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Abstract: Nous proposons une nouvelle technique de filtrage et de lissage applicable dans le cadre
de modèles espace-état non-linéaires. Les variables observables sont des fonctions quadratiques des
facteurs latents, ces derniers suivant un VAR gaussien. En empilant le vecteur des facteurs latents
avec la vectorisation de son produit croisé, nous formons un modèle espace-état étendu dont les
deux premiers moments conditionnels sont connus sous forme fermée. Nous donnons en outre
des formules analytiques pour les moments inconditionnels de ce facteur étendu. Notre filtre de
Kalman quadratique (Qkf) exploite ces propriétés pour dériver des algorithmes de filtrage et de
lissage simples et rapides. Un premier jeu de simulations montre que le Qkf domine les filtres de
Kalman étendu et unscented en termes de filtrage, avec un réduction de la racine de la moyenne des
erreurs de filtrage au carré allant jusqu’à 70%. Deuxièmement, nous montrons que, dans le cadre
du Qkf, les estimateurs du maximum de vraisemblance des paramètres du modèle présentent un
biais inférieur ou de plus petites erreurs moyennes que les méthodes concurrentes.

Codes JEL : C32, C46, C53, C57.

Mots-clés : Filtrage non-linéaire, lissage non-linéaire, modèle quadratique, filtre de Kalman,
pseudo-maximum de vraisemblance.

Abstract: We propose a new filtering and smoothing technique for non-linear state-space models.
Observed variables are quadratic functions of latent factors following a Gaussian VAR. Stacking
the vector of factors with its vectorized outer-product, we form an augmented state vector whose
first two conditional moments are known in closed-form. We also provide analytical formulae for
the unconditional moments of this augmented vector. Our new quadratic Kalman filter (Qkf)
exploits these properties to formulate fast and simple filtering and smoothing algorithms. A first
simulation study emphasizes that the Qkf outperforms the extended and unscented approaches in
the filtering exercise showing up to 70% RMSEs improvement of filtered values. Second, we provide
evidence that Qkf-based maximum-likelihood estimates of model parameters always possess lower
bias or lower RMSEs than the alternative estimators.

JEL Codes: C32, C46, C53, C57.

Key-words: Non-linear filtering, non-linear smoothing, quadratic model, Kalman filter,
pseudo-maximum likelihood.
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Non-technical summary

A large number of empirical studies face filtering problems, where some of the dynamic model

variables are latent and have to be filtered to make the inference feasible. The Kalman filter is

the most standard tool to perform these kinds of estimations. It is used in a very wide range of

situations, from physics to economics. However, the standard version of this filter is not suited to

model non-linear dependencies between observed and latent variables. Since many models involve

non-linearities, adaptations of the standard filter are often needed.

While several adaptations of the standard Kalman filter have been proposed in the literature –

notably extended or unscented Kalman filters–, these adaptations are not necessarily appropriate

to deal with any kind of nonlinearity. In particular, the present paper shows that the previously-

mentioned adaptations may show severe limitations when observed variables depend on latent

variables in a quadratic way (i.e. when the measurement equations, that relate observed and la-

tent variables, are quadratic). Here, we propose a methodology, that we call the Quadratic Kalman

Filter (Qkf), that is particularly suited to this quadratic case.

The tractability of our methodology is ensured by the fact that, eventually, it relies on the standard

Kalman algorithm. To obtain this, we augment the vector of latent factors with the cross products

of these factors. We analytically derive formulae of both the conditional and the unconditional

first-two moments of this augmented vector. The conditional moments are linear in the past values

of the augmented factors, yielding to affine transition equations. (The latter are the equations

defining the dynamics of the latent factors.) Similarly, the measurement equations are rewritten

as affine functions of the augmented vector of factors. We thus obtain an augmented state-space

model that is fully linear.

To compare our filter with the popular existing filters, we implement a Monte-Carlo experiment.

We compare the filters with respect to two different criteria: filtering, i.e. retrieving latent factors

precisely from a fixed set of parameters, and parameter estimation, i.e. the capacity to estimate

the state-space model parameters.
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First, these computations provide evidence of the superiority of the Qkf filtering over its

competitors in all linear-quadratic cases. Second, the Qkf-based maximum-likelihood estimates

of model parameters always possess lower bias or lower root mean squared errors (RMSEs) than

the alternative estimators.
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Introduction

1 Introduction

This paper proposes a new discrete-time Kalman filter for state-space models where the transi-

tion equations are linear and the measurement equations are quadratic. We call this method the

Quadratic Kalman Filter (Qkf). While this state-space model have become increasingly popular

in the applied econometrics literature, existing filters are either highly computationally intensive,

or not specifically fitted to the linear-quadratic case. We begin by building the augmented vector

of factors stacking together the latent vector and its vectorized outer-product. To the best of

our knowledge, this paper is the first to derive analytically and provide closed-form formulae of

both the conditional and the unconditional first-two moments of this augmented vector.2 Using

these moments, the transition equations of the augmented vector are expressed in an affine form.

Similarly, the measurement equations are rewritten as affine functions of the augmented vector of

factors. We thus obtain an augmented state-space model that is fully linear.

We perform the derivation of the Qkf filtering and smoothing algorithms by applying the linear

Kalman algorithms to the augmented state-space model. To do so, we approximate the conditional

distribution of the augmented vector of factors given its own past by a multivariate Gaussian dis-

tribution. Since no adaptation of the linear algorithm is needed, the Qkf combines simplicity of

implementation and fast computational speed. We apply the same method for the derivation of

the Quadratic Kalman Smoothing algorithm (Qks). Indeed, since the Qkf and Qks requires no

simulations, it represents a convenient alternative to particle filtering.

To compare our filter with the popular existing traditional filters (see Tanizaki (1996)), namely

the first- and second-order extended and the unscented Kalman filters, we implement a Monte-

Carlo experiment. In order to explore a broad range of cases, we build a benchmark state-space

model with different values for (i) the persistence of the latent process, (ii) the importance of noise

variance in the observable, and (iii) the importance of quadratic terms in the observables. RMSE

measures are computed in each case. We compare the filters with respect to two different criteria:

filtering, i.e. retrieving latent factors precisely from a fixed set of parameters, and parameter esti-
2Buraschi, Cieslak, and Trojani (2008) provide formulae of conditional first-two moments for the specific case of

centred Wishart processes.
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mation, i.e. the capacity to estimate the state-space model parameters.

First, these computations provide evidence of the superiority of the Qkf filtering over its com-

petitors in all cases. When the measurement equations are fully quadratic, the Qkf is the only

filter able to capture the non-linearities and to produce time-varying evaluations of the latent

factors. This results in up to 70% lower RMSEs for the Qkf compared to the other filters, all

cases considered. For measurement equations with both linear and quadratic terms, the Qkf still

results – to a smaller extent – in lower filtering RMSEs. These results are robust to the persistence

degree of the latent process and the size of the measurement noise. Also, we emphasize that the

first-order extended Kalman filter performs particularly poorly in some cases and should therefore

be discarded for filtering in the linear-quadratic model.

Second, the Qkf-based maximum-likelihood estimates of model parameters always possess lower

bias or lower RMSEs that the alternative estimators. We provide evidence that this superiority is

robust to the degree of persistence of the latent process, to the degree of linearity of the measure-

ment equations, and to the size of the measurement errors. We conclude that the Qkf results in

the best bias/variance trade-off for the pseudo-maximum likelihood estimation.

The remainder of the paper is organized as follows. Section 2 provides a brief review of the non-

linear filtering literature and its applications. Section 3 presents the state-space model and builds

the Qkf. Section 4 performs a comparison of the Qkf with popular competitors using Monte-Carlo

experiments. Section 5 concludes. Proofs are gathered in the Appendices.

2 Literature review

The existing traditional non-linear filters use linearization techniques to transform the state-space

model. First and second-order extended Kalman filters build respectively on first and second-order

Taylor expansions of transition and measurement equations. The first-order extended Kalman filter

is extensively covered in Anderson and Moore (1979). To reduce the errors linked to the first-order

approximations, Athans, Wishner, and Bertolini (1968) develop a second-order extended Kalman
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filter. This method is treated in continuous and continuous-discrete time in Gelb, Kasper, Nash,

Price, and Sutherland (1974) and Maybeck (1982). Bar-Shalom, Kirubarajan, and Li (2002) or

Hendeby (2008, Chapter 5.) propose a complete description of this second-order filter. In the

general non-linear case, both methods require numerical approximations of gradients and Hessian

matrices, potentially increasing the computational burden.3 The unscented Kalman filter belongs

more to the class of deterministic density estimators, and was originally implemented as an alter-

native to the previous techniques for applications in physics. It is a derivative-free method which

is shown to be computationally close to the second-order extended Kalman filter in terms of com-

plexity. Exploiting applications in radar-tracking and localization, the unscented filter is proved

to perform at least as well as the second-order Gaussian extended filter (see Julier, Uhlmann, and

Durrant-Whyte (2000) or Julier and Uhlmann (2004)).4 Whereas many other filters exist, both

the extended and unscented filters have been the most widely used in recent applied physics and

econometrics.5

We consider here a specification in which the transition equations are affine and the measurement

equations are quadratic. It first extends the static case used by studies dealing with quadratic

regressions where explanatory variables are measured with errors (see Kuha and Temple (2003),

Wolter and Fuller (1982) for an earth science application, and Barton and David (1960) for astron-

omy applications). Still in the static case, Kukush, Markovsky, and Huffel (2002) illustrate the use

of quadratic measurement-errors filtering for image processing purpose. The quadratic framework

is also particularly suited to numerous dynamic economic models. While first-order linearization is

standard and largely employed in the dynamic stochastic general equilibrium (DSGE) literature,

the algorithm we develop is fitted to exploit second-order approximations.6

As for finance, an important field of applications of our filter is the modelling of term structures
3Gustafsson and Hendeby (2012) build a derivative-free version of the second-order extended Kalman filter which

avoids issues due to numerical approximations, but shows a similar computational complexity.
4A complete description of the algorithm can be found in Merwe and Wan (2001), Julier and Uhlmann (2004),

or Hendeby (2008). Also, a general version of the algorithm is provided in the Appendix.
5Other filters comprise, among others, higher order extended Kalman filters, importance resampling, particle

and Monte-Carlo filters, Gaussian sum filters.
6See Pelgrin and Juillard (2004) for a review of existing algorithms to construct second-order approximations

of DSGE solutions. Our approach could for instance be exploited to estimate the standard asset-pricing model of
Burnside (1998) considered e.g. by Collard and Juillard (2001) (taking the rate of growth in dividends as a latent
factor).
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of interest rates.7 The standard and popular Gaussian affine term-structure model (GATSM)

provides yields which are affine combinations of dynamic linear auto-regressive factor processes. As

these models include latent factors, the linear Kalman filter8 has gained overwhelming popularity

compared to other estimation techniques (see e.g. Duan and Simonato (1999), Kim and Wright

(2005) or Joslin, Singleton, and Zhu (2011)). A natural extension of the GATSM is to assume that

yields are quadratic functions of factor processes. By authorizing additional degrees of freedom

while maintaining closed-form pricing formulae, this quadratic class of models provides a better

fit of the data than ATSM (see Ahn, Dittmar, and Gallant (2002)). The bulk of the papers using

QTSMs considers the dynamics of government-bond yield curves (e.g. Leippold and Wu (2007)

and Kim and Singleton (2012)). Exploiting the fact that they can generate positive-only variables,

QTSMs have also been shown to be relevant to model the dynamics of risk intensities and their

implied term structures: while default intensities are considered in the credit-risk literature (see e.g.

