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‡Université Paris I Pantheon - Sorbonne [Luca.Tiozzo-Pezzoli@univ-paris1.fr] and Paris Dauphine University.

1



Abstract: Étant donnée une approche modèles espace-état linéaires Gaussiens pour décrire la dynamique jointe des

courbes de taux de plusieurs pays et, en utilisant une méthodologie d’estimation par maximum de vraisemblance,

nous montrons comment extraire simultanément les facteurs communs (qui affectent tous les pays) et locaux

(spécifiques à un pays seulement) qui caractérisent notre modèle. Cette extraction jointe demande le développement

d’une nouvelle procédure de normalisation qui va au delà de celles classiques dans la littérature des modèles à

facteurs. De plus, cela nous permet d’éviter les effets d’une estimation séquentielle des facteurs qui peut expliquer

le manque de consensus en littérature pas seulement sur le nombre totale des facteurs nécessaires pour expliquer

la dynamique jointe des courbes de taux, mais aussi le nombre des facteurs communs et locaux. Grace à une base

de données journalière des courbes de taux de bonds du Trésor pour les États-Unis, l’Allemagne, l’Angleterre et le

Japon, observés de Janvier 1986 à Décembre 2009, nous trouvons en général (à la fois pour des taux en niveau et

en différence) qu’un modèle avec deux facteurs communs et trois facteurs locaux corrélés est préféré à un modèle

(de complexité similaire) qui inclus un seul facteur commun ou à un modèle avec seulement des facteurs locaux

corrélés. De plus, chaque facteur commun imite fortement (ou bien est similaire à) un facteur local obtenu à partir

d’un modèle avec seulement des facteurs locaux. Nous constatons aussi que la dépendance entre courbes des taux

internationales est due, principalement, par les corrélations instantanées entre facteurs locaux de différents pays et,

à un moindre degré, par la matrice autorégressive (pleine) des facteurs latents et la matrice des loadings communs.

Mots-clés: courbes de taux internationales, facteurs communs et locaux, modèles espace-état, algorithme EM,

algorithme de filtrage et lissage de Kalman.

Codes JEL: G12, E43, C52.

Abstract: We show how to compute patterns of variation over time, both among and within countries, that

determine the international term structure of interest rates, using maximum likelihood within a linear Gaussian

state-space framework. The simultaneous estimation of common factors (shared by all countries) and local factors

(specific to one country) requires development of a normalization procedure beyond that of ordinary factor analysis.

By jointly estimating common and local factors we avoid sequential estimation effects that may explain the lack

of agreement in the multi-country term structure literature regarding not only the total number of latent factors

required to explain the joint dynamics of yield curves, but also the number of common and of local factors. Using

data on international yield curves of U.S., Germany, U.K. and Japan from January 1986 to December 2009, we

generally find (analyzing yields in level and in difference) that a model with two common factors and three correlated

local factors is preferred to a model (of similar complexity) that includes one common factor only or a model with

only correlated local factors. In addition, each common factor closely mimics (or is similar to) a local factor

extracted from a pure local factor model. We also reach the conclusion that dependence across international yield

curves are driven, first, by the instantaneous correlation between local factors of different countries and, then, by

the (full) autoregressive matrix of latent factors and by the matrix of common loadings.

Keywords: international treasury yield curves, common and local factors, state-space models, EM algorithm,

Kalman Filter and Kalman Smoother.

JEL classification: G12, E43, C52.
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Non-technical summary

The yield curve literature has focused not only on the specification and estimation of models

explaining the term structure of interest rates in a single economy but, more recently, has been

extended to the relevant problem of specifying and estimating the joint dynamics of international

yield curves. In the single-country case, the estimation and implementation of dynamic yield

curve models has found that three (the level, slope and curvature factors to five latent factors

are required to match the dynamics and the shapes of the term structure. In the multi-country

setting, in contrast, we observe substantial lack of agreement, not only about the number of latent

factors that are required to explain the joint dynamics of two or more countries’ yield curves, but

also about the common/local nature of the factors where each common factor affects yields in all

countries while each local factor affects yields in only one country.

