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L’apprentissage des chocs financiers et la Grande Récession

Résumé

Cet article modélise une économie dans laquelle les chocs financiers ont des effets macroconomiques

de premier ordre lorsque les agents apprennent graduellement leur environnement. Lorsque les

ménages réactualisent, par apprentissage adaptatif, leurs croyances relatives au processus inob-

servé à l’origine des chocs qui affectent le levier financier, les réponses des agrégats macroéconomiques

sont significativement plus importantes que lorsque les agents sont supposés avoir des anticipa-

tions rationnelles. Le cadre de référence, calibré sur données US pour la période 1996-2008,

montre que l’apprentissage adaptatif amplifie les chocs de levier dans un rapport de un à trois,

par rapport aux anticipations rationnelles. Lorsque les innovations qui ont affectées pendant la

période le niveau du levier financier sont introduites dans le modèle avec apprentissage, ce dernier

reproduit la chute du PIB lors de la Grande Récession, contrairement au modèle avec anticipations

rationnelles qui prédit une expansion pendant la même période. De plus, nous montrons qu’un

levier financier procyclique renforce l’effet amplificateur de l’apprentissage et, par conséquent,

qu’une politique “macro-prudentielle” imposant un levier contracyclique est stabilisante. Enfin,

nous illustrons que l’apprentissage dans un modèle mal spécifié qui ignore les dépendances entre

variables réelles et variables financières contribue également à amplifier les chocs financiers.

Mots-clés: contraintes d’endettement, garantie financière, effet de levier, apprentissage, chocs

financiers, récession

Codes du Journal of Economic Literature: E32, E44, G18

Learning Leverage Shocks and the Great Recession

Abstract

This paper develops a simple business-cycle model in which financial shocks have large macroe-

conomic effects when private agents are gradually learning their economic environment. When

agents update their beliefs about the unobserved process driving financial shocks to the leverage

ratio, the responses of output and other aggregates under adaptive learning are significantly larger

than under rational expectations. In our benchmark case calibrated using US data on leverage,

debt-to-GDP and land value-to-GDP ratios for 1996Q1-2008Q4, learning amplifies leverage shocks

by a factor of about three, relative to rational expectations. When fed with the actual leverage

innovations, the learning model predicts the correct magnitude for the Great Recession, while

its rational expectations counterpart predicts a counter-factual expansion. In addition, we show

that procyclical leverage reinforces the impact of learning and, accordingly, that macro-prudential

policies enforcing countercyclical leverage dampen the effects of leverage shocks. Finally, we illus-

trate how learning with a misspecified model that ignores real/financial linkages also contributes

to magnify financial shocks.

Keywords: Borrowing Constraints, Collateral, Leverage, Learning, Financial Shocks, Recession

Journal of Economic Literature Classification Numbers: E32, E44, G18
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1 Introduction

Virtually all narratives about the run-up to the US Great Recession unequivocally

feature the booms in both household debt and housing prices as the main culprits. In

contrast, the theoretical literature which has examined to what extent these prominent

aspects matter seems somehow more cautious. In particular, the overall conclusion seems

to be that movements of the loan-to-housing value are not of primary importance to ex-

plain the recent events (see e.g. Kiyotaki, Michaelides, Nikolov [22], Liu, Wang, Zha [27],

Justiniano, Primiceri, Tombalotti [21] among others). In this paper, we argue that re-

laxing the assumption of rational expectations and acknowledging that real-world agents

do not know the parameters of the stochastic process governing financial shocks leads

to a very different conclusion. We develop a simple business-cycle model in which the

financial sector dynamics may originate shocks that have large macroeconomic effects

when private agents are gradually learning their economic environment. The key ran-

dom variable is the leverage ratio, which we define by how much one can borrow out of

the land market value. We show that when agents update their beliefs about the un-

observed process driving shocks to the leverage ratio, the responses of output and other

aggregates under adaptive learning are significantly larger than under rational expecta-

tions. More specifically, we compare two settings: (i) the model with (full information)

rational expectations, in which agents know the parameters governing the AR(1) process

of shocks to leverage; (ii) the model with learning, in which agents are ignorant about

the “true” AR(1) parameters and update their estimates as new data arrive.

We first perform two theoretical experiments. In the simplest model, we assume that

agents know the economy’s steady state and, in particular, the stationary level of lever-

age but not its autocorrelation, which is allowed to be time-varying. More precisely,

we posit that learning agents end up overestimating the persistence of leverage shocks
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Figure 1: US Household Leverage Ratio 1980Q1-2010Q3. Source: Boz and Mendoza [5].
Fig. 1: US Household Leverage Ratio 1980Q1-2010Q3
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prior to 2008Q4. This assumption is motivated by the data, reported in Figure 1, on US

household leverage that are provided by Boz and Mendoza [5] over the period 1980Q1-

2010Q3, which can roughly be split into three phases.

The first one runs from 1980 to the early 1990s, when leverage is flat around 60%. In

the second phase, leverage trends up until the last quarter of 2008, when the financial

crisis is in its most severe stage. Finally, after 2008Q4 leverage seems to become flat

again. We assume that leverage follows an AR(1) process and we think of the second

phase, prior to 2008Q4, as a period when learning agents gradually get evidence that

leverage shocks are becoming close to permanent. In Appendix A.3, we present empirical

support for this assumption.

Our first findings are derived in a model that is a simple variant of Kiyotaki and Moore

[23] based on Kocherlakota [24], which is linearized in percentage deviations from the

known steady state. We focus on financial shocks that drive up and down the leverage

ratio, which according to the data in Figure 1 are very persistent. We calibrate the

model using data on leverage, debt-to-GDP and land value-to-GDP ratios for the pe-
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riod 1996Q1-2008Q4 and we subject the economy to the large negative shock to leverage

that was observed in 2008Q4 (see Figure 1) under the assumption that learning agents

overestimate the persistence of the leverage shock, which is believed to be close to unity.

We compare the responses of the linearized economy under adaptive learning, following

Marcet and Sargent [29] and Evans and Honkaphoja [14], and under rational expecta-

tions.Our typical sample of results shows that learning amplifies leverage shocks by a

factor of about three (see Figure 2). For example, our model predicts, when fed with the

negative leverage shock of about −5% observed in 2008Q4, that output falls by about

1%, which is roughly by how much US GDP dropped at that time. In addition, aggre-

gate consumption and the capital stock fall by about 1.2% and 2%, respectively. Under

rational expectations, however, output drops only by a third of 1% while the responses

of consumption and investment are divided by about four at impact. Consumption and

investment go down by a significantly larger margin under learning because de-leveraging

is more severe: land price and debt are much more depressed after the negative leverage

shock hits when its persistence is overestimated by agents who are constantly learning

their environment and, because of recent past data, temporarily pessimistic. We next

show that the magnitude of the consequent recession may in part be attributed to the

high level of leverage (and the correspondingly high level of the debt-to-GDP ratio) ob-

served in 2008Q4. When the same negative leverage shock occurs in the model calibrated

using 1996Q1 data, when leverage was much lower, the impact on output’s response is

reduced by about two thirds. In this sense, our model points at the obvious fact that

financial shocks to leverage originate larger aggregate volatility in economies that are

more levered.