Doshi, Jacobs, Ericsson, and Turnbull (2013) and Dubecq, Monfort, Renne, and Roussellet (2013)),

mortality intensities have also been modelled in this framework (Gourieroux and Monfort (2008)).

In order to estimate QTSMs involving latent variables, a wide range of techniques are considered

in the existing literature: Brandt and Chapman (2003), Inci and Lu (2004), Li and Zhao (2006)

and Kim and Singleton (2012) use the extended Kalman filter, Lund (1997) considers the iterated

extended Kalman filter9, Leippold and Wu (2007), Doshi, Jacobs, Ericsson, and Turnbull (2013)

or Chen, Cheng, Fabozzi, and Liu (2008) employ the unscented Kalman filter and Andreasen

and Meldrum (2011) opt for the particle filter. Baadsgaard, Nielsen, and Madsen (2000) use

the truncated second-order extended filter to estimate a term structure model with CIR latent

processes. Ahn, Dittmar, and Gallant (2002) resort to the efficient method of moments (EMM).

However, Duffee and Stanton (2008) show that, compared to maximum likelihood approaches,

EMM has poor finite sample properties when data are persistent, a typical characteristic of bond

yields. Moreover, while EMM is used to estimate model parameters, it does not directly provide

estimates of the latent factors.10 Finally, Dubecq, Monfort, Renne, and Roussellet (2013) use the

Qkf filter that is developed hereafter.
7See Dai and Singleton (2003) for a survey of interest-rate term-structure modelling literature.
8see Kalman (1960) for the original linear filter derivation. Properties are developed in e.g. Harvey (1991) or

Durbin and Koopman (2012).
9See Jazwinski (1970) for a description of the filtering technique.

10Gallant and Tauchen (1998) however propose a reprojection method to recover latent variables after having
estimated the model parametrization by means of EMM.
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The quadratic state-space framework that we consider in the present paper is also well-suited to

work with Wishart processes. These processes have been used in various empirical-finance studies.

In most cases, they are employed in multivariate stochastic volatility models (see e.g. Romo (2012),

Jin and Maheu (2013), Philipov and Glickman (2006), Rinnergschwentner, Tappeiner, and Walde

(2011) or Branger and Muck (2012)).11. Wishart processes have also been exploited in several

QTSMs (Filipovic and Teichmann (2002), Gourieroux, Monfort, and Sufana (2010), Gourieroux

and Sufana (2011), and Buraschi, Cieslak, and Trojani (2008)).

3 The Quadratic Kalman Filter (Qkf) and Smoother (Qks)

3.1 Model and notations

We are interested in a state-space model with affine transition equations and quadratic measure-

ment equations. We consider the following model involving a latent (or state) variable Xt of size n

and an observable variable Yt of sizem. Xt might be only partially latent, that is, some components

of Xt might be observed.

Definition 3.1 The linear-quadratic state-space model is defined by:

Xt = µ+ ΦXt−1 + Ωεt (1a)

Yt = A+BXt +
m∑
k=1

ekX
′
tC

(k)Xt +Dηt. (1b)

where εt and ηt are independent Gaussian white noises with unit variance-covariance matrices,

ΩΩ′ = Σ and DD′ = V . ek is the column selection vector of size m whose components are 0 except

the kth one, which is equal to 1. µ and Φ are respectively a n-dimensional vector and a square

matrix of size n. A and B are respectively a vector of size m and a (n×m) matrix. All C(k)’s are

without loss of generality square symmetric matrices of size m×m.

A component-by-component version of the measurement equations (1b) is:

Yt,k = Ak +BkXt +X ′tC
(k)Xt +Dkηt, ∀k ∈ {1, . . . ,m}, (2)

11See Asai, McAleer, and Yu (2006) for a review of multivariate stochastic volatility models.
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where Yt,k, Ak, Bk, Dk are respectively the kth row of Yt, A, B, and D. Note that µ, Φ, Σ, A,

B, C(k), and D might be functions of (Yt−1, Yt−2, . . .), that are the past values of the observable

variables.

Our objective is twofold: (i) filtering and smoothing of Xt, which consist in retrieving the values

of Xt conditionally on, respectively, past and present values of Yt, and all the observed values of

(Yt)t=1,...,T ; and (ii) estimation of the parameters appearing in µ, Φ, Ω, A, B, C(k), D. Note that

Ω and D are defined up to the right multiplication by an orthogonal matrix. These matrices can

be fixed by imposing Ω = Σ1/2 and D = V 1/2.12

Throughout the paper, we use the following notations. At date t, past observations of the observed

vector are denoted by Yt = {Yt, Yt−1, Yt−2, . . . , Y1}, and for any process Wt:

Wt|t ≡ E
[
Wt|Yt

]
,

Wt|t−1 ≡ E
[
Wt|Yt−1

]
,

Et−1(Wt) ≡ E
[
Wt|Wt−1

]
.

PWt|t ≡ V
[
Wt|Yt

]
,

PWt|t−1 ≡ V
[
Wt|Yt−1

]
,

Vt−1(Wt) ≡ V
[
Wt|Wt−1

]
.

We also introduce the notation Mt|t−1 ≡ V
[
Yt|Yt−1

]
and:

Zt =
(
X ′t, V ec(XtX

′
t)
′
)′
.

Zt is the vector stacking the components of Xt and its vectorized outer-product. This vector Zt,

called the augmented state vector (see Cheng and Scaillet (2007)), will play a key role in our

algorithms. We first study the conditional moments of this vector given past information.

3.2 Conditional moments of Zt

It can be shown (see Bertholon, Monfort, and Pegoraro (2008)) that when µ, Φ and Σ do not

depend on Yt−1, the process (Zt) is Compound Autoregressive or order 1 –or Car(1)–, that is to

say, the conditional log-Laplace transform, or cumulant generating function defined by:
12Ω and D can be rectangular when Σ or V are not of full-rank.
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logϕt(u) = log E
[
exp(u′Zt)|Zt−1

]

is affine in Zt−1. This implies, in particular, that the conditional expectation Et−1(Zt) and the

conditional variance-covariance matrix Vt−1(Zt) of Zt given Zt−1 are affine functions of Zt−1.

Moreover, Et−1(Zt) and Vt−1(Zt) have closed-form expressions given in the following proposition.

Proposition 3.1 Et−1(Zt) = µ̃+ Φ̃Zt−1 and Vt−1(Zt) = Σ̃t−1, where:

µ̃ =


µ

V ec(µµ′ + Σ)

 , Φ̃ =


Φ 0

µ⊗ Φ + Φ⊗ µ Φ⊗ Φ



Σ̃t−1 ≡ Σ̃(Zt−1) =


Σ ΣΓ′t−1

Γt−1Σ Γt−1ΣΓ′t−1 +
(
In2 + Λn

)
(Σ⊗ Σ)


Γt−1 = In ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ In

Λn being the n2 × n2 matrix, partitioned in (n × n) blocks, such that the (i, j) block is eje′i (see

Appendix A.2 for Λn properties).

Proof See Appendix A.3. �

Note that Σ̃t−1 is a n(n + 1) × n(n + 1) matrix whereas Σ̃(•) is a Rn(n+1) 7−→ Mn(n+1)×n(n+1)

function,Mn(n+1)×n(n+1) being the space of symmetric positive definite matrices of size n(n+ 1).

If µ, Φ, and Σ are functions of Yt−1, Proposition 3.1 still holds replacing Et−1(Zt) and Vt−1(Zt)

by E(Zt|Zt−1, Yt−1) and V(Zt|Zt−1, Yt−1), respectively.

Σ̃t−1(•) is clearly a quadratic function of Xt−1 and an affine function of Zt−1, denoted by Σ̃(Zt−1)

(Proposition 3.1). In the filtering algorithm, we have to compute E[Σ̃(Zt−1)|Yt−1]. This quantity

is easily computable as Σ̃(Zt−1|t−1) only once the affine form of the function Σ̃(Z) is explicitly

available. Proposition 3.2 details this affine form.
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Proposition 3.2 We denote Σ̃(i,j)
t−1 for i and j being {1, 2} the (i, j) block of Σ̃t−1. Each block of

Σ̃ is affine in Zt−1 and we have:

V ec
(

Σ̃(1,1)
t−1

)
= V ec(Σ)

V ec
(

Σ̃(1,2)
t−1

)
= [Σ⊗ (In2 + Λn)] [V ec(In)⊗ In]

{
µ+ Φ̃1Zt−1

}

V ec
(

Σ̃(2,1)
t−1

)
= [(In2 + Λn)⊗ Σ] (In ⊗ Λn) [V ec(In)⊗ In]

{
µ+ Φ̃1Zt−1

}

V ec
(

Σ̃(2,2)
t−1

)
= [(In2 + Λn)⊗ (In2 + Λn)] [(In ⊗ Λn ⊗ In)(V ec(Σ)⊗ In2)]

{
µ⊗ µ+ Φ̃2Zt−1

}

+ [In2 ⊗ (In2 + Λn)]V ec(Σ⊗ Σ)

(3)

Where Φ̃1 and Φ̃2 are respectively the upper and lower blocks of Φ̃ and Λn is defined as in Propo-

sition 3.1. This particularly implies:

V ec [Vt−1(Zt)] = V ec
[
Σ̃(Zt−1)

]
= ν + ΨZt−1,

where ν and Ψ are permutations of the multiplicative matrices in Equation 3, and are detailed in

Appendix A.4.

Proof See Appendix A.4. �

These results extend the computations of Buraschi, Cieslak, and Trojani (2008). While these

authors express the conditional first-two moments of a central Wishart autoregressive process (see

Appendix C. of Buraschi, Cieslak, and Trojani (2008)), we derive the first two-conditional moments

of our augmented vector Zt in a more general case (where µ 6= 0).

3.3 Unconditional moments of Zt and stationarity conditions

The analytic derivation of the first two unconditional moments of Zt can, in particular, be exploited

to initialize the filter. In the following subsection, we consider the standard case where µ, Φ and

Σ are not depending on Yt−1. If the eigenvalues of Φ have a modulus strictly smaller than 1,

the process (Xt) is strictly and, a fortiori, weakly stationary. Since Zt is a function of Xt the
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same is true for the process (Zt). The unconditional or stationary distribution of Xt is the normal

distribution N (µu,Σu) where:

µu = (I − Φ)−1µ and Σu = ΦΣuΦ′ + Σ (4)

Equivalently, we can write V ec(Σu) = (I − Φ ⊗ Φ)−1 V ec(Σ). The stationary distribution of

Zt is the image of N (µu,Σu) by the function f defined by f(x) = (x′, V ec(xx′)′)′. In order to

initialize our filter, we need the first two moments of this stationary distribution, that is to say

the unconditional expectation E(Zt) and the unconditional variance-covariance matrix V(Zt) of Zt.

