-run

restrictions is very similar to the one obtained from our RBC model with CES production function.

However, Chari et al. (2008), amongst others, express concerns about the ability of SVARs with long-

run restrictions to identify model shocks. This may then cast doubts about whether comparisons

of model-based and SVAR-based impulse-responses constitute a reliable way to evaluate our model.

To address this issue, we follow Chari et al. (2008) and simulate 50 sets of data of 100 observations

from the RBC model with CES production function using the mean estimates in each window. For

each simulated dataset we estimate a SVAR with 4 lags and compute the impulse response. We

then compare the data-based SVAR with the SVAR with model-simulated data.
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Figure 7: Impulse responses of hours to a positive labor augmenting technology shock.

Figure 7 reports the median impulse responses of hours for the SVAR (on the left panel) with

simulated data, and those obtained by a SVAR with actual data. A visual inspection reveals that

the instantaneous response of hours obtained with a SVAR on simulated data is similar to the one

obtained with SVAR using actual data. Figure 6 plots the credible sets around the instantaneous

response of hours in the SVAR on actual data (solid line) and in the SVAR with simulated data

(dotted line). As in the previous case, we detect no significant difference of the contemporaneous

response of hours between the estimates of the SVAR and the estimates of the RBC with CES
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Figure 8: Credible sets of the contemporaneous impact of hours to a technology shock in the SVAR
on actual data (dotted line) and in the SVAR with simulated data (solid line).

production function. Overall, we conclude that changes in the elasticity of capital-labor substitution

are able to generate the observed time varying path of a SVAR with long-run restrictions.

6 Rationalizing changes in the elasticity of substitution

Our estimation results suggest that the driving factor behind the change in the response of hours

is the increase in the elasticity of capital-labor substitution σ. Changes in deep parameters, such

as e.g. the degree of risk aversion, are commonly used the explain the existence of instabilities in

macroeconomic relationships. However, the observed change in σ deserves further attention. Here

we discuss some conjectures as to what could have driven this change. We leave detailed testing

strategies for future research while we keep here the focus on the change in the hours-technology

correlation.

Changes in the elasticity of substitution have been associated with economic growth since

La Grandville (1989). Parameter σ, nevertheless, was treated as exogenous. Hicks (1932), however,

conjectured that the elasticity of substitution may be variable and a by-product of economic devel-

opment. Along these lines, Miyagiwa and Papageorgiou (2007) present a multisector growth model

where σ is endogenously determined and positively related to economic development. Similarly,

Álvarez-Cuadrado and Van Long (2011) present a multisector model of structural change where the

aggregate elasticity of substitution is endogenous as capital intensity increases in the more flexible

sectors (i.e. those with higher elasticity of substitution). Since the aggregate elasticity is a weighted

average of sectoral elasticities, growth and structural change can lead to changes in aggregate σ.

Although plausible explanations of long-run changes in σ, the above conjectures would naturally
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lead to slow and protracted increases, rather than the more pronounced change we observe in our

estimates. During the period considered, however, and especially since the mid-1980s, important

changes in the US labor market occurred that could potentially be driving the increase in σ observed

in the latter parts of our rolling sample.18 One such important change is the increased importance of

skilled workers in production. The evolution of skilled to unskilled employment and wages has been

widely documented in papers such as Acemoglu (2002) and Acemoglu and Autor (2011). Figure 9

reproduces the observed trends by level of skills in the US economy. It displays the share of skilled

workers as a percentage of all workers using two measures. The first is the share of non-production

workers in US manufacturing for the 1958-2005 period from the Annual Survey of Manufactures.

The second is the share of hours of workers with college education or above, as a percentage of total

hours by workers with at least high school education coming from Autor, Katz and Kearney (2008)

for the whole economy and the 1963-2005 period. Although both measures differ substantially, they

both show positive trends. In the case of manufacturing, however, the share falls towards the end

of the sample.
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Figure 9: Shares of non-production workers (manufacturing) and college-plus hours in high-school-
plus hours (aggregate economy).