In addition, we also ask whether procyclical leverage may act as an aggravating factor

and our answer is positive. The assumption that households’ leverage responds to land

price is motivated by the recent evidence provided by Mian and Sufi [31] (see also the
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discussion in Midrigan and Philippon [32]). The counter-factual experiment with coun-

tercyclical leverage shows dampened effects of leverage shocks, with responses of aggre-

gate variables under learning that are close to their rational expectations counterpart.

One possible interpretation of this finding is that macro-prudential policies enforcing

countercyclical leverage have potential stabilizing effects on the economy in the face of

financial shocks, at small cost provided that non-distortionary policies are implemented

(e.g. through regulation). Finally, we illustrate how learning with a misspecified model

that ignores real/financial linkages also contributes to magnify financial shocks.

Our second theoretical experiment is carried out under the assumption that learning

agents do not know the steady state of the economy and, in particular, that they do not

know the long-run level of leverage. This is our preferred model in the sense that it is ar-

guably a more realistic description of the difficulties that forecasting agents/econometricians

face when trying to figure out the parameters governing the data generating process. In

such a setting, we again feed the model with the negative leverage shock of about −5%

observed in 2008Q4 and we show that the responses of the economy are again amplified

under learning when agents’ belief about the steady state level of leverage is overesti-

mated (see Figure 7), which is in accordance with the data prior to 2008Q4. Summing

up the results from our two model experiments, our main conclusion is that in a world

where either agents know the steady state but overestimate the persistence of financial

shocks or agents know the persistence parameter but overestimate the long-run level of

leverage, learning amplifies the disturbances to borrowing capacity.

To take the model closer to data, we next feed the model with the actual innova-

tions to leverage and show that the model predicts the correct magnitude for the Great

Recession. More precisely, we do that in two settings that replicate both theoretical ex-

periments. In the first one, the log-linearized model in percentage deviations from steady

state is fed with the innovations obtained from the HP-detrended leverage data and it
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predicts that the recession under learning happens too early and is too small compared

to NBER estimates (see Figure 9). However, we next assume that agents do not know

the steady state of the economy and have to estimate it using constant-gain learning.

When we let agents revise downward their estimate of the leverage level in accordance

with the actual leverage innovations observed in 2007-2008, the learning model predicts

the correct magnitude for the Great Recession (see Figure 11). In sharp contrast, the

rational expectations model predicts an expansion which is at odds with the data.

To summarize, our main finding is that leverage shocks are amplified when agents

gradually update their beliefs about the process driving financial shocks. We believe it

is important to acknowledge that, as Figure 1 suggests, nonstationary leverage (either

because it is subject to permanent shocks or because of its time-varying steady state

level) may have played an important role in favoring conditions that worsened the Great

Recession. Looking back in time at the data in Figure 1, there is a sense in which every-

body should have foreseen that leverage could not possibly increase forever. However,

figuring out when leverage would stop rising was a much harder task. Our paper stresses

that when such a change comes, its macroeconomic impact when agents adaptively learn

differs much from what happens under rational expectations. Moreover, on the policy

side, our analysis gives an example of a macro-prudential policy that dampens the impact

of financial shocks to the macroeconomy under learning by ensuring that leverage goes

down when asset prices spike up.

Related Literature: Our paper connects to several strands of the literature. The

macroeconomic importance of financial shocks has recently been emphasized by Jer-

mann and Quadrini [20], among others, and our paper contributes to this literature

about credit shocks by showing how learning matters. Closest to ours are the papers

by Adam, Kuang and Marcet [1], who focus on interest rate changes, and by Boz and

Mendoza [5], who show how changes in the leverage ratio have large macroeconomic
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effects under Bayesian learning and Markov regime switching. As in Boz and Mendoza

[5], we focus on leverage shocks but our setting is different. First, our model with adap-

tive learning is easily amenable to simulations and we solve for equilibria through usual

linearization techniques. Because we assume that agents are adaptively learning through

VAR estimation, it is possible to enrich the model by adding capital accumulation and

endogenous production. Most importantly, our model predicts large output drops when

the economy is hit by negative leverage shocks. In contrast, absent TFP shocks, output

remains constant after a financial regime switch in Boz and Mendoza [5]. Our paper

also relates to some of the insights in Howitt [18], Hebert, Fuster and Laibson [15, 16].

Contrary to Hebert, Fuster and Laibson [15, 16] who assume that agents use a mis-

specified model, in our case the overestimated persistence of shocks arises endogenously

under adaptive learning when agents face the sequence of financial innovations that was

observed in the run-up to the crisis.1 In addition, our paper stresses that changes in the

beliefs about the long-run level of leverage may also go a long way explaining why shocks

get amplified under adaptive learning.

In the literature, the idea that procyclical leverage has adverse consequences on the

macroeconomy is forthfully developed in Geanakoplos [17] (see also Cao [8]). Although

our formulation of elastic leverage is derived in an admittedly simple setup, it allows us

to examine its effect in a full-fledged macroeconomic setting. Last but not least, the no-

tion that learning is important in business-cycle models when some change in the shock

process occurs has been discussed by, e.g., Bullard and Duffy [6] and Williams [36]. More

recently, Eusepi and Preston [12] have shown that learning matters in a standard RBC

model when the economy is hit by shocks to productivity growth (see also the related

paper by Edge, Laubach, Williams [11]). Our paper adds to this literature by focusing

on financial shocks under collateral constraints. As mentioned before, part of the paper’s

1See the discussion by Evans [13].
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motivation also comes from the growing micro-evidence about the importance of house-

holds’ and firms’ leverage for understanding consumption and investment behaviors (e.g.

Mian and Sufi [31], Chaney, Sraer and Thesmar [10]).

The paper is organized as follows. Section 2 presents the model and derives its rational

expectations equilibria. Section 3 relaxes the assumption that agents form rational ex-

pectations in the short run and it shows how financial shocks are amplified under learning

when agents overestimate the persistence of shocks. Section 4 shows how leverage shocks

get amplified under learning when agents do not know the steady state of the economy

and overestimate the long-run level of leverage, while Section 5 provides evidence that

such a setting predicts the correct magnitude for the Great Recession. Section 6 gathers

concluding remarks and all proofs are exposed in the appendices.

2 The Economy with Leverage Shocks

2.1 Model

The model is essentially an extension of Kocherlakota’s [24] to partial capital depreciation

and adaptive learning. A representative agent solves:

maxE0

∞∑
t=0

βt
C1−σ
t − 1

1− σ
(1)

where Ct ≥ 0 is consumption and σ ≥ 0 denotes relative risk aversion, subject to both

the budget constraint:

Ct +Kt+1 − (1− δ)Kt +Qt(Lt+1 − Lt) + (1 +R)Bt = Bt+1 +AKα
t L

γ
t (2)

and the collateral constraint:

Θ̃tEt[Qt+1]Lt+1 ≥ (1 +R)Bt+1 (3)
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where Kt+1, Lt+1 and Bt+1 are, respectively, the capital stock, the land stock and the

amount of new borrowing all chosen in period t, Qt is the land price, R is the exogenous

interest rate, A is total factor productivity (TFP thereafter). In our benchmark model,

leverage Θ̃t is subject to random shocks whereas both the interest rate and TFP are

constant over time. As we focus on financial shocks, we ignore TFP disturbances and

simply notice that similar results hold when the process driving technological shocks

changes as well. We present first the results obtained under the collateral constraint

(3), which follows Kiyotaki and Moore [23]. However, quantitatively similar results hold

under the margin requirement timing stressed in Aiyagari and Gertler [3] (see Section

3.4 for robustness analysis).