Proposition 3.1 gives the expressions of the conditional moments of Zt given Zt−1, namely Et−1(Zt)

and Vt−1(Zt). In general, the sole knowledge of these conditional moments does not allow to

compute the unconditional moments E(Zt) and V(Zt). However, it is important to note that,

here, the affine forms of Et−1(Zt) and Vt−1(Zt) make these computations feasible analytically.

More precisely, starting from any value Z0 of Zt at t = 0, the sequence [E(Zt)′, V ec(V(Zt))′]′, for

t = 1, 2, . . . satisfies a first-order linear difference equation defined in the following proposition.

Proposition 3.3 We have:


E(Zt)

V ec[V(Zt)]

 =


µ̃

ν

+ Ξ


E(Zt−1)

V ec[V(Zt−1)]

 where Ξ =


Φ̃ 0

Ψ Φ̃⊗ Φ̃

 . (5)

where µ̃ and Φ̃ are defined in Proposition 3.1, and ν, Ψ are defined according to Proposition 3.2.

Proof See Appendix A.5. �

This linear difference equation is convergent since all the eigenvalues of Ξ have a modulus strictly

smaller than 1. This is easily verified: Ξ is block triangular thus its eigenvalues are the eigenvalues

of Φ̃ and Φ̃ ⊗ Φ̃. Using the same argument, Φ̃ has the same eigenvalues as Φ and Φ ⊗ Φ (see

Proposition 3.1). Moreover the eigenvalues of the Kronecker product of two square matrices are

given by all the possible products of the first and second matrices eigenvalues. Therefore, since Φ

has eigenvalues inside the unit circle, so have Φ̃, Φ̃⊗ Φ̃, and Ξ.
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We deduce that the unconditional expectation µ̃u and variance-covariance Σ̃u (or rather V ec(Σ̃u))

of Zt are the unique solutions of:


µ̃u

V ec
(

Σ̃u
)

 =


µ̃

ν

+


Φ̃ 0

Ψ Φ̃⊗ Φ̃




µ̃u

V ec
(

Σ̃u
)

 . (6)

We get the following corollary:

Corollary 3.3.1 The unconditional expectation µ̃u and variance-covariance Σ̃u of Zt are given

by:

µ̃u =
(
In(n+1) − Φ̃

)−1

µ̃

V ec
(

Σ̃u
)

=
(
In2(n+1)2 − Φ̃⊗ Φ̃

)−1

(ν + Ψµ̃u)

=
(
In2(n+1)2 − Φ̃⊗ Φ̃

)−1

V ec
[
Σ̃ (µ̃u)

]
,

where µ̃ and Φ̃ are defined in Proposition 3.1.

These closed-form expressions of µ̃u and Σ̃u will make easy the initialization of our algorithms.

Note that the computation of V ec[Σ̃(µ̃u)] requires the explicit affine expression of Appendix A.4

given by V ec[Σ̃(µ̃u)] = ν + Ψµ̃u.

3.4 Conditionally Gaussian approximation of (Zt)

Proposition 3.3 shows that Zt satisfies:

Zt = µ̃+ Φ̃Zt−1 + Ω̃(Zt−1)ξt, (7)

where Ω̃(Zt−1) is such that Ω̃(Zt−1)Ω̃(Zt−1)′ = Σ̃(Zt−1) and (ξt) is a martingale difference process,

with a unit conditional variance-covariance matrix (i.e. Et−1(ξt) = 0 and Vt−1(ξt) = In(n+1)). In

the sequel, we approximate the process (ξt) by a Gaussian white noise. In the standard case where

12
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µ, Φ and Σ are time-invariant, the process Z∗t , t = 0, 1, . . ., defined by Z∗0 ∼ N (µ̃u, Σ̃u) and

Z∗t = µ̃+ Φ̃Z∗t−1 + Ω̃(Z∗t−1)ξ∗t ,

where (ξ∗t ) is a standard Gaussian white noise, has exactly the same second-order properties as

process (Zt). This statement is detailed in Proposition 3.4.

Proposition 3.4 If µ, Φ and Σ are time-invariant, the processes Zt and Z∗t have the same second-

order properties, i.e. the same means, variances, instantaneous covariances, serial correlations,

and serial cross-correlations.

Proof It is easy to check that, for both processes, the mean, variance-covariance matrix, and lag-h

covariance matrix are respectively µ̃u, Σ̃u and Φ̃hΣ̃u. �

3.5 The filtering algorithm

Using the augmented state vector Zt we can rewrite the state-space model of Definition 3.1 as an

augmented state-space model.

Definition 3.2 The augmented state-space model associated with the linear-quadratic state-space

model is defined by: 
Zt = µ̃+ Φ̃Zt−1 + Ω̃t−1ξt,

Yt = A+ B̃Zt +Dηt,

(8)

where ηt, A, and D are defined as in Definition 3.1, Ω̃t−1 is such that Ω̃t−1Ω̃′t−1 = Σ̃t−1, and µ̃,

Φ̃, are defined as in Proposition 3.1. Matrix B̃ ∈ Rm×n(n+1) is:

B̃ =



V ec
[
C(1)

]′
B

...

V ec
[
C(m)

]′
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Approximating the process (ξt) by a standard Gaussian white-noise and noting that the transition

and measurement equations in Formula (8) are respectively linear in Zt−1 and Zt, the resulting

state-space model is linear Gaussian. Whereas numerous existing filters rely on an approximation

of the conditional distribution of Xt given Yt−1 (see e.g. the Ekf and Ukf in the next section), the

Qkf builds on an approximation of the conditional distribution of Zt given Zt−1 or, equivalently,

of Zt given Xt−1. Proposition 3.4 shows that this approximation is exact up to the second order.

The conditional variance-covariance matrix of the transition noise, i.e. Ω̃t−1Ω̃′t−1 = Σ̃t−1, is a

linear function of Zt−1 (see Proposition 3.2), which will be replaced in the standard linear Kalman

filter by Σ̃(Zt−1|t−1). At each iteration, we emphasize that this computation should always be

made using the formulae of Proposition 3.2 where the affine forms in Zt−1 are made completely

explicit (see the discussion below Proposition 3.1). Finally, we get the Quadratic Kalman Filter

algorithm displayed in Table 1.

Table 1: Quadratic Kalman Filter (Qkf) algorithm

Initialization: Z0|0 = µ̃u and PZ0|0 = Σ̃u.

State prediction:
Zt|t−1 µ̃+ Φ̃Zt−1|t−1

PZt|t−1 Φ̃PZt−1|t−1Φ̃′ + Σ̃(Zt−1|t−1)

Measurement prediction:
Yt|t−1 A+ B̃Zt|t−1

Mt|t−1 B̃PZt|t−1B̃
′ + V

Gain: Kt PZt|t−1B̃
′M−1

t|t−1

State updating:
Zt|t Zt|t−1 +Kt(Yt − Yt|t−1)

PZt|t PZt|t−1 −KtMt|t−1K
′
t

Note: eµu and eΣu are respectively the unconditional mean and variance of process Zt (that are given in Corollary
3.3.1). Note that the implied value of [(XX′)t|t −Xt|tX′t|t], that is a covariance matrix, should be a non-negative
matrix. When it is not the case, we replace its negative eigenvalues by 0 and recompute (XX′)t|t accordingly.
Such a correction is not needed in the state-prediction step: indeed, using the expression of matrices eµ and eΦ, we
get that [(XX′)t+1|t −Xt+1|tX

′
t+1|t] =Φ((XX′)t|t −Xt|tX′t|t)Φ + Σ, which is then positive.

Starting the algorithm at t = 1, we need the initial values Z0|0 and PZ0|0. As emphasized previously,

one can take the unconditional moments Z0|0 = µ̃u and P0|0 = Σ̃u. Note that using Equations

(6), we have µ̃u = µ̃ + Φ̃µu and Σ̃u = Φ̃Σ̃uΣ̃′ + Σ̃(µu) and, therefore, Z1|0 = Z0|0, PZ1|0 = PZ0|0.

In other words we can also start the algorithm by the prediction of Yt, for t = 1, using the initial

14
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values Z1|0 = µ̃u and PZ1|0 = Σ̃u. Note that, in the filtering algorithm, the n(n + 1)-dimensional

vector Zt could be replaced by the smaller vector [X ′t, V ech(XtXt)′]′ of size n(n + 3)/2. This

transformation barely changes the augmented state space model, premultiplying the lower block of

Zt by a selection matrix Hn such that V ech(XtX
′
t) = HnV ec(XtX

′
t). The formal definition of the

selection matrix is given in Appendix A.6. The computation of conditional moments using V ech

is thus straightforward.

3.6 The smoothing algorithm

Contrary to most existing non-linear filters, that are presented in the next section, our Qkf

approach has a straightforward smoothing extension. Indeed, since our basic state-space model

is linear, we just have to use the standard backward fixed-interval algorithm. Note however that

the variance-covariance matrices PZt+1|t computed with the filtering algorithm using V ec(•) are

not of full-rank since at least one component of Zt is redundant when n > 2. Consequently, the

smoothing algorithm must be expressed with the V ech(•) operator. Let us introduce the following

matrices:

H̃n =


In 0

0 Hn

 and G̃n =


In 0

0 Gn

 ,

that are respectively the n(n+3)
2 × n(n+ 1) and n(n+ 1)× n(n+3)

2 matrices using the selection and

duplication matrices Hn and Gn defined in Appendix A.6. We have:

V ec(XtX
′
t) = GnV ech(XtX

′
t) and V ech(XtX

′
t) = HnV ec(XtX

′
t)

H̃n is defined such that H̃nZt = [X ′t, V ech(XtX
′
t)
′]′. The sandwich multiplication H̃nP

Z
t+1|tH̃

′
n

drops the redundant rows and columns. We get the following smoothing algorithm:

Ft =
(
H̃nP

Z
t|tH̃

′
n

)(
H̃nΦ̃G̃n

)′ (
H̃nP

Z
t+1|tH̃

′
n

)−1

H̃nZt|T = H̃nZt|t + Ft

(
H̃nZt+1|T − H̃nZt+1|t

)
(
H̃nP

Z
t|T H̃

′
n

)
=

(
H̃nPt|tH̃

′
n

)
+ Ft

[(
H̃nP

Z
t+1|T H̃

′
n

)
−
(
H̃nP

Z
t+1|tH̃

′
n

)]
F ′t
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The initial values ZT |T and PZT |T are obtained from the filtering algorithm.