The question is then whether these changes in the composition of the labor force could have

affected the aggregate elasticity of substitution. In a two-factor CES production function, σ is

constant. However, in the presence of heterogeneous labor (i.e. skilled and unskilled), the aggregate

capital-labor elasticity of substitution is not constant and will depend, among other things, on the

share of skilled labor hours in total hours input. We focus here on the case of a CES with three
18Gaĺı and van Rens (2010) also point towards changes in the labor market to explain the decreased procyclicality

of labor productivity and the increased volatility of the real wage. They, however, focus on improved matching due

to increased labor market flexibility. We note that Rotemberg (2008) shows that the volatility of wages is a positive

function of the elasticity of capital-labor substitution within a search and bargaining model. Also, Sargent and Wallace

(1974) show that the elasticity is a key parameter to understand the cyclical behavior of productivity and wages.
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factors of production (capital, skilled labor, and unskilled labor) and use the common specification

of a two-level nested CES function. Here, the effects of changes in the share of skilled workers

will depend on the (constant) elasticities of substitution between the three factors, and the type of

nesting specified for the CES.19 Thus, we analyze the effect of changes in the proportion of skilled

workers under three possible nestings.20

Without loss of generality, and for simplicity, we ignore technological process terms and time

subscripts and assume all variables are measured at the normalization point. We denote skilled

labor as S and unskilled labor as U . The first nesting corresponds to:

Y =
[
πXXψ + (1− πX)Uψ

]1/ψ
(7)

X =
[
πKKθ + (1− πK)Sθ

]1/θ
, (8)

where ψ and θ are the inter- and intra-class substitution parameters, πX is the income share param-

eter for aggregator X at the point of normalization, and πK is the share parameter of capital in X

(also at the normalization point). The corresponding elasticities of substitution are σK,S = 1
1−θ and

σK,U = σS,U = 1
1−ψ with −∞ < θ < 1 and −∞ < ψ < 1. It is worth noting that the Cobb-Douglas

case occurs when ψ (θ) = 0, the Leontief case when ψ (θ) = −∞, and the perfect substitutes case

when ψ (θ) = 1. The second nesting is:

Y =
[
πXXψ + (1− πX)Sψ

]1/ψ
(9)

X =
[
πKKθ + (1− πK)Uθ

]1/θ
, (10)

where parameters have the same interpretation as in (7)-(8), but now σK,U = 1
1−θ and σK,S =

σS,U = 1
1−ψ . And the third nesting is:

Y =
[
πXXψ + (1− πX)Kψ

]1/ψ
(11)

X =
[
πSSθ + (1− πS)Uθ

]1/θ
, (12)

where we have σS,U = 1
1−θ and σK,S = σK,U = 1

1−ψ .

The nestings differ in terms of the assumptions imposed about the value of the elasticity of

substitution across factors. While in the first nesting both K and S are equally substitutable for

U but not between them, in nesting two both K and U are equally substitutable with S but not

between them. Nesting (7)-(8) has been widely used in the capital-skill complementarity literature as

discussed in Krusell, Ohanian, Rı́os-Rull and Violante (2000). Capital-skill complementarity in this
19Papageorgiou and Saam (2008) also show that, within this kind of CES specification, the aggregate elasticity is

a negative function of capital intensity. This may also help explain some of the shorter-run changes observed in our

estimates.
20Note that, as will be apparent below, analyzing the effect of changes in the proportion of skilled workers on σ is

equivalent to analyzing the effects of changes in skilled-saving relative to unskilled-saving technical change (which is

skill-biased technical change if both are gross substitutes in production).
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nesting simply implies that ψ > θ. In nesting two, however, capital-skill complementarity implies

that θ > ψ such that capital is more substitutable with U than with S. Note, however, that the third

nesting does not allow for capital-skill complementarity as both skilled and unskilled workers are

assumed to substitute capital the same way. In fact, it is easy to show analytically that, in this case,

the aggregate elasticity of substitution between labor and capital is simply 1
1−ψ which is constant.

Hence, we leave aside the third nesting as, by construction, cannot generate time-variation of σ.

In order to analyze the effect of changes in the proportion of skilled workers in the first two

nestings, we define n = U
U+S as the fraction of unskilled workers. Since total labor input is H = U+S,

we can write U = nH and S = (1 − n)H. Now, we use the definition of the aggregate elasticity of

substitution σ:

σ =
w/r
K/H

∂(w/r)
∂(K/H)

, (13)

where r is the rental price of capital. Note also that, at the normalization point, w
r = 1−πXπK

πXπK

K
H .

Using this and expression (13), Papageorgiou and Saam (2008) show that the aggregate elasticity

of substitution between H and K is a harmonic mean of the elastcities of substitution in the nested

CES functions that can be expressed as:

σ =
1

(1− θ) + (θ − ψ)g
, (14)

g =
πK

1−πK

1−πX
+ πK

. (15)

Since θ and ψ are constants, we can analyze the effect of a change in (1− n) on σ by obtaining

the derivative of g with respect to (1− n). We are then in a position to state the following lemma:

Lemma 1 The aggregate capital-labor elasticity of substitution σ is a positive function of the share

of skilled workers (1− n) (and the productivity of skilled relative to unskilled workers) if:

1. |θ| > |ψ| for the first three-factor CES nesting (X, U);

2. |θ| < |ψ| for the second three-factor CES nesting (X,S).