The purpose of this paper is to respond to this lack of agreement by directly addressing the

theoretical and empirical issues that naturally characterize the selection and estimation of interest

rate factors that evolve over time in a multi-country setting. We propose using maximum likelihood

(ML) criteria within a linear Gaussian state-space approach, to jointly and reliably estimate the

preferred combination of common and local factors required to jointly explain multi-country yield

curves.

Our choice of a state-space framework is a response, in part, to two main critiques of principal

component-based (PC-based) approaches that have appeared in the literature. First, the purpose

of principal component analysis is to extract factors that maximize the explained variance, and do

not seek to distinguish between the role of common and that of local factor in the presence of mul-

tiple groups, resulting in estimated factors that jointly capture both local and common influences

without distinguishing one from the other. Second, while the factor model literature has proposed

several methods for selecting the number of factors, the reliability of these criteria requires the

presence of weak-form serial and cross-sectional dependence in the idiosyncratic component of the

factor model, as well as a large N (the cross-sectional dimension) and large T (the time-series

dimension) database. These conditions are clearly not all satisfied by an international yield curve

panel of data, given the strong persistence and cross-correlation of interest rates, as well as the

typically small dimension of the maturity spectrum.

To be sure that the divergence in results cited in the literature was not merely due to the

variety of data sets analyzed with different numbers of countries over differing sample periods, an

extensive empirical analysis applies the same methods (as used in the literature) to a common set

of data (same countries, same time period) and still finds lack of agreement among the PC-based

approaches with the explained variance criterion. This controlled experiment (varying only the

statistical estimation methods) involved developing an international Treasury yield curve database
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by applying common filtering and interpolation techniques across all countries. Not only are

different combinations of common and local factors provided by the different methodologies, but

even by the same methodology when it is applied to yields in level and to yields in difference [see

Pegoraro, Siegel and Tiozzo ’Pezzoli’ (2014) for further details]. These empirical findings reinforce

our choice to develop here an alternative state-space based statistical technique that can jointly

estimate common and local factors within a model that reflects their distinct natures.

Our empirical analysis suggests in general, across a variety of groups of countries and for both

yield levels and yield differences, that a model with two common factors and three correlated

local factors is preferred to a model (of similar complexity) that includes one common factor

only or a model with only correlated local factors. Careful inspection of the optimally extracted

factors reveals that each estimated common factor closely mimics (or is similar to) a local factor

obtained from a pure local factor model. We reach the conclusion that international Treasury

yield curves dependence are driven by a preferred set of two common factors and by the strong

correlation between local factors of different countries, and that the former are spanned by (pure)

local factors. This conclusion exhibits one of the advantages of our proposed method as compared

to PC-based approaches (for which the initial factor extraction cannot consider the distinction

between a local and a common factor).
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1 Introduction

The yield curve literature, following the seminal papers of Vasicek (1977) and Cox, Ingersoll, and

Ross (1985), has focused not only on the specification and estimation of models explaining the

term structure of interest rates in a single economy but, more recently, has been extended to the

relevant problem of specifying and estimating the joint dynamics of international yield curves1.

In the single-country case, the estimation and implementation of dynamic yield curve models

has found that three [e.g., the level, slope and curvature factors of Litterman and Scheinkman

(1991)] to five latent factors are required to match the dynamics and the shapes of the term

structure [see Dai and Singleton (2000), Dai and Singleton (2002), Dai and Singleton (2003),

Duffee (2002), Cheridito, Filipovic, and Kimmel (2007), Duarte (2004), Duffee (2011) and Adrian,

Crump, and Moench (2013)]. This wide degree of robustness has made this result a fundamental

building block characterizing the modeling of single-country yield curves.