Denoting Λt and Φt the Lagrange multipliers of constraints (2) and (3), respectively,

the borrower’s first-order conditions with respect to consumption, land stock, capital

stock, and loan are given, respectively, by:

C−σt = Λt (4)

ΛtQt = βEt[Λt+1Qt+1] + βγEt[Λt+1Yt+1/Lt+1] + ΦtΘ̃tEt[Qt+1] (5)

Λt = βEt[Λt+1(αYt+1/Kt+1 + 1− δ)] (6)

Λt = β(1 +R)Et[Λt+1] + (1 +R)Φt (7)

We also incorporate into the model the feature that leverage responds to changes in

the land price, which accords with the evidence documented by Mian and Sufi [31] on

US micro data for the 2000s. More precisely, we posit that:

Θ̃t ≡ Θt

{
Et[Qt+1]

Q

}ε
(8)

where Q is the steady-state value of land price and the log of Θt follows an AR(1) process,

that is, Θt = Θ
1−ρθΘρθ

t−1Ξt. In Appendix A.1, we show how (8) can be derived in a simple

setting with ex-post moral hazard and costly monitoring, similar to Aghion et al. [2].
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Our goal is now to compare two cases regarding what agents know about the data

generating process underlying leverage shocks:

(i) rational expectations (with full information): agents know with certainty the “true”

values of both ρθ and Θ,

(ii) learning (with incomplete information): ρθ and Θ are unknown and agents have to

estimate those parameters based on available data. More precisely, two experiments are

reported in Sections 3 and 4. In section 3, we follow standard practice by linearizing the

model around a known steady state and we assume that learning agents do not know

(and have to estimate) the persistence parameter ρθ. In Section 4, agents are uncertain

about the steady state level of leverage Θ instead but they know ρθ. Before turning to

that, we present the rational expectations equilibria.

2.2 Rational Expectations Equilibria

A rational expectations competitive equilibrium is a sequence of positive prices {Qt}∞t=0

and positive allocations {Ct,Kt+1, Lt+1, Bt+1}∞t=0 such that, given the exogenous se-

quence {Θt}∞t=0 of leverage and the exogenous interest rate R ≥ 0:

(i) {Ct,Kt+1, Lt+1, Bt+1}∞t=0 satisfies the first-order conditions (4)-(7), the transver-

sality conditions, limt→∞ β
tΛtLt+1 = limt→∞ β

tΛtKt+1 = 0, and the complementarity

slackness condition Φt

[
Θ̃tEt[Qt+1]Lt+1 − (1 +R)Bt+1

]
= 0 for all t ≥ 0, where Θ̃t ≡

Θt{Et[Qt+1]/Q}ε, given {Qt}∞t=0 and the initial endowments L0 ≥ 0, B0 ≥ 0,K0 ≥ 0;

(ii) The good and asset markets clear for all t, that is, Ct+Kt+1−(1−δ)Kt+(1+R)Bt =

Bt+1 +AtK
α
t and Lt = 1, respectively.

The above definition assumes that the interest rate is exogenous. Therefore, a natu-

ral interpretation of the model is that it represents a small, open economy. Appendix

A.2 presents a closed-economy variant based on Iacoviello [19], in which borrowers and
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lenders meet in a competitive credit market subject to collateral constraints and a con-

stant debtor interest rate. Our findings reported below can be replicated in the closed-

economy model when the economy is hit by negative financial and TFP shocks that

occur simultaneously. As our focus is on how borrowers adaptively learn how the econ-

omy settles after financial shocks, we abstract both from TFP shocks and from further

details regarding the lender’s side, and we focus on the small-open-economy setting, as

in Adam, Kuang and Marcet [1], Boz and Mendoza [5].

There is a unique (deterministic) stationary equilibrium such that the credit constraint

(3) binds, provided that the interest factor 1 + R ≡ 1/µ is such that µ ∈ (β, 1), that is,

if lenders are more patient than borrowers. This follows from the steady-state version of

(7), that is, Φ = Λ(µ− β) > 0. The steady state is characterized by the following great

ratios, that fully determine the linearized dynamics around the steady state. From (5)

and (6), it follows that the land price-to-GDP and capital-to-GDP ratios are given by

Q/Y = γβ/[1−β−Θ(µ−β)] and K/Y = αβ/[1−β(1−δ)], respectively. Finally, (3) and

(2) yield, respectively, the debt-to-GDP ratio B/Y = µΘQ/Y and the consumption-to-

GDP ratio C/Y = 1− δK/Y − (1/µ− 1)(B/Y ).

Appendix A.1 provides a linearized version, in percentage deviations from the steady

state, of the set of equations (2)-(7) defining, together with (8) and the leverage law of

motion Θt = Θ
1−ρθΘρθ

t−1Ξt, intertemporal equilibria. We assume throughout that lever-

age Θ is observed while the shock Ξ remains unobserved. Eliminating Φt by using (7),

the linearized expectational system (in percentage deviations from steady state) can be

written as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + Dξt (9)

where Xt ≡ (ct qt λt bt kt θt)
′ is observed whereas ξt is not, and all variables in lowercase

letters denote their deviations from steady-state in percentage terms (e.g. kt ≡ (Kt −

K)/K, where K is the steady-state capital stock). The derivation and the expressions of
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the 6-by-6 matrices A, B, C, D as functions of parameters are given in Appendix A.1.

Anticipating our results on E-stability, we now use the fact that the linearized rational

expectations equilibrium around steady state can be obtained as the unique E-stable

Minimal-State-Variable solution (MSV thereafter) of the form Xt = MreXt−1, where

Mre solves M = [I6 −CM]−1[A + BM] and I6 is the 6-by-6 identity matrix. It is

important to underline that both the autocorrelation of the leverage shock process, that

is, ρθ, and the leverage level, that is Θ, are known under rational expectations. In

contrast, the next sections relax such an assumption and assume instead that agents

have to form estimates of ρθ and Θ using the available data.