Proof. See Appendix E.

Take the first nesting. This condition would imply that if capital and skills are complements

(within the X aggregator), i.e. θ < 0, and unskilled workers and K and U substitutes (ψ > 0), the

degree of complementarity between K and S has to be stronger than the degree of substitutability

between U and the other two factors. On the other hand, this would also be the case if all factors

are substitutes (θ > 0 and ψ > 0) but U is less substitutable for X than S and K are between each

other. The same conclusions apply for the other nesting bearing in mind that, in this case, θ > ψ

implies capital-skill complementarity.
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The question is, of course, how likely is this to be the case? Estimates of the skilled-unskilled

workers substitution parameter ψ usually range between 0.25 and 0.5.21 Regarding substitution

between capital and skilled workers, estimates differ by study and are less abundant. Krusell et al.

(2000) find and elasticity of 0.67 (θ ' −0.5). However, given that aggregate σ is estimated to be

substantially below unity (see Chirinko (2008)) and our estimates for the full sample are below 0.2,

this elasticity is likely to be even lower. Hence, the conditions for a positive effect of 1− n on σ are

plausible.

Based on this, we carry out a simple numerical exercise. We calibrate ψ to a value of 0.33

(corresponding to an elasticity of 1.5). Baseline values for the shares are πX = 0.6 and πK = 0.5,

corresponding to a an aggregate capital income share of 0.27 and a skilled income share of 0.33. The

initial share of skilled workers is 20% (n = 0.2). To be compatible with our low σ estimate, we then

set θ = −3 corresponding to a plausible elasticity of 0.25. The value of the aggregate elasticity of

substitution yields 0.32. We then analyze the impact of an increase of the share of skilled workers

of 0.25 (25 percentage points) similar to that observed in the data. The corresponding new value

for σ is almost 0.9. This large change is thus compatible with that observed in our estimates.22

Within reasonable bounds, hence, the effect of the change in the relative proportion of skilled

workers is compatible with our conjecture and may have driven the change in the response of hours to

technology shocks observed in the data. Similar conclusions could be drawn by considering changes

in the skill-bias content of technical change. Indeed, these well documented changes in the US labor

market can plausibly have an important effect on how shocks are transmitted into the economy.

7 Conclusions

We analyze the time variation of the response of hours worked to technology shocks observed in the

US economy over the last 60 years. We first report evidence based on a SVAR model with long-run

restrictions estimated on rolling samples. Consistent with previous results, the correlation between

hours and the technological process conditional on technology shocks increases over the sample in a

non-monotonic fashion. We then propose a structural interpretation of this time variation using a

parsimonious RBC model with a Constant Elasticity of Substitution production function. Within
21For evidence on the elasticity of substitution between workers by skill level see, amongst many others,

Katz and Murphy (1992), Autor, Katz and Krueger (1998), Ciccone and Peri (2005) and Autor et al. (2008). Most

of these estimates range between 1.3 and 2.5, with consensus estimates around 1.5, corresponding to ψ = 0.33.
22Recently, Balleer and van Rens (2009) analyze the effect of skill-biased technology shocks on the labor market

using a SVAR identification scheme. Their findings show that the response of the wage premium to investment-specific

shocks is incompatible with capital-skill complementarity. Their preferred model would display a strong capital-skill

substitutability such that θ > ψ > 0. This would also be compatible with the results from Lemma 1. Nevertheless,

we note that this would imply an aggregate σ much larger than 1, which clashes with a large body of evidence for the

US where σ ¿ 1. Also, this would imply a strongly pro-cyclical aggregate labor share. The correlation of the private

sector labor share with output growth in the data, however, is about -0.4.
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this setting, the sign of the response of hours crucially depends on the relative magnitudes of the

elasticity of capital-labor substitution.

We estimated the model using Bayesian methods. For the whole sample, the proposed specifi-

cation fits the postwar US data on productivity and hours worked reasonably well, especially when

compared to a standard Cobb-Douglas specification. We then estimate the model on rolling samples

of the same length as our SVAR and find that there is a significant sign variation of the response of

hours worked to a positive technology shock. We find that the time-varying impulse responses to a

labor-augmenting shock obtained from the estimated model track satisfactorily the changes observed

in the data-based SVAR despite of its parsimonious nature. Such variation is driven by a change

in the magnitude of the elasticity of factor substitution: we observe an increase in the elasticity of

capital-labor substitution towards the end of the sample that leads to a change in the sign and size

of the response of hours.

We conjecture that the observed increase in the aggregate elasticity of substitution driving our

results may be associated to the changing skill composition of the labor force. With heterogeneous

labor, an increase in the share of skilled workers or their relative productivity can lead to an increase

in the aggregate elasticity of substitution. This highlights the importance of further research on the

role of changes in the skill composition of the labor force and skill-biased technical change for the

transmission of macroeconomic shocks.