In the multi-country setting, in contrast, we observe substantial lack of agreement, not only

about the number of latent factors that are required to explain the joint dynamics of two or more

countries’ yield curves, but also about the common/local nature of the factors where each common

factor affects yields in all countries while each local factor affects yields in only one country. Some

researchers make a priori assumptions about the combination of common and local factors [e.g.,

Backus, Foresi, and Telmer (2001), Anderson, Hammond, and Ramezani (2010), Ahn (2004)],

while others reach different conclusions about the number of common and local factors based on

the explained variance criterion within a principal components (PC) approach [see Leippold and

Wu (2007), Diebold, Li, and Yue (2008) and Egorov, Li, and Ng (2011)].

The purpose of this paper is to respond to this lack of agreement by directly addressing the

theoretical and empirical issues that naturally characterize the selection and estimation of interest

We would like to thank Torben Andersen, Gregory Connor, Pasquale Della Corte, Walter Distaso, René Garcia,
Christian Julliard, Robert A. Korajczyk, Loriano Mancini, Nour Meddahi, Alain Monfort, Christophe Pérignon,
Eric Renault, Jean-Paul Renne, Barbara Rossi, Olivier Scaillet, James Sefton, Fabio Trojani Raman Uppal, Grigory
Vilkov andMichel van der Wel, as well as participants at Bank of Spain and Bank of CanadaWorkshop on ”Advances
in Fixed Income Modeling” 2011, NASM 2012 Conference in Evanston, CFE 2012 Conference in Oviedo, Banque
de France 2013 Seminar, TSE 2013 Financial Econometrics Conference, Imperial College 2013 Finance Group
Seminar, Joint Statistical Meetings (JSM) 2013 Conference in Montreal, the Large-scale factor models in Finance
Conference in Lugano 2013, the 2014 Financial Risk International Forum in Paris and the International Association
for Applied Econometrics 2014 Annual Conference for helpful comments, discussions and remarks. Andrew F. Siegel
acknowledge support by the Fondation Banque de France. We thank Béatrice Saes-Escorbiac, Aurélie Touchais
and Guilleume Retout for excellent research assistance. Any remaining errors are ours. The views expressed in this
paper are ours and do not necessarily reflect the views of the Banque de France.

1See, among others, Duffie and Kan (1996), Dai and Singleton (2000), Dai and Singleton (2002) Dai and
Singleton (2003), Bansal and Zhou (2002), Duffee (2002), Monfort and Pegoraro (2007), in the single-country
literature, and Frachot (1995), Backus, Foresi, and Telmer (2001), Anderson, Hammond, and Ramezani (2010),
Ahn (2004), Leippold and Wu (2007), Tang and Xia (2007), Diebold, Li, and Yue (2008), Egorov, Li, and Ng
(2011), Gourieroux, Monfort, and Sufana (2010), Jotikasthira, Le, and Lundbland (2010), in the multi-country
literature.
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rate factors that evolve over time in a multi-country setting. We propose using maximum likelihood

(ML) criteria within a linear Gaussian state-space approach, to jointly and reliably estimate the

preferred combination of common and local factors required to jointly explain multi-country yield

curves.

Our choice of a state-space framework is a response, in part, to two main critiques of PC-based

approaches that have appeared in the literature. First, Perignon, Smith, and Villa (2007) have

highlighted that the purpose of principal component analysis is to extract factors that maximize

the explained variance, and do not seek to distinguish between the role of common and that of local

factor in the presence of multiple groups, resulting in estimated factors that jointly capture both

local and common influences without distinguishing one from the other. Second, while the factor

model literature has proposed several methods for selecting the number of factors2, the reliability

of these criteria requires the presence of weak-form serial and cross-sectional dependence in the

idiosyncratic component of the factor model, as well as a large N (the cross-sectional dimension)

and large T (the time-series dimension) database. These conditions are clearly not all satisfied

by an international yield curve panel of data, given the strong persistence and cross-correlation of

interest rates, as well as the typically small dimension of the maturity spectrum; for instance, in

the presence of serial dependence, the Bai and Ng (2002) criteria tend to overestimate the number

of common factors, even when a first-difference filter is applied to stationary data in order to

mitigate the persistence [see Greenaway-McGrevy, Han, and Sul (2012), Han and Sul (2011) for

details].