4 Performance comparisons using Monte Carlo experiments

We simulate a linear-quadratic state-space model and compare the performance of the Qkf fil-

ter against other popular non-linear filters. We distinguish two exercises, namely filtering and

parameter estimation.

4.1 Usual non-linear filters

Among the popular non-linear filters, two main classes of algorithms are widely used: the extended

Kalman filter (Ekf) and the unscented Kalman filter (Ukf). Both approximate the non-linear

measurement or transition equations using linearization techniques but their spirit differ radically.

This section presents these algorithms applied to the linear-quadratic state-space model of Def-

inition 3.1. They will further be used as competitors compared to the Qkf in the performance

assessment.

Two versions of the Ekf have been used, namely the first and second order – Gaussian – filters.

Their derivations are respectively based on first- and second-order Taylor expansions of the mea-

surement equations around Xt|t−1 at each iteration. For simplicity, we use the following notations:

h(Xt) ≡ A+BXt +
m∑
k=1

ekX
′
tC

(k)Xt

Gt|t−1 ≡ ∂h

∂X ′t
(Xt|t−1) = B + 2

m∑
k=1

ekX
′
t|t−1C

(k)

Table 2 details both Ekf algorithms in the quadratic measurement case.13 A general non-linear

version is provided in Appendix A.7 (see also Jazwinski (1970) and Anderson and Moore (1979)

for the Ekf1, and Athans, Wishner, and Bertolini (1968) or Maybeck (1982) for the Ekf2).

13Another version of the second order filter called the truncated second-order filter is presented in Maybeck
(1982). However, it makes the assumption that the third and higher-order conditional moments of Xt given Yt−1

are sufficiently small to be negligible and set to 0. As a consequence, the calculation of Mt|t−1 in this algorithm can
yield non positive-definite matrices showing far less computational stability than the Gaussian second-order extended
filter. We thus left it aside in our comparison exercise. Also, higher-order extended filters can be derived with
statistical linearization techniques, but are rarely used in practice (see Gelb, Kasper, Nash, Price, and Sutherland
(1974)).
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Table 2: Ekf algorithms in the quadratic case

Ekf1 Ekf2

Initialization: X0|0 = E(X0) and PX0|0 = V(X0)

State prediction:
Xt|t−1 µ+ ΦXt−1|t−1

PXt|t−1 ΦPXt−1|t−1Φ′ + Σ

Measurement prediction:
Yt|t−1 h(Xt|t−1) h(Xt|t−1) +

m∑
k=1

ekTr
(
PXt|t−1C

(k)
)

Mt|t−1 Gt|t−1P
X
t|t−1G

′
t|t−1 Gt|t−1P

X
t|t−1G

′
t|t−1 + V

+V +2
m∑

k,j=1

eke
′
jTr

(
C(k)PXt|t−1C

(j)PXt|t−1

)
Gain: Kt PXt|t−1G

′
t|t−1M

−1
t|t−1

State updating:
Xt|t Xt|t−1 +Kt(Yt − Yt|t−1)

PXt|t PXt|t−1 −KtMt|t−1K
′
t

Note: See above for the definition of Gt|t−1 and h(x).

In the Ekf1 algorithm, both Yt|t−1 and Mt|t−1 are grossly approximated, whereas the Ekf2 in-

corporates the so-called bias correction terms which are expected to reduce the error on these

moments evaluation (see fourth and fifth rows of Table 2). Even if the Taylor expansion of the

measurement equation is exact in the Ekf2, it implicitly approximates the conditional distribution

of (Yt, Xt) given Yt−1 by a Gaussian distribution, which also induces errors in the recursions.

In comparison, the Ukf belongs to the class of density-based filters and uses a set of vectors called

sigma points.14

Definition 4.1 Let X ∈ Rn a random vector and define m = E(X) and P = V(X). Let (
√
P )i

denote the ith column of the lower-triangular Cholesky decomposition of P . The sigma set associ-

ated with X is composed of 2n+ 1 sigma points (Xi(m,P ))i={0,...,2n} and 2 sets of 2n+ 1 weights

(Wi)i={0,...,2n} and (W(c)
i )i={0,...,2n} defined by:

14The name density-based filter belongs to the terminology of Tanizaki (1996).
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Xi =

8>>>>>>>>>>>><>>>>>>>>>>>>:

m for i = 0

m+
“p

(n+ λ)P
”
i

for i ∈ J1, nK

m−
“p

(n+ λ)P
”
i−n

for i ∈ Jn+ 1, 2nK

Wi =

8>>>>>><>>>>>>:
λ/(λ+ n) for i = 0

1/[2(λ+ n)] for i 6= 0

W(c)
i =

8>>>>>><>>>>>>:
Wi + 1− α2 + β for i = 0

Wi for i 6= 0,

where (α, κ, β) is a vector of tuning parameters and λ = α2(n + κ) − n. It is easy to see that for

any (α, κ, β) we have:

2n∑
i=0

WiXi = m and
2n∑
i=0

Wi (Xi −m) (Xi −m)′ =
2n∑
i=0

W(c)
i (Xi −m) (Xi −m)′ = P

The sigma set of Definition 4.1 is then used to approximate the moments of the non-linear trans-

formation h(X). The algorithm in the quadratic measurement equation case is given in Table 3.

A general non-linear version is also provided in Appendix A.7.15

Table 3: Ukf algorithm in the quadratic case

Initialization: X0|0 = E(X0) and PX0|0 = V(X0) and choose (α, κ, β).

State prediction:
Xt|t−1 µ+ ΦXt−1|t−1

PXt|t−1 ΦPXt−1|t−1Φ′ + Σ

Sigma points:
{
Xi,t|t−1(Xt|t−1, P

X
t|t−1)

}
i={1,...,2n}

according to Definition 4.1.

Measurement prediction:
Yt|t−1

2n∑
i=0

Wi h(Xi,t|t−1)

Mt|t−1

2n∑
i=0

W(c)
i

[
h(Xi,t|t−1)− Yt|t−1

] [
h(Xi,t|t−1)− Yt|t−1

]′ + V

Gain: Kt

2n∑
i=0

W(c)
i

[
Xi,t|t−1 −Xt|t−1

] [
h(Xi,t|t−1)− Yt|t−1

]′
M−1
t|t−1

State updating:
Xt|t Xt|t−1 +Kt(Yt − Yt|t−1)

PXt|t PXt|t−1 −KtMt|t−1K
′
t

Note: Weights Wi and W
(c)
i are given in Definition 4.1.

15For an extensive description of the unscented Kalman filter, see Julier, Uhlmann, and Durrant-Whyte (2000),
Julier (2002), or Julier and Uhlmann (2004), and applications in Kandepu, Foss, and Imsland (2008), or Christof-
fersen, Dorion, Jacobs, and Karoui (2013). For the square-root version, see Merwe and Wan (2001) or Holmes,
Klein, and Murray (2008) for a square-root filtering application.
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The tuning parameters (α, κ, β) are set by the user and depend on the applied filtering problem

specificities (dimension size n, number of periods T , and prior knowledge on distributions). Usual

values when the distribution of Xt given Yt−1 is assumed Gaussian are β = 2, κ = 3− n or 0, and

α = 1 for low dimensional problems.

4.2 A simple example

To emphasize the specificity of the Qkf compared to both Ekfs and Ukf, let us consider a very

simple state-space model where analytical computations are feasible. Assume that Xt = εt ∼

IIN (0, σ2
ε). The measured univariate Yt is given by Yt = X2

t and is perfectly measured without

noise or, equivalently, the noise is infinitely small. The natural method to retrieve Xt from Yt is

straightforward inverting the previous formula. The only uncertainty remaining is the sign of ±
√
Yt

which is impossible to infer. In that model, the distribution of Yt is a γ(1/2, 2σ2
ε) distribution,

with mean and variance respectively given by σ2
ε and 2σ4

ε .16

We compute the filtering formulae of the four aforementioned filters and compare them. The results

are presented in Table 4. Despite the simplicity of the model, the Ekf1 is unable to reproduce the

moments of Yt (second column of Table 4). Both the Qkf and the Ekf2 give the exact formulation

of Yt moments, whereas the computation of Mt|t−1 for the Ukf depends on the tuning parameters

(α, κ, β) (see 3rd and 4th rows). More importantly, looking at the last-two rows of Table 4, we see

that the Qkf is the only filter to update the state variables correctly in the squared components,

since the second component of Zt|t is exactly the observed Yt. However, all filters including the

Qkf produce Xt|t = 0 for all periods. Therefore the Qkf is the only considered filter to jointly

(i) correctly reproduce Yt first-two moments, and (ii) produce time-varying estimates of the latent

factors. We systematize this comparison to different state-space models using simulations in the

next section.

16Recall that the density of a γ(k, ρ) is given by f(x) = 1
Γ(k)ρk x

k−1 exp(−x/ρ).
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Table 4: Example: computation of filters’ formulae

Qkf Ekf 1 Ekf 2 Ukf

Xt|t−1 (or Zt|t−1 for the QKF)

 0

σ2
ε

 0 0 0

PXt|t−1 (or PZt|t−1 for the QKF)

 σ2
ε 0

0 2σ4
ε

 σ2
ε σ2

ε σ2
ε

Yt|t−1 σ2
ε 0 σ2

ε σ2
ε

Mt|t−1 2σ4
ε 0 2σ4

ε (α2κ+ β)σ4
ε

Xt|t (or Zt|t for the QKF)

 0

Yt

 0 0 0

PXt|t (or P
Z
t|t for the QKF)

 σ2
ε 0

0 0

 σ2
ε σ2

ε σ2
ε

Notes: The state-space model is defined by Xt ∼ IIN (0, σ2
ε) and Yt = X2

t . ’Qkf’ is the Quadratic Kalman filter,
’Ekf 1’ and ’Ekf 2’ are respectively the first- and second-order extended Kalman filters, ’Ukf’ is the unscented
Kalman filter.

4.3 Comparison of filtering performance

We compare the filtering performance of the Qkf against the Ekf 1 and Ekf 2, and the Ukf in

a linear-quadratic state-space model. We parameterize state-space model as follows:

Xt = ΦXt−1 + εt (9)

Yt =
√
θ2(1− θ1)

√
1− Φ2Xt +

√
(1− θ2)(1− θ1)

1− Φ2

√
2

X2
t +

√
θ1ηt

where both εt and ηt are zero-mean normalized Gaussian white-noises, and both Xt and Yt are

scalar variables (n = m = 1). Comparing with Equations (1a) and (1b), we have set µ = 0 and

A = 0 for simplicity. It is straightforward to see that the unconditional variance of Yt is equal

to 1. Therefore, the weights (θ1, θ2) ∈ [0, 1]2, should be interpreted in the following way: θ1 is

the proportion of Yt variance explained by the measurement noise, the rest (i.e. 1 − θ1) being

explained by the state variables in the measurement equation. θ2 is the proportion of the variance

of Yt explained by the linear term, within the part explained by the state variables.