Our analysis also brings two other important byproducts. First, as a first attempt to estimate

the elasticity of factor substitution in a general equilibrium setup, our findings show a low estimated

value around 0.15 over the full sample. We thus find little support for a Cobb-Douglas production

function. A more general specification of the production side is preferred to better characterize

the evolution of hours and productivity in the US economy. Second, capital-augmenting technology

shocks are found to be the main driving force of the fluctuations of hours over the full sample.
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A Data construction

In this section we explore the robustness of the empirical implications to alternative databases.

For all databases the time span covers the period from 1948:Q1 until 2006:Q1 and times series

are obtained from the FRED database. Labor productivity is computed as the ratio between the

measure of output and hours, and we take logarithms of both series. We indicate with pj
t labor

productivity and with hobsj
t hours of database j. In parenthesis, we indicate the ID series in the

FRED database of the Federal Reserve Bank of Saint Louis.

The first database (GG) follows closely the data construction in Gaĺı and Gambetti (2009). We

consider output in the non-farm business sector (OUTNFB), and hours of all persons in the non-

farm business sector (HOANBS) and the civilian non-institutional population of 16 years and over

(CNP16OV). We thus have

∆pGG
t = ∆

(
ln

OUTNFBt

CNP16OVt

)

hobsGG
t = ln

HOANBSt

CNP16OVt

An alternative database is considered following the work in Chang, Doh and Schorfheide (2007).

We employ Average Weekly Hours of non-farm Business Sector (PRS85006023), total non-farm

employees (PAYEMS), Civilian non institutional population of 20 years and over (CNP20OV =

LNU00000025 (men) + LNU00000026(women)), real GDP (GDPC96). The database (CDS) is

∆pCDS
t = ∆

(
ln

GDPC96t

CNP20OVt

)

hobsCDS
t = ln

PRS85006023t ∗ PAY EMSt

CNP20OVt

The third data set is constructed following Rı́os-Rull et al. (2009), where the series are similar to

CDS but normalized by a different population structure, i.e. the civilian non-institutional population

of 16 years and over (CNP16OV). The database (RRetal) is

∆pRR
t = ∆

(
ln

GDPC96t

CNP16OVt

)

hobsRR
t = ln

PRS85006023t ∗ PAY EMSt

CNP16OVt

Finally, we borrow the last dataset form the work by Francis and Ramey (2009), where they

propose a new measure of hours per capita and a new measure of productivity. Both series are

adjusted for sectoral shifts and for changing in the composition of the age structure of the working

population. The authors have kindly shared the data and are available on the authors web page (see

http://weber.ucsd.edu/∼vramey )

Figure 10 reports the growth rate of productivity and the evolution of hours worked across

different data sets. While there are minor differences in the growth rate of productivity, the pattern
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Figure 10: Growth rate of productivity and hours worked in different databases

of hour worked looks distinct across measures. In particular, the series constructed using Average

Weekly Hours and total non-farm employees (as in CDS and RRelal) display a more pronounced

upward trend then the one constructed in GG or in FR. This is clearly visible at the beginning

and at the end of the sample. This suggests that the series display different properties at long run

frequencies. To better understand the statistical features of different measures of hours worked Table

2 presents some sample moments. All measures of hours worked display very similar autoregressive

Database ar sd % of vol at BC freq % of vol at medium term freq
GG 0.97 0.039 36 47

CDS 0.98 0.059 15 20
RRetal 0.99 0.057 16 21

FR 0.98 0.036 27 36

Table 2: AR, Standard deviations and Percentage of volatility at selected frequencies for different
measures of hours worked. BC fluctuations are obtained by carving out fluctuations with a period-
icity less then 32 quarters. Medium term fluctuations are obtained by carving out fluctuations with
periodicity less then 48 quarters.

properties. However, there are important differences in the volatility both in terms of magnitude

and in terms of location across frequencies of the spectrum. While the measures built with Average

Weekly Hours and total non-farm employees are more volatile, most of their volatility is located

outside Business Cycles frequencies, which is not the case for the series of hours worked constructed

in GG or FR.Moreover, the measure where most of the volatility is located at typical business cycles

frequencies is the measure used in GG. Hence, without a strong a priori preference for a particular
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measure we tend to prefer the measure where most of the power spectrum is located between 2 and

32 quarters.