To be sure that the divergence in results cited in the literature was not merely due to the

variety of data sets analyzed with different numbers of countries over differing sample periods, an

extensive empirical analysis [Pegoraro, Siegel, and Tiozzo Pezzoli (2012)] applies the same methods

(as used in the literature) to a common set of data (same countries, same time period) and still

finds lack of agreement among the PC-based approaches with the explained variance criterion.

This controlled experiment (varying only the statistical estimation methods) involved developing

an international Treasury yield curve database by applying common filtering and interpolation

techniques across all countries. Not only are different combinations of common and local factors

provided by the different methodologies, but even by the same methodology when it is applied to

yields in level and to yields in difference. These empirical findings reinforce our choice to develop

here an alternative state-space based statistical technique that can jointly estimate common and

local factors within a model that reflects their distinct natures.

Our linear Gaussian state-space approach explains the joint dynamics of multi-country term

structures using autoregressive stationary latent factors of two types (common and local) as spec-

2See, for instance, Connor and Korajczyk (1993), Forni, Hallin, Lippi, and Reichlin (2000), Bai and Ng (2002),
Bai and Ng (2007), Stock and Watson (1991), Amengual and Watson (2007) and Onatski (2010).
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ified by the measurement equation. Each common factor has loadings that are unrestricted for

all countries, while each local factor is identified with just one country by restricting its loadings

to zero for all other countries. We find an innovative solution to the identification problem that

allows for causality across common and local factors as well as between common and local ones.

We implement maximum likelihood estimation for the state-space model using the EM algorithm

with the Kalman Filter and Kalman Smoother recursions [see Engle and Watson (1981), Quah

and Sargent (1993), Monfort, Renne, Rüffer, and Vitale (2003), Doz, Giannone, and Reichlin

(2011), Doz, Giannone, and Reichlin (2012), Jungbacker and Koopman (2008), Bork, Dewachter,

and Houssa (2009)]. From among different scenarios, each specifying the numbers and combina-

tions of common and local factors, we select the optimal combination on the basis of maximum

likelihood-based model selection criteria such as the Akaike Information Criterion (AIC). In order

to take into account the persistence and heteroskedasticity of interest rates we also calculate the

(Nonparametric Monte Carlo) bootstrap variant of AIC (AICb, say) of Cavanaugh and Shumway

(1997) and based on a block stationary bootstrap [see Politis and Romano (1994), Politis and

White (2004), and Patton, Politis, and White (2009)]. We use the international Treasury yield

curves database of Pegoraro, Siegel, and Tiozzo Pezzoli (2012) consisting of rates in four lead-

ing bond markets (U.S., Germany, U.K. and Japan) observed weekly from January 1, 1986 to

December 31, 2009.

Our empirical analysis suggests in general, across a variety of groups of countries and for both

yield levels and yield differences, that a model with two common factors and three correlated

local factors is preferred to a model (of similar complexity) that includes one common factor

only or a model with only correlated local factors. Careful inspection of the optimally extracted

factors reveals that each estimated common factor closely mimics (or is similar to) a local factor

obtained from a pure local factor model. We reach the conclusion that international Treasury

yield curves dependence are driven by a preferred set of two common factors and by the strong

correlation between local factors of different countries, and that the former are spanned by (pure)

local factors. This conclusion exhibits one of the advantages of our proposed method as compared

to PC-based approaches (for which the initial factor extraction cannot consider the distinction

between a local and a common factor).