The performance of the different filters are assessed with respect to values of Φ, θ1 and θ2. We

successively set Φ = {0.3, 0.6, 0.9, 0.95} controlling from low to very high persistence of Xt process,

θ1 = {0.2, 0.25, 0.3, . . . , 0.8} and θ2 = {0, 0.25, 0.5, 0.75} (for a total of 208 cases). For instance, a

combination of (θ1, θ2) = (0.2, 0.25) should be interpreted as 20% of Yt variance can be attributed

to the measurement noise and 80% to the latent factors, of which 25% is attributed to the linear
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term and 75% to the quadratic term.17 Degenerated cases where either θ1 = 0, or θ1 = 1 are

not considered (they correspond respectively to situations with no measurement noise or no ex-

planatory variables in the measurement equation). Also, the case where θ2 = 1 is left aside as the

measurement equation becomes linear, and all the considered filters boil down to the linear Kalman

filter.18 For each value of Φ, we simulate paths of the latent process Xt of T = 1, 000, 000 periods

with a starting value of X0 = 0. We then simulate the measurement noises ηt and compute implied

observable variables Yt for each combination of (θ1, θ2). The filtering exercise is performed for each

filter, initial values being known.19 For the Ukf, we set α = 1, and β = 2 as in Christoffersen,

Dorion, Jacobs, and Karoui (2013). For those values of (α, β) and scalar processes, it can be shown

that κ = 0 implies the exact same recursions as the Ekf2.20 We therefore set κ = 3− n = 2.

We denote by X̂t|t, X̂2
t|t and P̂t|t the filtered values resulting from any filtering algorithm. The

different filters are compared with respect to three measures of performance. First, we compute

the RMSEs of filtered values X̂t|t compared to Xt. Second, we calculate RMSEs of the quadratic

process X̂2
t|t. Whereas the Qkf evaluates this quantity directly in the algorithm, we recompute its

underlying value for the other filters with the formula X̂2
t|t = X̂t|t

2
+ P̂t|t. The RMSE measures

for any of our estimated values are normalized by the standard deviation of the simulated process:

RMSEW =
RMSEW

σW
=


T−1

T∑
t=1

(Wt − Ŵt|t)2

V(Wt)


1/2

where Wt = Xt or X2
t and Ŵt|t = X̂t|t or X̂2

t|t. This measure converges to 1 if the filtered values

are equal to the unconditional mean of the latent process for all periods. Consequently, if any filter

yields a normalized RMSE greater than 1, a better filtering result would be obtained by setting

Wt|t = E(Wt), for all t. Lastly, we compare the filters capacities to discriminate between the

explanatory process and the measurement noise by computing non-normalized RMSEs of implied

η̂t. The results are respectively presented on Figures 1, 2, and 3.

[
Insert Figures 1, 2, and 3 about here.

]

Result 1 When the measurement equation is fully quadratic (θ2 = 0), The Qkf is the only con-

sidered filter capable of both:

(i) Filtering out a substantial part of the measurement noise,

(ii) Yielding accurate evaluations of X2
t|t.

17Note that in the general quadratic models that we consider here, we have Cov(Xt, V ec(XtX′t)) = 0.
18This is in fact not obvious for the Ukf, and the proof is provided in Appendix A.8.
19Thus we set, X0|0 = 0 and PX

0|0 = 0 for the Ekfs and Ukf, and Z0|0 = 0R2 and PZ
0|0 = 0R2×2 for the Qkf.

20See Appendix A.9 for a proof.
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We first analyse the case where the measurement equation is only quadratic (θ2 = 0, left column

of all figures). As already noted for a specific case in the previous section, all filters are "blind" on

the evaluation of Xt|t producing a flat X̂t|t = 0, and normalized RMSEs are equal to 1 whatever

the values of Φ and θ1 (see Figure 1, left column). However, looking at Figure 2, we see that for

any relative size of the measurement errors and any persistence, the Qkf yields more accurate

evaluations of X2
t|t than the other filters, showing 5% to 60% smaller RMSEs depending on the

case. Two patterns can be observed here. First, the smaller the measurement errors, the stronger

the outperformance of the Qkf filter compared to the others. Second, the outperformance of the

Qkf increases with the persistence of the latent process.21 This better performance is confirmed

by looking at the evaluation of the measurement noise, where the Qkf also provides the smallest

RMSEs for all values of (Φ, θ1) (see Figure 3, first column). The reduction in the measurement

noise RMSEs for the Qkf compared to the others can reach 70%. This result emphasizes the

substantial improvement of the fitting properties of the Qkf compared to those of the other filters.

Result 2 For measurement equations where the linearity degree goes from 25% to 50%, the Qkf

beats the other filters, especially for the evaluation of X2
t|t. Eventually, for levels of about 75% of

linearity in the measurement equation, the RMSEs of all filters converge to the same values.

We turn now to the cases where the measurement equation has from 25% to 50% of linearity degree

(θ2 = {0.25, 0.5}, second and third columns of all figures). We first leave aside the Ekf 1 (see

result 3). For X̂t|t, normalized RMSEs are more or less the same for the Ekf 2 and the Ukf in

all cases. In comparison, the Qkf is either equivalent, either showing smaller RMSEs for high-

persistent cases (Φ = 0.9 or Φ = 0.95, third and fourth rows of Figure 1). This better performance

is confirmed when looking at Figure 2. In all cases, the Qkf possesses lowest RMSEs for X̂2
t|t. For

example, for Φ = 0.9, θ1 = 0.2 and θ2 = 0.25, the Qkf shows RMSEs slightly below 60% of X2
t

standard deviation whereas the others are all above 70% (see Figure 2, third row of panel (b)).

Unsurprisingly, this evidence places the Qkf ahead of its competitors for the de-noising exercise:

for panels (b) and (c) of Figure 3, RMSEs of η̂t are always below the others for the Qkf. Looking

at panel (d) where the measurement equation is 75% linear (fourth column of all figures), we see

that all RMSEs eventually converge to each other for all filters. This is consistent with the fact

that all filters reduce to the standard Kalman filter when the measurement equation is fully linear.

Result 3 The Ekf 1 should be discarded for filtering, especially when the variance of the mea-

surement errors is low (cases where θ1 is low).

Looking at Figures 1 and 2, we notice a very unpleasant behaviour of the Ekf 1. For low measure-

ment errors, RMSEs of both X̂t|t and X̂2
t|t can reach values greater than 1, especially in panels (b)

and (c) where the measurement equation shows medium linearity degree (see second and fourth
21We see this as a pleasant feature for term-structure modelling applications where yields are typically highly

persistent and measured with low errors.
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columns of Figures 1 and 2). This catastrophic performance can be particularly observed for

low persistence, low linearity degree, and low measurement errors: when Φ = 0.3, θ1 = 0.2 and

θ2 = 0.25, X̂t|t and X̂2
t|t show respectively 120% and 200% normalized RMSE values. That is to

say filtered values yielded by the Ekf 1 prove to be very poor in some cases.

This Monte-Carlo experiment provides evidence that in terms of filtering, the Qkf largely domi-

nates both Ekfs and the Ukf for evaluating Xt and X2
t , as well as for de-noising the observable

yt. This is particularly the case when the degree of linearity in the measurement equation is low.

Increasing the degree of linearity produces closer RMSEs for the Qkf, the Ekf2, and the Ukf ;

the Ekf1 shows a very unstable behaviour. In the next section, we explore the characteristics of

the different techniques in terms of parameter estimation.

4.4 Pseudo maximum likelihood parameter estimation

To compare the filters with respect to parameter estimation, we simulate the same benchmark

model given in Equation (9). We estimate the vector of parameter β = (A,B,C,Φ, ση) for some

specific values of (Φ, θ1, θ2). To explore the finite sample properties of the different estimators,

we set T = 200 and simulate 1000 dynamics for a given set of (Φ, θ1, θ2). This provides us with

the empirical marginal distributions of the estimators. As usual in non-linear filter estimation, the

technique is only pseudo-maximum likelihood as the distribution of Yt given Yt−1 is approximated

as a Gaussian.22

To avoid local maxima, a two-step estimation is performed. First, a stochastic maximization algo-

rithm is launched to select a potential zone for the global maximum. Second, a simplex algorithm

is used to refine the estimates in the selected zone.23 This procedure makes the results reliable

at the cost of extended computational burden. This particular reason leads us to select three

paradigmatic cases for the simulated processes. The first considered case is fully quadratic with

high persistence and low measurement error variance (Φ = 0.9, θ1 = 0.05, and θ2 = 0). In the

second case, we decrease the persistence of the latent process and increase the size of measurement

errors setting Φ = 0.6, θ1 = 0.2, and keeping θ2 = 0. In the last case we introduce a linear com-

ponent in the measurement equation, with the parametrization: Φ = 0.6, θ1 = 0.2, and θ2 = 0.25.

More linear cases (θ2 > 0.25) were not considered as we emphasized in Section 4.3 that the four

filters yield closer results in those cases. For identification purpose, we also impose B̂ > 0. Results

in terms of bias, standard errors, and RMSEs are presented in Table (8). Comparisons of filters

on average across panels are provided in Table 9.

22It should be noted here that none of the filters produce exact first-two conditional moments of Yt given Yt−1.
The asymptotic properties of the pseudo maximum likelihood are therefore not relevant.

23The stochastic algorithm used is the articificial bee colony of Karaboga and Basturk (2007). In order to limit
computational time, we consider 256 people in the population, and only 10 iterations. Then, the best member of
the population is selected as initial conditions for the Nelder-Mead algorithm.
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[
Insert Table (8) about here.

]

Result 4 The Qkf pseudo maximum likelihood estimates are either the less biased, either possess

the lowest RMSEs for all parameters. In addition, on average across panels, the Qkf is the less

biased filter and possesses lowest RMSEs. This superiority is robust to the degree of persistence

of the latent process, to the degree of linearity of the measurement equation, and to the size of the

measurement errors.

Over the three panels, the results of Tables 8 and 9 are in favour of our Qkf maximum likeli-

hood estimates. We first concentrate on panel (a) results. For the five estimated parameters, the

Qkf shows smaller bias than the other filters: for Â, B̂, and Φ̂, the bias of the Qkf estimates

corresponds to half the bias of the Ekf 2 and the Ukf. In addition, for four out of the five

parameters, the Qkf estimates yield smaller RMSEs even though it often entails higher standard

deviation than its competitors (see Table 8, panel (a)). The same general pattern can be observed

for panel (b), where persistence degree is smaller. Consistently with the intuition, the Qkf always

outperforms its competitors for estimating parameters B and C. This shows a better capacity

to discriminate the influence of linear and quadratic terms in the observable. While panel (c)

introduces some linearity in the measurement equation (B 6= 0), the Qkf still beats the other

filters for four (resp. three) out of five parameters in terms of bias (resp. RMSEs). In the end,

looking at Table 9, we observe the superiority of the Qkf across all cases: on 13 (resp. 11) out

of 15 parameters, the Qkf estimates possess the lowest bias (resp. RMSEs) compared to the others.