3 Adaptive Learning when the Steady State is Known

Following Marcet and Sargent [29] and Evans and Honkapohja [14], we now relax the

assumption that agents form rational expectations in the short-run. We first assume

that the steady state of the economy is known, which implies that the level of leverage

is common knowledge. However, the parameters governing the dynamics of the economy

are not known. In particular, ρθ is not known with certainty by agents. Because the

steady state is known, we can still use the linearized dynamic system in percentage

deviations from steady state, which is now:

Xt = AXt−1 + BE∗t−1[Xt] + CE∗t [Xt+1] + Dξt (10)

where the operator E∗t indicates expectations that are taken using all information avail-

able at t but that are possibly nonrational. More precisely, agents behave as econome-

tricians by embracing the following perceived law of motion (PLM thereafter):

Xt = MXt−1 + Gξt (11)
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which agents use for forecasting. In particular, (11) yields Et[Xt+1] = Mt−1Xt and

Et−1[Xt] = Mt−2Xt−1. The actual law of motion (ALM thereafter) results from com-

bining (10) and (11) which gives:

[I6 −CMt−1]Xt = [A + BMt−2]Xt−1 + Dξt (12)

When M coincides with Mre derived in Section 2.2, then agents hold rational ex-

pectations. However, beliefs captured in M may differ from rational expectations and

they are updated in real time using recursive learning algorithms, following Evans and

Honkapohja [14]. This means that the belief matrix M is time-varying and its coefficients

are updated using:

Mt = Mt−1 + νtR
−1
t Xt−1(Xt −M′t−1Xt−1) (13)

Rt = Rt−1 + νt(Xt−1X
′
t−1 −Rt−1) (14)

where R is the estimate of the variance-covariance matrix and νt is the gain sequence

(which equals 1/(t+ 1) under ordinary least squares and ν under constant gain, respec-

tively OLS and CG thereafter). One difference with rational expectations that is key to

our results is that agents may overestimate the autocorrelation parameter ρθ.

The mapping from the PLM (11) into the ALM (12) is given by:

T (M) = [I6 −CM]−1[A + BM] (15)

Adapting Proposition 10.3 from Evans and Honkapohja [14], we check that all eigenval-

ues of DTM(M) have real parts less than 1 when evaluated at the fixed-point solutions of

the T -map (15), that is, M = Mre. Using the rules for vectorization of matrix products,

we get:

DTM(Mre) = ([I6 −CMre]
−1

[A + BMre])
′
⊗ [I6 −CMre]

−1
C

+ I6 ⊗ [I6 −CMre]
−1

B
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All MSV solutions that we consider from now on are said to be locally E-stable when

all eigenvalues of DTM(Mre) lie within the interior of the unit circle. In practice, we

numerically compute the E-stable solutions by iterating the T-map (15), as described in

Evans and Honkapohja [14, p.232].

3.1 Learning the Persistence of Leverage Shocks

In this section, we show that learning amplifies leverage shocks when agents’ belief

about the persistence parameter ρθ is allowed to differ from rational expectations. In

particular, we assume that learning agents wrongly believe that ρθ is close to one. This

is meant to capture the trend in leverage that is observed in the run-up to the 2008Q4

crisis (see Figure 1).

The model is calibrated according to Table 1, so as to deliver average values for

leverage, debt-to-GDP and land value-to-GDP ratios for the period 1996Q1-2008Q4,

that is Θ ≈ 0.88, B/Y ≈ 0.52 and QL/Y ≈ 0.59. To calibrate those ratios, we fix the

quarterly interest rate to 1% (that is, µ = 0.99) and β = 0.98µ (consistent with the

literature on heterogeneous discount rates; e.g. Krusell and Smith [25]) and then pick

the land share γ to target the land price-to-GDP ratio. In addition, we choose ε = 0.5

(consistent with the estimates of Mian and Sufi [31]).2

Table 1. Parameter Values (1996Q1-2008Q4)

µ β δ α γ σ Θ ε ν

0.99 0.98µ 0.025 0.45 0.0075 1 0.88 0.5 0.04

2The value we set ε to implies, for instance, that a 10% increase in land price triggers a 5% increase

in leverage, which under our calibration would raise leverage from 0.88 to about 0.92.
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The experiment that embodies our first results is the following. We assume that in the

period preceding the financial collapse of 2008Q4, the agents in our model economy have

learned that ρθ was close to one, reflecting the leverage trend in Figure 1 that starts in

the early 1990s. This means that agents’ beliefs encapsulated in matrix M of the PLM

(11) reflect that ρθ ≈ 1. Then in 2008Q4 a large negative shock to leverage of about

−5% happens (see Figure 1). The (pseudo-)impulse functions in Figure 2 report the

reaction of the economy’s aggregates under the assumptions that agents wrongly believe

that ρθ ≈ 0.999 whereas the true value is 0.984. Such a calibration is consistent with the

data, as shown in Appendix A.3 where we present the real-time estimates of ρθ under

both OLS and CG, and it satisfies E-stability conditions. The blue dotted line in Figure

2 represents the RE equilibrium with ρθ = 0.984. The solid red curve in Figure 2 occurs

when agents gradually learn using (13)-(14) under the initial belief that ρθ = 0.999 , with

the true value being ρθ = 0.984. Although Figure 2 assumes CG learning with ν = 0.04,

similar results would occur under lower gains (which would imply similar effects at im-

pact but slower recovery).3

Figure 2 shows that the negative leverage shock is significantly amplified under learn-

ing. In particular, the impact on output and capital is roughly three times larger and the

consumption drop is multiplied by about four compared to the rational expectations out-

come. This follows from the fact that deleveraging is much more severe under learning:

the fall in land price is more than five times larger and the debt decrease is multiplied

by about three compared to RE.4

3Our chosen value for the gain parameter falls within the upper range of estimates reported in Branch

and Evans [4], Chakraborty and Evans [9] and it is consistent with the estimates of Malmendier and Nagel

[28] for younger generations. Similar impulse response functions would be obtained from our model when

fed with the Milani’s [33, 34] lower gains.
4In Figure 2, debt falls by much more than output. This implies that the debt-to-GDP ratio - a

common definition of aggregate leverage - falls by a large amount as well.
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In summary, because agents incorrectly believe that the impact of the negative lever-

age shock will be very persistent, they expect a much larger fall in land price and a much

tighter borrowing constraint than under rational expectations, which in turn depresses

consumption, investment and output. In this sense, agents are pessimistic under incor-

rect beliefs. Note that the magnitudes of output’s and consumption’s responses roughly

match data, whereas investment is too volatile in our model economy without investment

adjustment costs. Finally, Figure 2 shows that both capital and output overshoot their

long-run levels, because initial deleveraging finances additional capital investment later

on. This does not happen under rational expectations within the same time horizon.
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Figure 2: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock under Learning (Red Solid Line) and Rational Expectations (Blue Dotted Line);

Parameter Values in Table 1.

10 20 30 40 50 60
Time

-0.8

-0.6

-0.4

-0.2

Output

10 20 30 40 50 60
Time

-2.0

-1.5

-1.0

-0.5

Capital

10 20 30 40 50 60
Time

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

Consumption



17

10 20 30 40 50 60
Time

-10

-5

Land Price

10 20 30 40 50 60
Time

-30

-25

-20

-15

-10

-5

Debt

To measure how the leverage level matters for the response to a financial shock, we now

calibrate the model using data from the first quarter of 1996, that is Θ ≈ 0.73 (the other

values are as in Table 1), which leads to B/Y ≈ 0.34 and QL/Y ≈ 0.48. According

to most measures, this period corresponds to the starting point of the housing price

“bubble”. The lower level of leverage implies that both the debt-to-GDP and the land

value-to-GDP are correspondingly lower than their 2008Q4 levels. Figure 3 replicates

the same experiment as above, when a −5% shock to leverage hits the economy and ρθ
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Figure 3: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock (Learning: Red Solid Line; Rational Expectations: Blue Dotted Line) when Θ =

0.73 (Other Parameter Values in Table 1)
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goes down from 0.999 to 0.98. Direct comparison of Figures 2 and 3 reveals that higher

leverage increases the effect of the shock on aggregates by more than 50% at impact

under learning. In this sense, the larger the level of leverage the deeper the recession

that follows after a negative financial shock.5

5Output’s response and capital’s response are proportional so we report only the former and not the

latter.
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It is clear that the economy’s responses to leverage shock are larger under learning

because the land price forecast interact with the borrowing constraint. To stress this

fact, we now report the responses of a subset of the same variables when the land price

is assumed to be fixed in the borrowing constraint, that is, when (3) is replaced by:

ΘtQLt+1 ≥ (1 +R)Bt+1 (16)

Figure 4 reports the responses of output and consumption, which are about the same

under learning and under rational expectations, in contrast to Figure 2.