The paper is organized as follows. In Section 2 we introduce our Multi-Country Term Structure

Model (MCTSM) that describes the joint dynamics of international yield curves (Section 2.1)

and we specify the appropriate identification restrictions that respect the presence of common and

local factors (Section 2.2). In Section 3 we describe our proposed EM-based recursive maximum

likelihood estimation procedure that imposes the identification restrictions. Section 4 presents

the empirical analysis, beginning with the database on international Treasury yield curves in

Section 4.1, with results from various models (different groups of countries, yield levels, yield
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differences, various combinations of common and local factors) following in Section 4.2 which

also includes model selection results based on the maximized likelihood. Section 4.3 presents

MCTSMs parameter estimates and factors interpretations, while the focus of Section 4.4 is on

understanding the statistical dependence across international local factors. Section 5 concludes,

while proofs, tables, and graphs are gathered in the Appendix.

2 The Multi-Country Term Structure Model

2.1 Modeling Framework

In this section we define our Multi-Country Term Structure Model (MCTSM) as a linear Gaussian

state-space model with block structure adopted to describe the joint dynamics of international yield

curves. The model is specified by the following assumptions:

Assumption 1 (Yields, Countries, Common and Local Factors). We denote by Y
(j)
t

the τ × 1 vector of yields observed at time t for country j, with j ∈ {1, . . . , n}, n being the total

number of analyzed countries. Yt = (Y
(1)′

t , . . . , Y
(n)′

t )′ denotes the N × 1 vector of the observed

international yields with N = τ n. We denote by Ft the k × 1 vector of latent factors at time t

that explain the international term structures of interest rates. We assume that Ft = (F
(c)′

t , F
(l)′

t )′,

where F
(c)
t = (F

(c)
1,t , . . . , F

(c)
rc,t)

′ is the rc × 1 vector of factors common to all countries, and the

local factors are F
(l)
t = (F

(l)′

1,t , . . . , F
(l)′

n,t )
′ with F

(l)
j,t = (F

(l)
1,j,t, . . . , F

(l)
rj ,j,t

)′ the rj × 1 vector of factors

associated to country j only, for j ∈ {1, . . . , n}. The total number of local factors across all

countries is denoted r(l), so F
(l)
t is a r(l) × 1 vector and k = rc + r(l).

Assumption 2 (The Multi-Country Term Structure Model MCTSM). For a given

k-dimensional latent factor Ft made up of rc common and r(l) local factors, the joint dynamics of

the n international yield curves Yt = (Y
(1)′

t , . . . , Y
(n)′

t )′ is given by:





Yt = µ+ ΛB Ft + εt , εt ∼ IIN(0,ΩB)

Ft = ΦFt−1 + ηt , ηt ∼ IIN(0,Ψη) ,

(1)

where µ is an N × 1 vector of constants and

ΛB =
[
Λc Λl

]
(2)

is the N×k matrix of factor loadings partitioned in terms of the N×rc matrix Λc = [Λc,1, . . . ,Λc,rc]
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of common loadings and in the N × r(l) block-diagonal matrix of local loadings

Λl =




Λ
(1)
l 0 . . . 0

0 Λ
(2)
l . . . 0

...
...

. . .
...

0 0 . . . Λ
(n)
l



, (3)

while ΩB is the N ×N variance-covariance matrix of the Gaussian-distributed white noise εt. Φ is

the k × k autoregressive matrix, Ψη is the k × k variance-covariance matrix of the k-dimensional

Gaussian distributed white noise ηt =
(
η
(c)′

t , η
(1)′

t , . . . , η
(n)′

t

)′

and E(εt η
′
t) = 0 for all t.

2.2 Identification Restrictions Imposed by Common and Local Factors

We now focus on the identification restrictions for this MCTSM model that stem from the fact

that the model’s fitted values remain unchanged if we transform the model specification using any

k × k non-singular matrix A because ΛB Ft = (ΛB A) (A
−1 Ft). Ordinarily, for a model that does

not distinguish common from local factors (i.e., r(l) = 0), we would impose k2 restrictions equal

to the number of free parameters in A. However, in the presence of local factors with r(l) > 0,

the matrix A has to be such that the transformed loadings matrix Λ∗
B = ΛB A maintains same

required block structure (i.e., the same pattern of zeros) as we required of ΛB.