[
Insert Table (9) about here.

]

Result 5 On average across cases,

• The Qkf never yields the worst bias or RMSEs of all filters.

• The Ekf 1 estimates possess the largest RMSEs and standard deviations.

• The Ukf estimates possess the lowest standard deviations, but are the most biased.

• The Ekf 2 is rarely the best in terms of both bias, standard deviations and RMSEs, but is

also rarely the worst.

We turn now to comparing the average results of the different filters. Table 9 presents the number

of times each filter is best and worst in terms of bias, standard deviations and RMSEs. We have

already emphasized that the Qkf estimates surpass the others on average in terms of bias and

RMSEs. A striking feature presented in Table 9 is also that Qkf estimates are never the most

biased, neither possess the biggest RMSEs (see first column). Overall, these results underline a

better bias/variance trade-off for the Qkf compared to the other filters.
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The results of Tables 8 and 9 also confirm the concerns about the Ekf 1 performance: out of 15

estimates, 6 are the most biased, 10 possess the biggest standard deviations, and 9 possess the

highest RMSEs. This poor performance is particularly observable for the estimation of C in panel

(b) and (c) of Table 8: the standard deviations of the estimates are respectively 18 and 10, and

their RMSEs are more than 10 times bigger than those of the other filters. This can be explained

by the fact that the curvature of the Ekf 1 log-likelihood along the C-axis is very close to zero.

Hence the estimate Ĉ can move a lot along the line with very little change in the log-likelihood.

This corroborates the incapacity of the Ekf 1 to deal with high non-linearities in the measurement

equation, as already noted in the filtering performance comparison (see previous section).

Interestingly, the Ukf also shows some concerning features for parameter estimation. It is the most

biased for 8 parameters out of 15, which is the worst bias performance among all filters. However,

it is also the filter that produces on average the smallest standard deviations for 9 parameters (see

last column of Table 9). Looking at Table 8), we observe that those cases where the standard

deviation is low tend to correspond to cases where the bias is highest. This bias/variance trade-off

hands up being very poor regarding the RMSEs: the Ukf is the best only once, and four times

the worst out of the 15 parameters. Consequently, we argue that the use of the Ukf should be

made with caution in the linear-quadratic state-space model since it tends to result in parameter

estimates that are "tightly" distributed around biased values.

Finally, the Ekf 2 seems to yield better average results than both the Ekf 1 (unsurprisingly)

and the Ukf: although it is never the less biased and possesses the lowest RMSE for only one

estimate, it is also rarely the most biased or rarely shows the biggest RMSE (see Table 9). Still,

those results are far less encouraging than those of the Qkf and the latter should be preferred in

linear-quadratic state-space model estimations.

On the whole, for most estimates, the Qkf is less biased and possesses the lowest RMSEs. Despite

a slightly poorer performance on the standard deviations, the Qkf maximum likelihood estimates

show a better bias/variance trade-off than its competitors. Also, the consideration of 3 different

panels provide evidence that these results are neither altered by the degree of curvature in the

measurement equation, nor by the persistence of the latent process or by the size of the measure-

ment errors. These finite-sample estimation properties emphasize the superiority of the Qkf for

practical applications.

5 Conclusion

In this paper, we develop the quadratic Kalman filter (Qkf), a fast and efficient technique for

filtering and smoothing state-space models where the transition equations are linear and the mea-

surement equations are quadratic. Building the augmented vector of factors stacking together the
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latent vector with its vectorized outerproduct, we provide analytical formulae of its first-two con-

ditional and unconditional moments. With this new expression of the latent factors, we show that

the state-space model can be expressed in a fully linear form with non-Gaussian residuals. Using

this new formulation of the linear-quadratic state-space model, we adapt the linear Kalman filter

to obtain the Quadratic Kalman Filter and Smoother algorithms (resp. Qkf and Qks). Since no

simulation is required in the computations, both Qkf and Qks algorithms are computationally

fast and stable. We compare performance of the Qkf against the extended and unscented versions

of the Kalman filter in terms of filtering and parameter estimation. Our results suggest that for

both filtering and pseudo-maximum likelihood estimation, the Qkf outperforms its competitors.

For filtering, the higher the curvature of the measurement equation, the more effective the Qkf

compared to the other filters. For parameter estimation, the Qkf shows either smaller bias or

smaller RMSEs than its competitors.
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A Appendix

A.1 Useful algebra

We detail hereby some properties of both the Kronecker product and the V ec(•) operator. Their

proofs are available in Magnus and Neudecker (1988). These properties will be used extensively in

the proofs presented in Appendices A.2, A.3 and A.4.

Proposition A.1 Let m1 and m2 be two size-n vectors, M1 and M2 be two square matrices of

size n. Let also P , Q, R, and S be four matrices with respective size (p× q), (q × r), (r × s), and

(s× t). We have:

(i) V ec(m1m
′
2) = m2 ⊗m1.

(ii) V ec(M1 ⊗M2) = (In ⊗ Λn ⊗ In) [V ec(M1)⊗ V ec(M2)] where Λn is defined in Lemma A.1.

in particular: V ec(M1 ⊗m1) = V ec(M1)⊗m1 and V ec(M1 ⊗m′1) = (In ⊗ Λn) [V ec(M1)⊗m1]

(iii) V ec(PQR) = (R′ ⊗ P )V ec(Q)

(iv) V ec(PQ) = (Ir ⊗ P )V ec(Q) = (Q′ ⊗ Ip)V ec(P )

(v) (PQ)⊗ (RS) = (P ⊗R)(Q⊗ S).

A.2 Properties of the commutation matrix

Lemma A.1 Let Λn be the (n2 × n2) commutation matrix partitioned in (n × n) blocks, whose

(i, j) block is eje′i. Let M1 and M2 be two square matrices of size n, and m be a vector of size

(n× 1). We have:

(i) Λn =
n∑

i,j=1

(eie′j)⊗ (eje′i)

(ii) Λn is orthogonal and symmetric: Λ−1
n = Λ′n = Λn

(iii) ΛnV ec(M1) = V ec(M ′1)

(iv) Λn(M1 ⊗M2)Λn = M2 ⊗M1

(v) Λn(M1 ⊗m) = m⊗M1.

Proof (i) Straightforward by definition.

(ii) Λn is symmetric:

Λ′n =
n∑

i,j=1

(eje′i)⊗ (eie′j) = Λn.

Λn is orthogonal:

ΛnΛ′n =
n∑

i,j=1

[(eie′j)⊗ (eje′i)][(eje
′
i)⊗ (eie′j)] =

n∑
i,j=1

(eie′i)⊗ (eje′j) = In2 .
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(iii)

ΛnV ec(M1) =
n∑

i,j=1

[
(eie′j)⊗ (eje′i)

]
V ec(M1)

=
n∑

i,j=1

V ec
[
(eje′i)M1(eie′j)

′]
=

n∑
i,j=1

V ec
[
ejM

(i,j)
1 e′i

]
= V ec(M ′1).

(iv) By definition,

M1 ⊗M2 =
n∑

i,j=1

(M (,i)
1 ⊗M (,j)

2 )(e′i ⊗ e′j),

where M (,i)
1 and M

(,j)
2 are respectively the ith and jth columns of matrices M1 and M2.

Therefore we have:

Λn(M1 ⊗M2)Λn =
n∑

i,j=1

Λn(M (,i)
1 ⊗M (,j)

2 )(ei ⊗ ej)′Λn

=
n∑

i,j=1

[
Λn(M (,i)

1 ⊗M (,j)
2 )

]
[Λn(ei ⊗ ej)]′

=
n∑

i,j=1

[
ΛnV ec(M

(,j)
2 M

(,i)′

1 )
]

[ΛnV ec(eje′i)]
′

=
n∑

i,j=1

(M (,j)
2 ⊗M (,i)

1 )(ej ⊗ ei)′

= M2 ⊗M1.

(v) With the same notations,

Λn(M1 ⊗m) = Λn
n∑
i=1

(M (,i)
1 e′i)⊗m

= Λn
n∑
i=1

(M (,i)
1 ⊗m)e′i

= Λn
n∑
i=1

V ec(mM (,i)′

1 )e′i

=
n∑
i=1

V ec(M (,i)
1 m′)e′i

=
n∑
i=1

(m⊗M (,i)
1 )e′i

= m⊗M1.

�
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A.3 Zt conditional moments calculation

Lemma A.2 If ε ∼ N (0, In), we have

V [V ec(εε′)] = In2 + Λn,

where Λn is given in Lemma A.1.

Proof

V ec(εε′) =
[
(εε1)′, (εε2)′, . . . , (εεn)′

]′
.

V [V ec(εε′)] is a (n2 × n2) matrix, partitioned in (n × n) blocks, whose (i, j) block is Vi,j =

cov(εεi, εjε). The (k, `) entry of Vi,j is cov(εkεi, εjε`). Two cases can be distinguished:

• Case 1: if i 6= j, then the only non-zero terms among the cov(εkεi, εjε`) are obtained

for k = j and i = `. By the properties of standardized Gaussian distribution, we have

cov(εiεj , εiεj) = V(εiεj) = 1. Finally, Vi,j = eje
′
i.

• Case 2: if i = j, then the non-zero terms among the cov(εkεi, εjε`) are obtained for k = ` = i

and its value is 2, or for k = ` 6= i, and its value is 1. Finally, Vi,i = In + eie
′
i.

Putting case 1 and 2 together, we get V [V ec(εε′)] = In2 + Λn. �

Proposition 3.1 Et−1(Zt) = µ̃+ Φ̃Zt−1 and Vt−1(Zt) = Σ̃t−1, where:

µ̃ =

 µ

V ec(µµ′ + Σ)

 , Φ̃ =

 Φ 0

µ⊗ Φ + Φ⊗ µ Φ⊗ Φ



Σ̃t−1 ≡ Σ̃(Zt−1) =


Σ ΣΓ′t−1

Γt−1Σ Γt−1ΣΓ′t−1 +
[
In2 + Λn

]
(Σ⊗ Σ)


Γt−1 = In ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ In,

Λn being the n2 × n2 matrix, defined in Lemma A.1.