Despite of these differences, the (time varying) response of hours worked to an identified tech-

nology shock looks similar across data series. In particular, Figure 11 reports the response of hours

across different settings on 38 overlapping windows of 20 years length and with the long run restric-

tion identification scheme. While there are differences in selected sub samples, the broad picture that

hours worked responded to technology negatively in early samples and positively in recent samples

is consistent across different measures of hours worked.
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Figure 11: Impulse responses of hours to a positive labor augmenting technology shock using different
database.

B Time Varying Stochastic Volatility VAR

The present section describes a VAR with time varying coefficients and with stochastic volatility.

The estimation follows closely Primiceri (2005), and we borrow the specification and identification

scheme form Gaĺı and Gambetti (2009).

25



The reduced form Time Varying Stochastic-Volatility VAR (TVSV VAR) can be represented as

xt = At,0 + At,1xt−1 + ... + At,pxt−p + ut

where At,0 is a time varying intercept and At,j are matrices of time varying parameters. ut are i.i.d.

zero mean normal shocks with covariance matrix Σt. We assume that ut = Ktεt where εt = [εs
t , ε

d
t ] is

a normal i.i.d. shock with E(εtε
′
t) = I, and where εs

t is the technology shock and εd
t a non technology

shock. It follows from the assumptions that Σt = KtK
′
t. Let αt be the stacked vector containing

the coefficients of the VAR, i.e. αt = vec([At,0, At,1, ..., At,p]) where vec(.) is the column stacking

operator. We assume that

αt = αt−1 + ηα
t

where ηα
t is normally distributed with zero mean and constant variance covariance matrix Ωα. We

model time variation in the volatility as follows. Let Σt = FtDtFt where Ft is lower triangular with

ones on the main diagonal and Dt is a diagonal matrix. Let φt is the stacked vector containing the

non zero and non-one elements (stacked by rows) of the matrix F−1
t . Recall that we are considering

a 2 variables VAR, thus Ft is a 2 × 2 matrix and φt is a scalar. Let σt the vector containing the

main diagonal of Dt. We postulate that

φt = φt−1 + ηφ
t

ln σt = ln σt−1 + ησ
t

where ηφ
t is normally distributed with zero mean and variance ωφ and ησ

t is normally distributed

with zero mean and covariance matrix Ωσ.

Priors settings and initialization follow closely Gaĺı and Gambetti (2009) and Primiceri (2005).

We use the observation form 1948:I to 1962:I to initialize the priors parametrization. The priors

take the form:

α0 ∼ N(α̂OLS , V (α̂OLS))

φ0 ∼ N(φ̂OLS , V (φ̂OLS))

ln σ0 ∼ N(σ̂OLS , 2 ∗ In)

Ωα ∼ IW (καT0V (α̂OLS), T )

ωφ ∼ IG(κφ2V (α̂OLS), 2)

Ωσ ∼ IW (κσ2In, 2)

where N is the multivariate normal distribution, IG is the inverse gamma and IW is the inverse-

Wishart, α̂OLS is the OLS estimates of the time invariant VAR coefficient in the initialization sample,

and V (α̂OLS) the estimate of its covariance matrix. Similarly, φ̂OLS is the OLS estimates of the
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time invariant Cholesky matrix and V (φ̂OLS) the estimate of its covariance matrix, and σ̂OLS is

the OLS estimates of the diagonal matrix D. Finally, we set κα = 0.005,κφ = 0.1 and κσ = 0.005.

Figure 12 reports the impulse responses of hours worked to a technology shock starting from 1962:I
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Figure 12: Impulse Responses in the rolling SVAR and in the Time Varying Stochastic Volatility
SVAR

the estimate of SVAR on rolling windows and the estimates of a TVSV SVAR. The response of the

TVSV SVAR are those at the beginning of each calendar year to a unit innovation in εs
t . The pattern

of responses looks similar since across setups. In fact, in both cases we obtain that the response of

hours to a technology shock has been increasing since 1962. While it was negative in the 60s and

the 70s, it turned positive in the last part of the sample. Note that magnitudes and the degree of

persistence are different since we are comparing two deeply different econometric procedures. In the

TVSV SVAR the presample information is heavily affecting the negative estimates of the response

of hours during the sixties. However, the broad pattern is consistent across approaches.

C RBC model with investment adjustment costs

We consider an Real Business Cycles (RBC) model with Constant Elasticity of Substitution (CES)

production function and with investment adjustment costs. We model those cost so that

Kt = (1− δ)Kt−1 + (1− s(Xt))It

where s(1) = s′(1) = 0 and s′′(1) 6= 0 and Xt = It/It−1; Kt is capital and It is investment. We

assume that instantaneous utility function is given by

u(Ct, ht) = ln Ct − Vt
h1+γ

t

1 + γ

where Ct is consumption and ht represents hours worked. Vt is an exogenous preference process, i.e.