3.2 Macroprudential Policy

In this section, we show that countercyclical leverage dampens the impact of leverage

shocks under learning. We now ask the counter-factual question: what would be the

reaction of the economy to the same shock, under the same parameter values but with

the leverage being now mildly countercyclical6? More precisely, we assume that ε = −0.5

while the other parameters are kept unchanged and set as in Table 1. The economy’s

responses are reported in Figure 5. Comparing Figures 2-5 shows that countercyclical

leverage dampens by a significant margin the responses to financial shocks and it brings

learning dynamics closer to its rational expectations counterpart. As a consequence, a

much smaller recession follows a negative leverage shock: though agents anticipate a

too large deleveraging effect because they overestimate the persistence of the adverse

leverage shock, the land price fall now triggers an increase in countercyclical leverage,

which dampens the impact of the negative shock.

6This feature could possibly be enforced by appropriate regulation of credit markets. Alternatively,

Appendix A.1 shows how it arises if government uses procyclical taxes.
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Figure 4: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock with Fixed Land Price (Learning: Red Solid Line; Rational Expectations: Blue

Dotted Line); Parameter Values in Table 1.
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Figure 5: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock under Countercyclical Leverage (Learning: Red Solid Line; Rational Expectations:

Blue Dotted Line); ε = −0.5 and other Parameter Values in Table 1.
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3.3 Learning with a Misspecified Model

In this section, we explore the idea that forecasting agents may ignore important

real/financial linkages. More precisely, we assume that when forming their beliefs and

when estimating matrix M in (11), agents set M(1, 6) = M(3, 6) = M(5, 6) = 0. This

means that they incorrectly believe that leverage shocks affect only financial variables

(land price and debt) and not real variables (consumption and investment). Therefore,

the reactions of land price and debt are not affected by this type of misspecification

whereas the responses of consumption, capital and output are. A possible interpretation

behind such a view could be that agents hold the belief that the effect of financial shocks

are smoothed out through aggregation so that they do not matter for aggregate real

variables.

We set parameter values as in Table 1 and now experiment with a case such that ρθ is

believed to equal 0.999 while it actually equals 0.98. That is, agents incorrectly believe

that leverage has close to unit root. The responses are reported in Figure 6, which

differs from Figure 2 in two important ways. First, not surprisingly, the reaction of

consumption is now hump-shaped and exhibits more persistence. This is because agents

do not take into account that leverage shocks affect consumption directly. In consequence,

investment is more volatile. Second, there is no more overshooting and the recession is

more persistent: the recovery occurring in Figure 2 after about 30 quarters does not show

up in Figure 6. Under our formulation of model misspecification, consumption is more

sluggish so that investment is more volatile when the economy is hit by a leverage shock.

In that way, the impact of leverage shocks on output is amplified and more persistent

under learning.
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Figure 6: Responses (in Percentage Deviations from Steady State) to a −5% Leverage

Shock under Model Misspecification (Learning: Red Solid Line; Rational Expectations:

Blue Dotted Line); Parameter Values as in Table 1.
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3.4 Alternative Assumptions

To assess the robustness of the findings reported in Section 3.1, we now relax two

assumptions. First, we depart from logarithmic utility and we allow σ to take on values

that are larger or smaller than one. Second, we adopt the timing assumption that is

implied by the margin requirement interpretation of the borrowing constraint (Aiyagari

and Gertler [3]). That is, borrowing is limited to the current market value of collateral,

as opposed to tomorrow’s market value. In other words, we replace (3) by ΘtQtLt+1 ≥
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(1 +R)Bt+1.

In Table 2, we report the output amplification variation that obtains under learning,

compared with the rational expectations equilibrium. For example, the impact of a −5%

leverage shock on output’s deviation (from its steady-state value, in percentage terms)

is about −0.90 percentage points under learning and −0.32 percentage points under RE

(see Figure 2) when parameters are set according to Table 1. Therefore, the first column

of Table 2 reports that the difference is, in absolute value, |∆y| ≈ 0.58. Similarly, the

second and third columns report |∆y| when all parameter values are set according to

Table 1, except for risk aversion σ which equals 0.5 and 3, respectively. Finally, the last

column in Table 2 reports |∆y| in the margin requirement model.

Table 2. Extra Output Amplification Under Learning

Benchmark σ = 0.5 σ = 3 Margin Model

0.58 pp 0.56 pp 0.60 pp 0.57 pp

Direct inspection of Table 2 shows that our main findings are robust both to changes

in the utility function’s curvature and to an alternative timing assumption. Output

amplification is quantitatively similar across all different models and this turns out to

be the case for the other variables as well. In addition, how the numbers change in

Table 2 accords with intuition. First, under the timing assumed in (3), incorrect beliefs

about the economy further amplify shocks because land price forecasts are temporarily

deviating from RE. In the margin model where the borrowing limit depends on today’s

collateral market values, forecast errors are slightly less important during deleveraging

episodes. In addition, larger risk aversion implies that consumption will fall by less and,

therefore, that investment will fall by more at impact, which means that output will also

fall by more.



28

4 Adaptive Learning when the Steady State is not Known

The purpose of this section is to report the outcome of our second experiment. Because

the steady state is no longer known, the model has to be linearized in levels and not in

percentage deviations from steady state. In Appendix A.4 we show that the dynamics

equations are now:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt (17)

In our first experiment reported in Section 3, N was a zero vector. Now equation (17)

depends on a non-zero vector N that will determine, together with the other matrices, the

beliefs of learning agents about where the steady state is. Both the rational expectations

solution and the perceived law of motion have the following VAR form:

Xt = MXt−1 + H + Gξt (18)

and in Appendix A.4, we show how M, H and G are determined and how the adaptive

learning algorithm has to be modified to take into account their updating.