Proof

Et−1(Xt) = µ+ ΦXt−1

Et−1[XtX
′
t] = Et−1 (µ+ ΦXt−1 + Ωεt) (µ+ ΦXt−1 + Ωεt)

′

= µµ′ + µX ′t−1Φ′ + ΦXt−1µ
′ + ΦXt−1X

′
t−1Φ′ + Σ

Using the V ec(•) operator properties of Proposition A.1, (iii), we obtain:

Et−1 [V ec(XtX
′
t)] = V ec(µµ′ + Σ) + (µ⊗ Φ)Xt−1 + (Φ⊗ µ)Xt−1 + (Φ⊗ Φ)V ec(Xt−1X

′
t−1)
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Finally,

Et−1(Zt) =

 µ

V ec(µµ′ + Σ)

+

 Φ 0

µ⊗ Φ + Φ⊗ µ Φ⊗ Φ

Zt−1

For the conditional variance-covariance matrix, we have Vt−1(Xt) = Σ and

Vt−1 [V ec(XtX
′
t)] = Vt−1

[
V ec(

deterministic given Zt−1︷ ︸︸ ︷
µµ′ + µX ′t−1Φ′ + ΦXt−1µ

′ + ΦXt−1X
′
t−1Φ′

+(µ+ ΦXt−1)ε′tΩ
′ + Ωεt(µ′ +X ′t−1Φ′) + Ωεtε′tΩ

′)
]

Using properties Proposition A.1, (iii− iv),

Vt−1 [V ec(XtX
′
t)] = Vt−1

[
(In ⊗ µ+ µ⊗ In + In ⊗ ΦXt−1 + ΦXt−1 ⊗ In)Ωεt + V ec(Ωεtε′tΩ)

]
≡ Vt−1 [Γt−1Ωεt + V ec(Ωεtε′tΩ)]

= Γt−1ΣΓ′t−1 + Vt−1 [(Ω⊗ Ω)V ec(εtε′t)] as Covt−1[εt, V ec(εtε′t)] = 0

= Γt−1ΣΓ′t−1 + (Ω⊗ Ω)(In2 + Λn)(Ω′ ⊗ Ω′) (using Lemma A.2.)

Proposition A.1, (v) implies that (Ω⊗ Ω)(Ω⊗ Ω)′ = Σ⊗ Σ. Therefore, we have:

(Ω⊗ Ω)(Ω⊗ Ω)′ = (Ω⊗ Ω)Λn(Ω⊗ Ω)′Λn (using Lemma A.1, (iv))

⇐⇒ (Ω⊗ Ω)Λn(Ω⊗ Ω)′ = Λn(Σ⊗ Σ) since Λn = Λ−1
n

⇐⇒ (Ω⊗ Ω)(In2 + Λn)(Ω⊗ Ω)′ = (In2 + Λn)(Σ⊗ Σ).

Hence:

Vt−1 [V ec(XtX
′
t)] = Γt−1ΣΓ′t−1 + (In2 + Λn)(Σ⊗ Σ).

Using again the fact that εt and V ec(Ωεtε′tΩ′) are non-correlated, we have:

covt−1 [V ec(XtX
′
t), Xt] = covt−1 [Γt−1Ωεt,Ωεt]

= Γt−1Σ

Finally, the conditional variance-covariance matrix of Zt given Xt−1 is

Σ̃t−1 =

 Σ ΣΓ′t−1

Γt−1Σ Γt−1ΣΓ′t−1 + (In2 + Λn)(Σ⊗ Σ)

 . (10)

�

30



Appendix

A.4 Proof of Proposition 3.2

We want to explicitly disclose the affine form of Σ̃(Zt−1). In order to achieve this, we consider the

four blocks of the matrix in Equation (10) and express the vectorized form of each block. First,

let us show that V ec(Γt−1Σ) is affine in Zt−1. We have:

Γt−1 = In ⊗ (µ+ ΦXt−1) + (µ+ ΦXt−1)⊗ In

= In ⊗ (µ+ ΦXt−1) + Λn [In ⊗ (µ+ ΦXt−1)] (using Lemma A.1, (v))

= (In2 + Λn) [In ⊗ (µ+ ΦXt−1)] .

Therefore we have:

V ec(Γt−1Σ) = V ec {(In2 + Λn) [In ⊗ (µ+ ΦXt−1)] Σ}

= [Σ⊗ (In2 + Λn)]V ec {In ⊗ (µ+ ΦXt−1)} (Prop. A.1, (iii))

= [Σ⊗ (In2 + Λn)] [V ec(In)⊗ (µ+ ΦXt−1)] (Prop. A.1, (ii))

= [Σ⊗ (In2 + Λn)]V ec [(µ+ ΦXt−1)V ec(In)′] (Prop. A.1, (i))

= [Σ⊗ (In2 + Λn)] [V ec(In)⊗ In] (µ+ ΦXt−1) (Prop. A.1, (iv))

V ec(ΣΓ′t−1) = V ec
{

Σ [(In2 + Λn) (In ⊗ (µ+ ΦXt−1))]′
}

= V ec {Σ [In ⊗ (µ+ ΦXt−1)′] (In2 + Λn)}

= [(In2 + Λn)⊗ Σ]V ec [In ⊗ (µ+ ΦXt−1)′] (Prop. A.1, (iii))

= [(In2 + Λn)⊗ Σ] (In ⊗ Λn) [V ec(In)⊗ (µ+ ΦXt−1)] (Prop. A.1, (ii))

= [(In2 + Λn)⊗ Σ] (In ⊗ Λn) [V ec(In)⊗ In] (µ+ ΦXt−1) (Prop. A.1, (i− iv)).
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We turn now to the lower-right block of the conditional variance-covariance matrix of Zt. We have:

V ec(Γt−1ΣΓ′t−1)

= V ec {(In2 + Λn) [In ⊗ (µ+ ΦXt−1)] Σ [In ⊗ (µ+ ΦXt−1)′] (In2 + Λn)}

= [(In2 + Λn)⊗ (In2 + Λn)]×

V ec {[In ⊗ (µ+ ΦXt−1)] Σ [In ⊗ (µ+ ΦXt−1)′]} (Prop. A.1, (iii))

= [(In2 + Λn)⊗ (In2 + Λn)]×

V ec {[Σ⊗ (µ+ ΦXt−1)] [In ⊗ (µ+ ΦXt−1)′]} (Prop. A.1, (v))

= [(In2 + Λn)⊗ (In2 + Λn)]×

V ec {Σ⊗ [(µ+ ΦXt−1)(µ+ ΦXt−1)′]} (Prop. A.1, (v))

= [(In2 + Λn)⊗ (In2 + Λn)]×

[In ⊗ Λn ⊗ In] [V ec(Σ)⊗ V ec {(µ+ ΦXt−1)(µ+ ΦXt−1)′}] (Prop. A.1, (ii))

= [(In2 + Λn)⊗ (In2 + Λn)]×

[In ⊗ Λn ⊗ In]V ec [V ec {(µ+ ΦXt−1)(µ+ ΦXt−1)′} × V ec(Σ)′] (Prop. A.1, (i))

= [(In2 + Λn)⊗ (In2 + Λn)]×

[In ⊗ Λn ⊗ In] [V ec(Σ)⊗ In2 ]V ec {(µ+ ΦXt−1)(µ+ ΦXt−1)′} (Prop. A.1, (iv))

Finally we obtain the affine formulae for the four blocks of the conditional variance-covariance

matrix Σ̃(i,j)
t−1 for i, j = {1, 2} :

V ec
(

Σ̃(1,1)
t−1

)
= V ec(Σ)

V ec
(

Σ̃(1,2)
t−1

)
= [Σ⊗ (In2 + Λn)] [V ec(In)⊗ In]

{
µ+ Φ̃1Zt−1

}
V ec

(
Σ̃(2,1)
t−1

)
= [(In2 + Λn)⊗ Σ] (In ⊗ Λn) [V ec(In)⊗ In]

{
µ+ Φ̃1Zt−1

}
V ec

(
Σ̃(2,2)
t−1

)
= [(In2 + Λn)⊗ (In2 + Λn)] [In ⊗ Λn ⊗ In] [V ec(Σ)⊗ In2 ]

{
µ⊗ µ+ Φ̃2Zt−1

}
+ [In2 ⊗ (In2 + Λn)]V ec(Σ⊗ Σ),

where Φ̃1 and Φ̃2 are respectively the upper and lower blocks of Φ̃, thus Φ̃1 =
(
Φ 0

)
and

Φ̃2 =
(
µ⊗ Φ + Φ⊗ µ Φ⊗ Φ

)
.

It should be noted that the computation of V ec
[
Σ̃(Zt−1)

]
– i.e. the analytical expressions of ν

and Ψ – involves, in theory, a permutation of the previous vectorized-blocks formulae ; however,
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we describe hereafter a simple and pragmatic method to reconstruct V ec
[
Σ̃(Zt−1)

]
in the Qkf

algorithm:

1. Use the formulae of Proposition 3.2 to construct the four vectorized blocks of Σ̃(Zt−1) as

explicit affine functions of Zt−1 (or Σ̃(Zt−1|t−1) as affine functions of Zt−1|t−1 in the Qkf

algorithm).

2. Reconstruct the square matrix Σ̃(Zt−1) from the previous vectorized blocks.

3. Vectorize the reconstructed matrix.

Using the aforementioned method does not require an analytical expression of ν and Ψ and is a

fast technique to calculate both the conditional and unconditional variances in the algorithm.

A.5 Unconditional moments of Zt

Proposition 3.3 We have: E(Zt)

V ec[V(Zt)]

 =

 µ̃

ν

+

 Φ̃ 0

Ψ Φ̃⊗ Φ̃


 E(Zt−1)

V ec[V(Zt−1)]


Proof The first set of equation is immediately obtained from the state-space representation. For

the second set, the variance decomposition writes:

V(Zt) = E
[
V(Zt|Zt−1)

]
+ V

[
E(Zt|Zt−1)

]
= E

[
V(Zt|Zt−1)

]
+ V(µ̃+ Φ̃Zt−1)

= E
[
V(Zt|Zt−1)

]
+ Φ̃V(Zt−1)Φ̃′

= E
[
Σ̃(Zt−1)

]
+ Φ̃V(Zt−1)Φ̃′

=⇒ V ec [V(Zt)] = E
{
V ec

[
Σ̃(Zt−1)

]}
+ (Φ̃⊗ Φ̃)V ec [V(Zt−1)]

Denoting V ec[Σ̃(Zt−1)] by ν + ΨZt−1 we get:

E
{
V ec

[
Σ̃(Zt−1)

]}
= ν + ΨE(Zt−1)

and the result follows. �

A.6 Selection and duplication matrices

Definition A.1 Let P be a (n× n) symmetric matrix. Let us define a partition of In = [un, Un]

where un is the first column of In and Un is the (n × (n − 1)) other sub-matrix. Let Qn be a

(n2 × n2) matrix defined as Qn = (Q1,n, Q2,n) such that:

Q1,n = In ⊗ un and Q2,n = In ⊗ Un
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A duplication matrix Gn and a selection matrix Hn are such that:

V ec(P ) = GnV ech(P )

V ech(P ) = HnV ec(P )

and can be expressed recursively by:

Gn+1 = Qn+1



1 0 0

0 In 0

0 In 0

0 0 Gn


and Hn+1 =


1 0 0 0

0 In 0 0

0 0 0 Hn


Q′n+1

with G1 = H1 = Q1 = 1. These definitions can be found in Magnus and Neudecker (1980) or

Harville (1997).

A.7 Ekf and Ukf general algorithms

Let us consider a state-space model with non-linear transition and measurement equations.