νt = ln Vt = ρvνt−1 + εν
t
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The representative consumer optimizes an infinite sum of instantaneous utility function subject to

the capital accumulation equation and the period by period budget constraint, which is

Ct + It = Wtht + rtKt−1

The production side of the economy is characterized by a representative firm that minimizes the

cost of factors in production subject to the production frontier is given by the CES technology, i.e.

Yt = y


α

(
Zk

t Kt−1

k

)σ−1
σ

+ (1− α)
(

Zh
t ht

h

)σ−1
σ




σ
σ−1

(C.1)

The CES production function encompasses two types technological change, i.e. the capital augment-

ing, Zk
t , and the labor augmenting technological process, Zh

t . We assume that capital-augmenting

technology has an AR(1) representation, i.e. (in log deviations from the steady state)

zk
t = ln Zk

t = ρkzk
t−1 + ηk

t ηk
t ∼ N(0, σk), (C.2)

where ρk < 1 to ensure the existence of a balanced growth path. For the labor-augmenting shock we

adopt a flexible specification similar to Ŕıos-Rull et al. (2009), where it follows an AR(2) process,

i.e.

zh
t = ln Zh

t = ψ1,h(1− ψ2,h)zh
t−1 + ψ2,hzh

t−2 + ηh
t , (C.3)

By the perfect competition assumption, factors are paid their marginal products and hence the

system of equilibrium condition is given by

Vth
γ
t =

Wt

Ct

1 = qt (1− s(Xt)− s′(Xt)Xt) + βEt

(
qt+1

Ct

Ct+1
s′(Xt+1)X2

t+1

)

qt = Etβ
Ct

Ct+1
(rt+1 + qt+1(1− δ))

Yt = y


α

(
Zk

t Kt−1

k

)σ−1
σ

+ (1− α)
(

Zh
t ht

h

)σ−1
σ




σ
σ−1

Wt = (1− α)
(
Zh

t

y

h

)σ−1
σ

(
Yt

ht

) 1
σ

rt = α
(
Zk

t

y

k

)σ−1
σ

(
Yt

Kt−1

) 1
σ

Kt = (1− δ)Kt−1 + (1− s(Xt))It

Yt = Ct + It

Xt = It/It−1

where qt is the Tobin q, or equivalently the ratio between the multipliers of the household constraints.

Assuming ψ1 = 1, the Zh
t is not stationary and the dynamic of the model are explosive. In order
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to have a well defined steady state, we need to re-scale the real variables by the non stationary

process. Indicating the variables in small letters as re-scaled variables, i.e. st = St/Z
h
t for S =

C, Y, K, W, I, X, we obtain

Vth
γ
t =

wt

ct

1 = qt

(
1− s(xt

Zh
t

Zh
t−1

)− s′(xt
Zh

t

Zh
t−1

)xt
Zh

t

Zh
t−1

)
+ βEt

(
qt+1

ct

ct+1

Zh
t

Zh
t+1

s′
(

xt
Zh

t+1

Zh
t

)(
xt+1

Zh
t+1

Zh
t

)2
)

qt = Etβ
ct

ct+1

Zh
t

Zh
t+1

(rt+1 + qt+1(1− δ))

yt = y


α

(
Zk

t kt−1

k

Zh
t−1

Zh
t

)σ−1
σ

+ (1− α)
(

ht

h

)σ−1
σ




σ
σ−1

wt = (1− α)
(y

h

)σ−1
σ

(
yt

ht

) 1
σ

rt = α
(
Zk

t

y

k

)σ−1
σ

(
Yt

Kt−1

Zh
t

Zh
t−1

) 1
σ

kt = (1− δ)kt−1
Zh

t−1

Zh
t

+ (1− s(xt
Zh

t

Zh
t−1

))it

yt = ct + it

xt = it/it−1

At the non stochastic steady state we have hγ = w
c , 1 = q, 1 = β (r + 1− δ), y = y, w = (1− α) y

h ,

r = α y
k , i = δk, y = c + i, x = 1. The log linearized equilibrium conditions, around the non-

stochastic steady-state, of the variables rescaled by the non stationary process are (with a small

abuse of notation we indicate with small case letter the log deviation of a variable from its steady

states)

yt = i/y it + c/y ct (C.4)

kt = (1− δ)(kt−1 − zh
t + zh

t−1) + δit (C.5)

yt = αkt−1 + αzk
t + (1− α)ht − α(zh

t − zh
t−1) (C.6)

qt = ct − ct+1 − zh
t+1 + zh

t + βrrt+1 + β(1− δ)qt+1 (C.7)

qt = s′′(1)(xt + (zh
t − zh

t−1))− βs′′(1)(xt+1 + (zh
t+1 − zh

t )) (C.8)

wt = vt + γht + ct (C.9)

wt = 1/σ(yt − ht) (C.10)

rt = (σ − 1)/σzk
t + 1/σ(yt − kt−1) + 1/σ(zh

t − zh
t−1) (C.11)

xt = it − it−1 (C.12)
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C.1 A priori sensitivity analysis