Our goal is to report the responses of the economy to the same shock that was consid-

ered in Section 3. Our assumption is now that learning agents overestimate the leverage

level Θ but still have a correct belief about the persistence parameter ρθ. We assume

that leverage shocks are very persistent by setting ρ = 0.99, which agrees with the OLS

estimates over the sample period. In addition, we set the RE belief to be Θ = 0.88 just

as in Table 1, whereas learning agents believe that Θ = 1.04, which is the CG estimate

obtained from the 2008Q4 data.
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Figure 7: Responses (in Percentage Deviations from the RE Steady State) to a −5%

Leverage Shock (Learning: Red Solid Line; Rational Expectations: Blue Dotted Line);

Parameter Values as in Table 1 and Belief set to Θ = 1.04
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The responses of our set of variables to a −5% shock to leverage are reported in Figure

7, which features substantially larger deviations under CG learning compared to the RE

benchmark. Because learning agents overestimate the level of leverage, their perception is

that the negative shock is more pronounced that it actually is, which leads to more severe

deleveraging. Although the responses at impact are similar in magnitude in Figures 2

and 7, the latter does not feature overshooting. Taken together, the two experiments

that are described in the previous section and in this one suggest that learning amplifies

negative shocks to leverage such as the one observed in 2008Q4. A natural question that
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we now ask is: which experiment accords better with the actual path followed by the US

output over the Great Recession?

5 Does Learning Help Account For The Great Recession?

The purpose of this section is to argue that learning is a plausible mechanism that

helps explaining the magnitude of the Great Recession. More precisely, we now show

that the responses of the model economy to observed leverage shocks is very different

under learning and under rational expectations. We first derive the responses of our log-

linearized model economy to the actual innovations of the HP-detrended leverage data

at quarterly frequency.7 This mirrors the theoretical simulations reported in Section 3.

Consistent with the results reported in that section, we allow agents to estimate the

autocorrelation of the AR(1) process driving leverage in a time-varying fashion under

constant-gain learning. Figure 8 reports both the real-time constant-gain estimates and

the OLS estimates of ρθ obtained using the data in Figure 1, adjusted for leverage elas-

ticity (with again ε = 0.5 and ν = 0.04 as in Table 1).

The OLS estimate over the whole sample period, which turns out to be ρθ ≈ 0.78, is

the benchmark in Figure 8 represented by the blue dotted line. The behavior over time

of the constant-gain estimates is pictured by the red solid line and it can be decomposed

into two periods: from 1980 to 2006, learning agents underestimate the autocorrelation

while in the last half of the 2000’s the CG estimate is higher than the OLS estimate.

In particular, agents believe the AR(1) process driving leverage to be close to unit root

near the end of the time period which corresponds to the recession. In view of the im-

pulse response functions reported in the preceding sections, we should expect recessions

generated by leverage shocks to be larger under learning in the last 5 years of the sam-

7To produce Figure 8, we use the standard value of 1600 for the smoothing parameter.
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Figure 8: Estimates of ρθ (Constant-Gain: Red Solid Line; OLS: Blue Dotted Line)

from HP-detrended ε-Adjusted Leverage, 1980-2010
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ple, as opposed to what happens at the beginning of the sample period. This is indeed

confirmed in Figure 9, which reports several recessions (in percentage deviations from

steady-state) that are predicted by our model when fed with the innovations drawn from

the HP-detrended (ε-adjusted) leverage data over the 1980-2008 period.

The right panels in Figure 9 show that land price movements are dampened under

learning, except for the late 2000’s because that is a period when agents overestimate

the persistence of the impact of leverage shocks (see Figure 8). On the other hand,

the responses of output are quantitatively similar under rational expectations and un-

der learning, with only a minor difference for 2006-2008. Basically, the last recession

predicted by the model happens too early and is much too small compared to NBER

estimates of the Great Recession. We now show that a much more realistic recession

is predicted by our model if we allow agents to revise their estimate of the leverage

level, in accordance with our second experiment reported in Section 4. The reason which

motivates such a specification is that log-linearizing the model and feeding it with HP-

detrending innovations amounts to assuming that agents know the steady-state so that

they can compute the deviations from it. In view of Figure 1, this is arguably a strong
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Figure 9: Model-Generated Recessions (Constant-Gain Learning: Red Solid Line;

Rational Expectations: Blue Dotted Line)
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Figure 10: CG Estimate of Leverage Level over 2007Q4-2009Q4
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assumption that could possibly underestimate the impact of learning. In particular, it

is possible that when the Great Recession happened, agents revised downward their es-

timate of the leverage level, which worsened the negative impact of the leverage shock.

To account for this, we now turn to our second experiment. We use the model in

(log)levels presented in Section 4. We make the conservative assumption that agents

know the true autocorrelation ρθ (which is estimated though OLS over the whole sample

period) but not the leverage level Θ which they estimate under CG. All parameter val-

ues are set according to Table 1, except for Θ = 0.8 which we set to the pre-crisis OLS

estimate, ε = 0.25 and ν = 0.008 which we choose so as to ensure E-stability8.

Figure 10 reports the CG estimate of the leverage level during the Great Recession

period. It clearly shows how agents revised downward their estimate of Θ in the last

quarter of 2008, from about 1.04 to 0.88. Figure 11 shows that this led to a recession

under learning (red solid line). Although the trough happens one quarter too early (in

2009Q1 in the model as opposed to 2009Q2 according to NBER dating), the magni-

8In addition to avoid instability of learning dynamics, reducing the leverage elasticity to land price ε

and the gain parameter ν amounts to a more conservative calibration.
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Figure 11: Model-Generated Great Recession (Constant-Gain Learning: Red Solid

Line; Rational Expectations: Blue Dotted Line)

Output Response Over Time (Percentage Deviations From 2007Q4)
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tude is correct (about −5.1% from peak to trough). This is in sharp contrast with the

expansion that is predicted by the model under rational expectations (blue dotted line

in Figure 11), which is driven by the positive innovations arising from OLS estimation.

As a counter-factual, Figure 12 reports the output response that occurs under mildly

countercyclical leverage, with ε = −0.16 (implying that a 10% fall in land price increases

leverage by 1.6%). Comparing Figures 11 and 12 suggests that a simple macroprudential

policy may substantially attenuate leverage shocks under learning.

6 Conclusion

A large part of business-cycle theory relies on the assumption that agents know all

parameters governing the stochastic process underlying the disturbances that hit the



36

Figure 12: Counter-factual Model-Generated Expansion (Constant-Gain Learning: Red

Solid Line; Rational Expectations: Blue Dotted Line)

Output Response Over Time when ε = −0.16 (Percentage Deviations From 2007Q4)
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economy. This paper has shown how relaxing such an assumption in a simple model

predicts that the economy’s aggregates respond very differently to financial shocks when

agents are gradually learning their environment, compared to rational expectations. More

specifically, our theoretical experiments with a calibrated model suggest that some pa-

rameter configurations can lead to much larger amplification of the impact of shocks

to leverage. This is for instance the case when learning agents overestimate either the

autocorrelation parameter governing the persistence of leverage shocks or the long-run

level of leverage. We have provided evidence that both cases are not inconsistent with

the US data prior to the Great Recession, when borrowers probably believed that credit

collateralized by real estate assets was being extended by the financial sector. In addi-

tion, the more empirically oriented counterparts of our two theoretical experiments are

informative about which assumption better stands against the data. More precisely, we

have shown that the linearized model in percentage deviations cannot, when fed with
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the actual leverage innovations, explain the timing and magnitude of the Great Reces-

sion. Our preferred model with agents updating their estimates of the long-run level of

leverage as new data arrive is more successful in that respect. In particular, it predicts

the correct fall in output from peak to trough, as reported by the NBER, whereas the

rational expectations model predicts a continued, counter-factual expansion in 2008 and

2009.