Xt = ft(Xt−1) + gt(Xt−1)εt (11)

Yt = ht(Zt) + dt(Zt)ηt (12)

where ft, Gt, ht, Dt are function of Yt−1 and possibly a vector of exogenous variables. Also,

(ε′t, η
′
t)
′ ∼ IIN (0, I). We use the following notations:

Ft =
∂ft
∂x′t−1

(X̂t−1|t−1), Ht =
∂ht
∂x′t

(X̂t|t−1)

F
(2)
i,t =

∂2fi,t
∂xt−1∂x′t−1

(X̂t−1|t−1), H
(2)
i,t =

∂2ht
∂xt∂x′t

(X̂t|t−1)

Gt = gt(X̂t−1|t−1), and Dt = dt(X̂t|t−1)

Let us also denote by e
(k)
i the vector of size k whose components are equal to 0 except the ith

one which is equal to 1. The Ekf1 and Ekf2 algorithms are respectively given in Tables 5 and 6.

Keeping the same notations, Table 7 presents the recursions of the Ukf.
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Table 5: Ekf1 algorithm in the general non-linear case

Initialize: X0|0 = E(X0) and PX0|0 = V(X0).

State prediction:
Xt|t−1 ft(Xt−1|t−1)

PXt|t−1 FtP
X
t−1|t−1F

′
t +GtG

′
t

Measurement prediction:
Yt|t−1 ht(Xt|t− 1)

Mt|t−1 HtP
X
t|t−1H

′
t +DtD

′
t

Gain: Kt PXt|t−1H
′
tM
−1
t|t−1

State updating:
Xt|t Xt|t−1 +Kt(Yt − Yt|t−1)

PXt|t PXt|t−1 −KtMt|t−1K
′
t

Note: See Jazwinski (1970), Anderson and Moore (1979), or Gelb, Kasper, Nash, Price, and Sutherland (1974) for
a proof of the recursions.

Table 6: Ekf2 algorithm in the general non-linear case

Initialize: X0|0 = E(X0) and PX0|0 = V(X0).

State prediction:
Xt|t−1 ft(Xt−1|t−1) +

1
2

n∑
i=1

e
(n)
i Tr

(
F

(2)
i,t P

X
t−1|t−1

)
PXt|t−1 FtP

X
t−1|t−1F

′
t +

1
2

n∑
i,j=1

e
(n)
i Tr

(
F

(2)
i,t P

X
t−1|t−1F

(2)
j,t P

X
t−1|t−1

)
e
(n)′

j +GtG
′
t

Measurement prediction:
Yt|t−1 ht(Xt|t− 1) +

1
2

m∑
k=1

e
(m)
k Tr

(
H

(2)
k,tP

X
t|t−1

)

Mt|t−1 HtP
X
t|t−1H

′
t +

1
2

n∑
k,l=1

e
(n)
k Tr

(
H

(2)
k,tP

X
t|t−1H

(2)
l,t P

X
t|t−1

)
e
(n)′

l +DtD
′
t

Gain: Kt PXt|t−1H
′
tM
−1
t|t−1

State updating:
Xt|t Xt|t−1 +Kt(Yt − Yt|t−1)

PXt|t PXt|t−1 −KtMt|t−1K
′
t

Note: See Athans, Wishner, and Bertolini (1968) or Maybeck (1982) for a proof of the recursions.
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Table 7: Ukf algorithm in the general non-linear case

Initialize: X0|0 = E(X0) and PX0|0 = V(X0) and choose (α, κ, β).

Sigma points:
{
Xi,t−1|t−1(Xt−1|t−1, P

X
t−1|t−1)

}
i={1,...,2n}

according to Definition 4.1.

State prediction:
Xt|t−1

2n∑
i=0

Wi ft(Xi,t−1|t−1)

PXt|t−1

2n∑
i=0

W(c)
i

[
ft(Xi,t−1|t−1)−Xt|t−1

] [
ft(Xi,t−1|t−1)−Xt|t−1

]′ +GtG
′
t

Sigma points:
{
Xi,t|t−1(Xt|t−1, P

X
t|t−1)

}
i={1,...,2n}

according to Definition 4.1.

Measurement prediction:
Yt|t−1

2n∑
i=0

Wi ht(Xi,t|t−1)

Mt|t−1

2n∑
i=0

W(c)
i

[
ht(Xi,t|t−1)− Yt|t−1

] [
ht(Xi,t|t−1)− Yt|t−1

]′ +DtD
′
t

Gain: Kt

2n∑
i=0

W(c)
i

[
Xi,t|t−1 −Xt|t−1

] [
ht(Xi,t|t−1)− Yt|t−1

]′
M−1
t|t−1

State updating:
Xt|t Xt|t−1 +Kt(Yt − Yt|t−1)

PXt|t PXt|t−1 −KtMt|t−1K
′
t

Note: See Julier, Uhlmann, and Durrant-Whyte (2000), Julier (2002), Julier (2003), or Julier and Uhlmann (2004)
for proofs of the recursions.

A.8 The Ukf in a linear state-space model

Let us consider a linear state-space model which is given by Equations (1a) and (1b) putting all the

C(k)s to 0. Taking the notations of Table 7, we have ft(X) = µ+ ΦX and ht(X) = A+ BX. As

for i = {1, . . . , 2n}, all the weights are equal, the sigma points are symmetrical and
∑2n
i=0Wi = 1,

we have:

Xt|t−1 =
2n∑
i=0

Wi (µ+ ΦXi,t−1|t−1)

=

(
2n∑
i=0

Wi

)
µ+ Φ

(
2n∑
i=0

WiXi,t−1|t−1)

)
= µ+ ΦXt−1|t−1

Pt|t−1 =
2n∑
i=0

W(c)
i

[
Φ(Xi,t−1|t−1 −Xt−1|t−1)

] [
Φ(Xi,t−1|t−1 −Xt−1|t−1)

]′ +GtG
′
t

=
n∑
i=1

W(c)
i Φ

(√
(n+ λ)PXt−1|t−1

)
i

(√
(n+ λ)PXt−1|t−1

)′
i
Φ′

+
2n∑

i=n+1

W(c)
i Φ

(√
(n+ λ)PXt−1|t−1

)
i−n

(√
(n+ λ)PXt−1|t−1

)′
i−n

Φ′ +GtG
′
t

= 2
n∑
i=1

(n+ λ)
2(λ+ n)

Φ
(√

PXt−1|t−1

)
i

(√
PXt−1|t−1

)′
i
Φ′ +GtG

′
t

= ΦPt−1|t−1Φ′ +GtG
′
t
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which proves the exact matching of the Ukf and the Kalman filter for the state prediction phase.

The same argument holds by linearity for the measurement prediction phase. In the linear case,

the Ukf shows exactly the same recursions that the linear Kalman filter, whatever the values of

(α, κ, β).

A.9 The Ukf in a quadratic state-space model: scalar case

Let us consider the quadratic state-space model given by Equations (1a) and (1b). Let us set the

vector of tuning parameters (α, κ, β) = (1, 0, 2) and n = m = 1. From Appendix A.8, we know

that the state prediction phase is exactly the same as in the linear Kalman filter, and is a fortiori

the same as in the Ekf2. Let us prove that the measurement prediction phase is the same for both

filters for those values of (α, κ, β).

First, those tuning parameters imply λ = 0, thus:

Xi,t|t−1 =

8>>>>>>><>>>>>>>:

Xt|t−1 for i = 0

Xt|t−1 +
q
PXt|t−1 for i = 1

Xt|t−1 −
q
PXt|t−1 for i = 2,

Wi =

8>>><>>>:
0 for i = 0

1/2 for i 6= 0

W(c)
i =

8>>><>>>:
2 for i = 0

1/2 for i 6= 0

Then, using the recursion of the Ukf algorithm, we obtain:

Yt|t−1 =
1
2

[
h(Xt|t−1 +

√
PXt|t−1) + h(Xt|t−1 −

√
PXt|t−1)

]
=

1
2

{
2A+B

(
2Xt|t−1

)
+ C

[(
Xt|t−1 +

√
PXt|t−1

)2

+
(
Xt|t−1 −

√
PXt|t−1

)2
]}

= A+BXt|t−1 + CX2
t|t−1 + CPXt|t−1

= h(Xt|t−1) + CPXt|t−1

Mt|t−1 = 2
[
h(Xt|t−1)− Yt|t−1

]2
+

1
2

{[
h(Xt|t−1 +

√
PXt|t−1)− Yt|t−1

]2
+
[
h(Xt|t−1 −

√
PXt|t−1)− Yt|t−1

]2}
+ V

= 2C2(PXt|t−1)2 +
1
2

{[
B
√
PXt|t−1 + C

(
PXt|t−1 + 2Xt|t−1

√
PXt|t−1 − P

X
t|t−1

)]2
+
[
−B

√
PXt|t−1 + C

(
PXt|t−1 − 2Xt|t−1

√
PXt|t−1 − P

X
t|t−1

)]2}
+ V

= 2C2(PXt|t−1)2 + V +
1
2

{
B2PXt|t−1 + C2

(
2Xt|t−1

√
PXt|t−1

)2

+ 2CB
√
PXt|t−1

(
2Xt|t−1

√
PXt|t−1

)
+B2PXt|t−1 + C2

(
−2Xt|t−1

√
PXt|t−1

)2

+ 2CB
√
PXt|t−1

(
2Xt|t−1

√
PXt|t−1

)}
= 2C2(PXt|t−1)2 + V +B2PXt|t−1 + 4C2X2

t|t−1P
X
t|t−1 + 2BCXt|t−1P

X
t|t−1

= G2
t|t−1P

X
t|t−1 + 2C2(PXt|t−1)2 + V
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Both Yt|t−1 and Mt|t−1 yield the same result as in the Ekf2 recursions. Let us now turn to the

Kalman gain computation.

Kt =
1
2

{[√
PXt|t−1

√
PXt|t−1

(
B + 2CXt|t−1

)
−
√
PXt|t−1

√
PXt|t−1

(
−B − 2CXt|t−1

)]}
M−1
t|t−1

= PXt|t−1

(
B + 2CXt|t−1

)
M−1
t|t−1

= PXt|t−1Gt|t−1M
−1
t|t−1

which is also the same gain as in the Ekf2. Therefore, for (α, κ, β) = (1, 0, 2) and scalar transition

and measurement equations, The Ukf and the Ekf2 possess exactly the same recursions.
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Appendix

Table 9: Maximum likelihood performance over the three panels

Qkf Ekf 1 Ekf 2 Ukf

Number of times being less biased 13 2 0 0

Number of times being most biased 0 6 2 8

Number of times having smallest std. 2 4 0 9

Number of times having biggest std. 3 10 2 0

Number of times having smallest RMSEs 11 2 1 1

Number of times having smallest RMSEs 0 9 2 4

Notes: Cases are taken from Table 8 estimates. Total number of estimated parameters are 15. Note that the sum
of the second row however yields a result of 16 due to equality of the Ekf 2 and the Ukf possessing the worst
bias.
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