By means of a sensible calibration exercise, we can study the impact of a labor augmenting technology

shock on hours worked for different values of the capital-labor elasticity and of investment adjustment

cost. Without loss of generality, we assume that the labor augmenting technology process is non

stationary, i.e. ψ1,h = 1. Moreover, we set the time discount factor, β, to 0.99, and the depreciation

rate, δ, to 0.025, and the inverse of the Frisch elasticity, γ, to 1. We let the capital-labor elasticity

vary between 0.1 and 1, and we fix the capital intensity in production to 0.33 and assume no

investment adjustment cost. Figure 13 (left panel) reports the impulse response of hours worked to
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Figure 13: Impulse response of hours worked to a labor-augmenting technology shock for different
values of σ and α = 0.33 (Left top panel). Instantaneous response of hours worked to a labor-
augmenting technology shock for different values of σ and α (Right top Panel).Impulse response
of hours worked to a labor-augmenting technology shock for different values of s′′ with σ → 1
and α = 0.33 (Left bottom panel). Instantaneous response of hours worked to a labor-augmenting
technology shock for different values of σ and s′′ = 2 and α = 0.33 (Right bottom Panel).

a labor-augmenting technology shock for different values of σ and keeping the value of α fixed at

0.33. Approximately, when σ > α the response of hours to a labor augmenting technology shock

is positive. However, hours worked decrease if σ < α. The right panel of Figure 13 displays the

instantaneous response of hours worked to a labor-augmenting technology shock for different values
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of σ and α. We let the value of capital intensity vary between 0.2 to 0.6. Thus, approximatively

for values of σ larger than 0.7 and close to the Cobb-Douglas specification, the response of hours is

positive regardless of values of α.

We considered also the case where the production function is Cobb-Douglas (σ → 1) and the

capital adjustment cost vary from 0 to 20. A few things are worth noticing. First, there is a switch

of sign in the response of hours due to a change in investment adjustment cost. However, this change

in sign occurs only on impact. Indeed, regardless of the value of the investment adjustment cost, the

response of hours turns positive after few quarters. Hence, while investment adjustment cost are able

to generate negative response of hours on impact, they are unable to produce a long-lasting negative

response of hours worked to a technology shock 23. Second, with positive adjustment costs the

capital-labor degree of substitution is the crucial parameter which generates a long lasting positive

or negative response of hours. However, the threshold is no longer uniquely determined by value of

α. Third, the support of σ able to generate positive and negative response of hours has increased

(0-1 without investment adjustment costs and 0-2 with investment adjustment costs).

D Identification of σ

This section verifies whether data can carry enough information to pin down σ in estimation.24

Without loss of generality, we assume that the model is stationary, i.e. 0 < ψ1,h < 1 and ψ2,h =

0. We simulate 100 observations for output and productivity assuming that α = 0.4 and σ =

0.2 in one case (Case A) and that α = 0.4 and σ = 0.99 in the other case (Case B). We then

estimate the structural parameters of the model using Bayesian techniques. Prior elicitation is

pretty standard. We assume inverse gamma for standard deviations, beta distributions for the

autoregressive parameters, a normal distribution for the inverse of the Frisch elasticity, γ and for the

capital intensity in production, α. All priors are centered at the true values. For the capital-labor

elasticity of substitution, σ, we assume a uniform prior with 0 and 1.5 as boundaries. Posterior

medians and credible sets are reported in Table 3. Data on productivity and hours worked appear

informative about the parameters and shocks of interest. Typically, posterior credible sets include

the parameter value used to simulate data. Even for σ, where we postulate a flat prior, the likelihood

peaks very close to the true population value meaning that, if the model is correctly specified, we

are able to pin down in estimation the parameters governing the CES production function.