We believe that the main results of this paper may also be relevant for studying other

settings. For example, they are suggestive about how one could try to measure to what

extent unemployment variations are driven by beliefs formed by firms about either the

persistence of demand shocks or the steady-state level of demand, or both. Monetary

policy perhaps provides still another example in which the beliefs formed by the private

sector about the persistence or about the long-run stance of monetary policy matter, as

they could change the effects of policy on the economy. These are but a few examples for

which extensions of the setting used in this paper could lead to fruitful research. In the

same vein, another potential avenue for future research would be to model how percep-

tions about the process driving uncertainty shocks affect how those shocks propagate in

the real economy. This requires solving higher-order approximation of nonlinear models

and we believe this calls for further inquiries.

A Appendix

A.1 Intertemporal Equilibria around Steady State

This section derives some simple micro-foundations for the assumption of elastic lever-

age captured in (8) and presents the linearized version of the dynamics equations that

follow
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Elastic leverage: the case when leverage is procyclical (that is, ε > 0) obtains in a set-

ting with ex-post moral hazard and costly monitoring similar to Aghion et al. [2, p.1391].

Suppose that the borrower has wealth QL and has access to investment opportunities,

which can be financed by credit in the amount B. If the borrower repays next period,

his income is I − (1 + R)B, where I is whatever income was generated by investing. If

the borrower defaults next period, his income is now I − pQL, assuming that he loses

his collateral with some probability p, which represents for example the frequency of

foreclosures. Strategic default is avoided provided that I − (1 + R)B ≥ I − pQL, that

is, if pQL ≥ (1 + R)B. The lender incurs a cost C(p)L when collecting collateral, with

C ′(p) > 0 and C ′′(p) > 0, and he chooses the optimal monitoring policy by solving:

max
p
pQL− C(p)L (19)

which gives Q = C ′(p). The higher the land price, the larger the incentives to increase ef-

fort to collect collateral. Assuming now that the cost function is C(p) = φp1+1/ε/(1+1/ε),

with ε > 0, gives that p = (Q/φ)ε. Setting the scaling parameter φ = Q∗Θ−1/ε, where Q∗

is steady-state land value and Θ is leverage, gives (8). Therefore, ex-post moral hazard

leads to procyclical leverage.

In contrast, countercyclical leverage obtains if government implements procyclical

taxes as follows. Suppose now that the lender gets (1 − τ)pQL − C(p)L when moni-

toring, where 1 ≥ τ ≥ 0 is the tax rate. Under the assumption that the cost function is

isoelastic, the optimal p is now p = ((1− τ)Q/φ)ε. If the government sets time-varying

taxes such that 1− τ = (Q/φ)−η/ε−1, for some η ≥ 0, then it follows that p = (Q/φ)−η

and that leverage is countercyclical. Note that this happens provided that the tax rate

goes up when the land price goes up.

Linearized dynamics: we now derive the linearized version, in percentage deviations

from steady-state values, of the set of equations (2)-(7) defining, together with the lever-

age law of motion Θt = Θ
1−ρθΘρθ

t−1Ξt, local intertemporal equilibria. In all equations
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below, xt denotes the deviation of Xt from its steady-state value in percentage terms.

For example, kt ≡ (Kt −K)/K, where K is the steady-state capital stock. Eliminating

Φt by using (7), one gets the following linearized equations corresponding to (2)-(7),

respectively:

K
Y kt −

B
Y bt = −C

Y ct−1 − (1+R)B
Y bt−1 +

(
α+ (1− δ)KY

)
kt−1 (20)

bt = (1 + ε)Et−1[qt] + θt−1 (21)

ct = −λt/σ (22)

qt + λt(1− µΘ) = Et[λt+1]
(
β(1−Θ) + γβ YQ

)
+ Et[qt+1](β + Θ(1 + ε)(µ− β))

+ αγβ YQEt[kt+1] + θtΘ(µ− β)

(23)

λt = Et[λt+1](β(1− δ) + αβ YK ) + αβ(α− 1) YKEt[kt+1] (24)

θt = ρθθt−1 + ξt (25)

Define Pt ≡ (bt kt θt)
′ and St = (ct qt λt)

′ the vectors of predetermined and jump

variables, respectively. Then equations (20)-(25) can be decomposed into two subsystems,

each pertaining to Pt and St. The first block is composed of (20), (21) and (25) and can

be written:

M0Pt = M1St−1 +M2Et−1[St] +M3Pt−1 + V ξt (26)

where:

M0 =


1 0 0

−B
Y

K
Y 0

0 0 1

, M1 =


0 0 0

−C
Y 0 0

0 0 0

, M2 =


0 1 + ε 0

0 0 0

0 0 0

,

M3 =


0 0 1

−(1 +R)BY α+ (1− δ)KY 0

0 0 ρθ

 and V = (0 0 1)′.

The second block (22)-(24) can be written:

M4St = M5Et[St+1] +M6Pt +M7Et[Pt+1] (27)
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where:

M4 =


0 1 1− µΘ

0 0 1

σ 0 1

, M5 =


0 β + Θ(1 + ε)(µ− β) β(1−Θ) + γβ YQ

0 0 β(1− δ) + αβ YK

0 0 0

,

M6 =


0 0 Θ(µ− β)

0 0 0

0 0 0

, M7 =


0 αγβ YQ 0

0 αβ(α− 1) YK 0

0 0 0

.

Finally, substituting the expression of Pt from (26) in (27) and piling up the resulting

two blocks of equations allows one to rewrite the system as:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + Dξt (28)

where Xt = vec(St Pt) and:

A =

M−1
4 M6M

−1
0 M1 M−1

4 M6M
−1
0 M3

M−1
0 M1 M−1

0 M3

, B =

M−1
4 M6M

−1
0 M2 O3

M−1
0 M2 O3

,

C =

M−1
4 M5 M−1

4 M7

O3 O3

, D =

M−1
4 M6M

−1
0 V

M−1
0 V


where O3 is a 3-by-3 zeroes matrix.

A.2 Closed-Economy Model with Constant Interest Rate

The purpose of this appendix is to show that, similar to the open-economy model

developed in Section 2, the debtor interest rate is constant over time in a closed-economy

version with domestic borrowers and lenders, when the preferences of the latter are

appropriately chosen.

Let us now assume that lenders are domestic agents (instead of foreign countries as in

Section 2), whose unique role is to provide loans to borrowers. Following Iacoviello [19],

lenders derive utility from consumption and land holdings, and they get interest income
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from last period’s loan payments. As discussed in Pintus and Wen [35], lenders may be

interpreted as financial intermediaries. The representative lender solves:

maxE0

∞∑
t=0

µt
{

(C lt)
1−σc − 1

1− σc
+ ψ

(Llt)
1−σl − 1

1− σl

}
(29)

with σc, σl, ψ all strictly greater than zero and µ ∈ (0, 1), subject to the budget con-

straint:

C lt +Qt(L
l
t+1 − Llt) +Bt+1 = (1 +Rt)Bt (30)

where C lt and Llt denotes the lender’s consumption and land holdings, respectively, Qt is

the land price, Bt+1 is the new loan. The interest rate Rt is now endogenous and it is

determined by the equality between the demand and supply of loans.