Proposition 1 (Identification Restrictions). The identification restrictions for MCTSM

(1) with loadings matrix ΛB = [Λc Λl] from Assumption 2, requires r∗ := (rc k) +
∑n

j=1 r2j restric-

tions that we may solve by imposing:

R.i) E
(
η
(c)
t η

(c)′

t

)
= Irc, E

(
η
(j)
t η

(j)′

t

)
= Irj and E

(
η
(c)
t η

(j)′

t

)
= 0 for all j ∈ {1, . . . , n}, that is

we impose Ψη = ΨB where:

ΨB :=




Irc 0 0 . . . 0

0 Ir1 Ψ12 . . . Ψ1n

0 Ψ21 Ir2 . . . Ψ2n

...
...

...
. . .

...

0 Ψ1n Ψ2n . . . Irn




, (4)

and where, for any i, j ∈ {1, . . . , n} with i 6= j, the covariance matrix E
(
η
(i)
t η

(j)′

t

)
= Ψij is

allowed to be different from zero;
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R.ii) (Λ
′

cΛc) and Λ
(j)′

l Λ
(j)
l for all j ∈ {1, . . . , n}, are all diagonal, that is ΛB has to be such that

Λ
′

BΛB = ΠB, with:

ΠB :=




Πd
cc Πc1 Πc2 . . . Πcn

Π1c Πd
11 0 . . . 0

Π2c 0 Πd
22 . . . 0

...
...

...
. . .

...

Πnc 0 0 . . . Πd
nn




, (5)

and where Πd
cc and Πd

jj, for j ∈ {1, . . . , n}, are diagonal matrices whose diagonal entries are

arranged in descending order.

(Proof: see Appendix A).

Restrictions R.i) and R.ii) allow us to estimate model parameters and to extract common

and local latent factors while keeping the autoregressive matrix Φ unconstrained and allowing

local factors to be correlated (Ψij 6= 0) for distinct countries i and j, thereby allowing causality

estimation. By keeping the autoregressive matrix Φ unconstrained, we avoid arbitrarily imposing

a lack of causality between common and local factors, as would occur in the classical case with

Φ lower triangular. Thus, we are able to estimate the impact of any factor on any other factor,

regardless of whether they are both common, one common and one local, or both local either

from the same country or from different countries. By allowing correlation of local factors across

countries, we can estimate instantaneous causality associated with these local factors, allowing

MCTSM to model the presence of factors common to only a subset of the analyzed countries

(regional factors)3. Regarding restrictions R.ii), it is important to highlight that we rank the

Jordan decomposition-based eigenvalues in the main diagonal of Πd
cc and Πd

jj, for j ∈ {1, . . . , n},

in decreasing order. Our procedure thus ranks the factors, within each group, in line with the

classical level, slope and curvature order provided by the principal component approach.

In summary, the identification restrictions characterizing our MCTSM model open the way

3An alternative set of identification restrictions concerning Ψη might be the one imposing Ψij 6= 0 for all i 6= j,

i, j ∈ {1, . . . , n}, but leaving E
(
η
(c)
t η

(j)′

t

)
6= 0 and still assuming E

(
η
(c)
t η

(c)′

t

)
= Irc and E

(
η
(j)
t η

(j)′

t

)
= Irj .