Since the estimate of these parameters are not far off the ‘true’ population value, and since
23This result is insensitive to different calibration of the remaining structural parameters and also introducing

endogenous persistence with habits in consumption. We obtain similar results for γ = {0.5, 1.0, 1.5, 2, 2.5, 3.0} and for

different parametrization of the exogenous processes.
24The estimation of σ presents some econometric challenges, especially when combined with estimates of factor-

augmenting technical change. See León-Ledesma et al. (2010).
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true Case A Case B
α 0.40 0.39[0.31,0.47] 0.41 [0.35,0.48]
σ 0.20/0.99 0.27 [0.18,0.37] 1.13 [0.86,1.48]
γ 1.00 1.01 [0.85,1.18] 1.00 [0.85,1.15]
ρv 0.60 0.61 [0.43,0.77] 0.52 [0.42,0.62]
ρk 0.60 0.49 [0.34,0.63] 0.60 [0.36,0.83]

ψ1,h 0.60 0.65 [0.56,0.75] 0.61 [0.46,0.76]
σv 0.01 0.0110 [0.0095,0.0125] 0.0093 [0.0064,0.012]
σk 0.01 0.0090 [0.0066,0.0102] 0.0108 [0.066,0.0149]
σh 0.01 0.0096 [0.0061,0.0128] 0.0094 [0.008,0.0108]

corr(pt, ht) -0.15/0.15 -0.30 [-0.06,-0.49] 0.14 [-0.04,0.29]

Table 3: Prior and Posterior estimates with simulated data. Median and the credible sets in paren-
thesis.

their relative magnitude determines the sign of the conditional and unconditional correlations, we

expect to be able to track the correct sign of such correlations. In particular, the last row of Table

3 displays the unconditional correlation between hours and productivity and its estimates.25 On

average, the signs are correctly identified for both cases. Similarly, Figure 14 reports the (true and

estimates) impulse response of hours worked to a labor-augmenting technology shock. The estimated

impulse response correctly captures the the sign and the persistence of the response. Regardless of

the relative magnitude of σ and α, the response of productivity to a labor-augmenting technology

shocks is positive and correctly estimated (not shown here). Hence, the sign of the correlation of

hours and productivity conditional on an labor-augmenting technology shock crucially depends on

the estimated relative magnitude of σ and α. We conclude that data on productivity and hours

worked contain enough information to correctly capture conditional and unconditional moments of

productivity and hours worked in our model.
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Figure 14: Impulse response (true and estimates) of hours worked to a labor-augmenting technology
shock. Left panel Case A, where 0.2 = σ < α = 0.4 and right panel Case B, where 0.4 = α < σ =
0.99.

25The bands of the estimated correlation are obtained by simulating 50 times the model using the mean, and for

each simulated data sets we compute the correlation.
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E Proof of Lemma 1

We prove Lemma 1 for the first nesting corresponding to the Krusell et al. (2000) two-level CES,

which we denote as (X,U) nesting. The results for the second nesting easily follow through from

these. Hence, for this nesting, we first need to use the following results:

∂πX

∂X
=

ψ

X
πX(1− πX), (E.1)

∂X

∂(1− n)
=

1− πK

1− n
X, (E.2)

∂πK

∂(1− n)
= −θ

πK(1− πK)
1− n

, (E.3)

which, since, for any variables (z, q, s), ∂z/∂q = (∂z/∂s)(∂s/∂q), immediately implies

∂πX

∂(1− n)
= ψ

πX(1− πX)(1− πK)
1− n

. (E.4)

With these results we can then calculate the partial derivative of g = πK
1−πK
1−πX

+πK

. After some

tedious algebra, we can write this expression as:

∂g

∂(1− n)

∣∣∣∣
X,U

=
− πK(1−πK)

(1−n)(1−πX) (θ + ψ)
[

1−πK

1−πX
+ πK

]2 , (E.5)

Since ∂σ
∂(1−n) = ∂σ

∂g
∂g

∂(1−n) we can derive, again after some algebra, the expression:

∂σ

∂(1− n)

∣∣∣∣
X,U

= −Π

(
ψ2 − θ2

)

[(1− θ) + (θ − ψ)g]2
, (E.6)

where Π > 0 is a function of share parameters:

Π =
πK(1− πK)

(1− n)(1− πX)
[

1−πK

1−πX
+ πX

]2 (E.7)

Given that Π > 0 and that the denominator of (E.6) is positive, the effect of a change in 1− n

will be positive if θ2 > ψ2. Hence, in the (X,U) nesting, an increase in the share of skilled workers

will increase aggregate σ if |θ| > |ψ|. Following the same logic, in the (X,S) nesting, the effect will

be positive as long as |θ| < |ψ|.

33



References

Acemoglu, D.: 2002, Technical Change, Inequality and the Labor Market, Journal of Economic

Literature 40(1), 7–72.

Acemoglu, D., Aghion, P. and Violante, G. L.: 2001, Deunionization, technical change and inequality,

Carnegie-Rochester Conference Series on Public Policy 55(1), 229–264.

Acemoglu, D. and Autor, D. H.: 2011, Skills, tasks and technologies: Implications for employment

and earnings, in O. Ashenfelter and D. E. Card (eds), Handbook of Labor Economics Volume 4,

Amsterdam: Elsevier.
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