The first-order conditions obtained from (29)-(30) with respect to consumption, land,

and lending are, respectively:

(C lt)
−σc

= χt (31)

χtQt = µEt[χt+1Qt+1] + µψ(Llt+1)
−σl

(32)

χt = µEt[χt+1(1 +Rt+1)] (33)

where χt is the Lagrange multiplier of constraint (30) in period t.

Assuming that lenders’ utility is linear in consumption (that is, σc = 0), one gets from

(31) that in any rational expectations equilibrium χt = 1 for all t ≥ 0 so that, in view

of (33), the interest factor is constant and given by 1 + R = 1/µ. As in the small-open

economy model developed in Section 2, the interest rate is constant over time.

The borrower side of the model is still described by (1), (2) and (3), as in Section

2, with the addition that the total amount of land is now divided between lenders and

borrowers according to:

Lt + Llt = L̄.

where L̄ is the fixed supply of land. How exactly is land divided depends on both

the sequence of land price and the lender’s preferences, as reflected in the first-order
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condition (32). In addition, the representative borrower’s first-order conditions are given

by (4)-(7). As in Section 2, if µ ∈ (β, 1), then the borrower’s credit constraint (3) is

binding. Therefore, the main difference is that the closed-economy model allows some

reallocation of land from lenders to borrowers when a shock hits the economy. Under

our calibration (see Table 2), however, the effect of land reallocation is quantitatively

unimportant because the land share γ is reasonably small. We have run simulations

for the rational expectations versions of the open and closed economies and we have

confirmed that the impulse-response functions of the variables involved in Section 2 are

quantitatively similar under TFP shocks. In particular, the land price and debt behave

in the same way in both economies.

A.3 Time-Varying Persistence of Leverage Shocks in the Data

Figure A1 pictures both the CG and the OLS estimates for ρθ (red solid line and blue

dotted line respectively) obtained from the data sample in Figure 1, extended back to

1975, with ν = 0.04 (data not detrended).

A.4 Learning Procedure of VAR Model

A.4.1 Model in Levels

Define Pt ≡ (bt kt θt)
′ and St = (ct qt λt)

′ as the vectors of predetermined and jump

variables in logs, respectively (e.g. kt = log(Kt) where Kt is the capital stock level).

Then equations (20), (21) and (25) can now be rewritten as:

M0Pt = M1St−1 +M2Et−1[St] +M3Pt−1 +N0 + V ξt



43

Figure A1: OLS (Blue Dotted Line) and Constant-Gain (Red Solid Line) Estimates of

ρθ over the period 1975-2010

1980 1990 2000 2010
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0.99
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while (22)-(24) can be written as:

M4St = M5Et[St+1] +M6Pt +M7Et[Pt+1] +N1

with

N0 =


b− (1 + ε)q − θ

K
Y k + (R−1)B

Y b+ C
Y c− (α+ (1−δ)K

Y )k

(1− ρθ)Θ

,

N1 =


q(1− β −Θ(1 + ε)(µ− β)) + λ(1−Θµ− β(1−Θ)− βγ YQ)− αβγ YQk −Θ(µ− β)θ

λ(1− β(1− δ)− αβ YK )− α(α− 1)β YK k

c+ λ
σ

,

where variables in lowercase letters denote logged steady-state levels (e.g. k = log(K),

where K is the steady-state capital stock). Denoting Xt = vec(St Pt) the system can be
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written as before:

Xt = AXt−1 + BEt−1[Xt] + CEt[Xt+1] + N + Dξt (34)

where A, B, C, D are as in Appendix A.1 and:

N =

M−1
4 N1 +M−1

4 M6M
−1
0 N0

M−1
0 N0


The rational expectations solution has a VAR form:

Xt = MXt−1 + H + Gξt. (35)

Given this form of equilibrium, the law of motion of endogenous variables can be repre-

sented using Et−1Xt = MXt−1 + H and EtXt+1 = MXt + H as:

Xt = AXt−1 + B [MXt−1 + H] + C [MXt + H] + N + Dξt, (36)

or

Xt = [I −CM]−1 [A + BM]Xt−1 + [I −CM]−1 [BH + CH + N] +

+ [I −CM]−1 Dξt,

Matrices M and H are given by:

M = [I −CM]−1 [A + BM] (37)

H = [I −CM]−1 [BH + CH + N] . (38)

A.4.2 VAR Estimation

To estimate the VAR we represent the model as

Xt = ΩZt + εt, (39)



45

where Zt = [1 Xt] and Ω = [H M ] .

The estimator for Ω equals

Ω̂ = XZ ′(ZZ ′)−1, (40)

and its time T estimates, Ω̂T , can be computed from

Ω̂ =

(
1

T

T∑
t=1

XtZ
′
t

)(
1

T

T∑
t=1

ZtZ
′
t

)−1

. (41)

The recursive updating takes form of

Ω̂T+1 = Ω̂T −
1

T + 1

(
Ω̂TZT+1 −XT+1

)
Z ′T+1R

−1
T+1 (42)

and

RT+1 = RT +
1

T + 1

(
ZT+1Z

′
T+1 −RT

)
. (43)

Equations (43) and (42) show how the estimates of matrix Ω are updated as new data

become available. In the above expression, Ω̂TZT+1 − XT+1 corresponds to a forecast

error made using last period estimates.

A.4.3 Learning

Assume agents re-estimate the consistency with the REE model each period and use

their estimates to make forecasts. These forecasts affect the behavior of the economy

through equation (34).

Agents’ perceived low of motion is

Xt = MXt + H + εt = ΩZt + εt. (44)

The forecasts agents make use the estimates of this PLM over available data. Since Xt

depends on agents’ forecasts (so it is not available at time t regression) at time t agents
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have run the regression:

EtXt+1 = Mt−1Xt + Ht−1 = Ωt−1Zt (45)

Et−1Xt = Mt−2Xt−1 + Ht−2 = Ωt−2Zt−1 (46)

where now we allow agents to depart from running simply OLS regression (least-squares

learning) and use constant gain,

Rt = Rt−1 + γt
(
ZtZ

′
t −Rt−1

)
Ωt = Ωt−1 − γt (Ωt−1Zt −Xt)Z

′
tR
−1
t .

Substituting in agents’ expectations, we can write the actual law of motion as

Xt = AXt−1 + B [Mt−2Xt−1 + Ht−2] + C [Mt−1Xt + Ht−1] + N + Dξt (47)

or

Xt = [I −CMt−1]−1 [A + BMt−2] + [I −CMt−1]−1 [CHt−1 + BHt−2 + N] +

+ [I −CMt−1]−1 Dξt

(48)

There is a mapping {M,H} = T (M,H) from PLM to ALM,

TM (M,H) = [I −CM]−1 [A + BM] (49)

TH(M,H) = [I −CM]−1 [BH + CH + N] . (50)

Rational expectations equilibrium is a fixed-point of this mapping:

Mre =
[
I −CMre]−1 [

A + BMre] . (51)

Conditional on Mre we can solve for Hre:

Hre =
[
I −

[
I −CMre]−1

(B + C)
]−1 [

I −CMre]−1
N. (52)
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