Our identification method is more general than this possible alternative. First, any initially estimated Ψη can be
transformed to ΨB while respecting the common-local loading structure (2)-(3), while the alternative one would
potentially require nonzero loadings for each country on all of the other country local factors, which would violate
the principle that a given country can load only on the common factors and its own local factors. Second, this
alternative set of restrictions can not represent regional factors. Third, while restrictions R.i) guarantee that Ψη

be a proper variance-covariance (thus, positive definite) matrix regardless the assumption about rc and rj , if in the

alternative set of restrictions we assume, for instance, rc = rj and E
(
η
(c)
t η

(j)′

t

)
= Irc , then the matrix cannot be

a covariance matrix because the first common factor is perfectly correlated with each of the first local ones, which
must in turn be perfectly correlated with one another. However, these local factors all have zero correlation with
one another thus contradicting the previous statement (for instance, in the case n = 2 and rc = rj = 1, it is easy
to verify that |Ψη| = −1, which is clearly not possible for a variance-covariance matrix).
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to three sources of dependence across international yield curves. First, the matrix Λc of common

loadings allowing common factors F
(c)
t to directly impact all term structures at the same time.

Second, the unconstrained autoregressive matrix Φ allowing for causalities between all factors and,

third, the instantaneous correlations between local factors of different countries (Ψij 6= 0). The

empirical analysis of Section 4 will thus focus on understanding not only the preferred combination

of common and local factors but, also, on identifying which of the three above mentioned channels

is the most important in driving international yield curves dependence.

3 The MCTSM Recursive Maximum Likelihood Estima-

tion Procedure

In this section we provide details of the statistical methodology to efficiently extract the optimal

combination of common and local factors to represent the joint dynamics of international yield

curves. This task entails specifying the estimation details to be used for each of several given

combinations of common and local factors, from which the likelihood-based Akaike Information

Criterion (AIC) and its bootstrap variant AICb (say) will be used to select the optimal combina-

tion. In Section 3.1, to efficiently estimate the MCTSM model given the number of common and

local factors, we use the EM Algorithm (viewing the factor values as missing data) together with

the recursive Kalman Filter and Kalman Smoother [see, e.g., Engle and Watson (1981), Quah and

Sargent (1993) and Doz, Giannone, and Reichlin (2012)] to numerically seek the model’s maximum

likelihood. At each iteration of the EM algorithm the likelihood increases and (under regularity

conditions) it converges to a maximum of the likelihood function. In Section 3.2 we present the

four strategies we adopt to initialize the algorithm and the random perturbation technique of

the associated estimations we use to avoid being trapped in a local maximum. The maximum

likelihood estimator of any of MCTSM model of interest will be the one coming from the strat-

egy (among the four) providing the largest value of the log-likelihood function. In practice, we

find that from each starting point convergence is typically obtained within 100 iterations (in a

benchmark case of two common factors and two local factors for each of the four countries).

3.1 The Recursive MLE Procedure

Here is the EM-based recursive procedure to obtain maximum likelihood estimates for the set of

parameters θ := (µ,ΛB,ΩB,Φ,Ψη) of the MCTSM (1) while imposing the identification restric-

tions R.i) and R.ii).

Proposition 2 (The MCTSM Recursive Maximum Likelihood Estimation Proce-

dure). Each iteration of the procedure to calculate the maximum likelihood estimator denoted

7



θMLE
T , of the parameter set θ characterizing MCTSM , is based on the following three steps, where

step (a) defines our notation for the results of the Kalman Filter and Kalman Smoother, step (b)

maximizes the expected complete data log-likelihood function, conditionally to Y T and given the

imputed factor results from step (a), and step (c) shows how the identification restrictions are

satisfied:

(a) For a given set of MCTSM input parameters denoted θ
(i)
EM , and for a given data set

Y T := (Y1, . . . , YT ) of international yield curves, one iteration of the Kalman Filter and

of the Kalman Smoother provides the log-likelihood function value denoted L
(
θ̂
(i)
EM

)
and the

imputed factor results denoted F
(i)
t|T :=

(
F

(i)
t|T , P

(i)
t|T , P

(i)
t−1,t|T

)
(Expectation step i), where:

- F
(i)
t|T := E

θ
(i)
EM

[
Ft | Y

T
]
is the date-t vector of smoothed factors,

- P
(i)
t|T := V

θ
(i)
EM

[
Ft | Y

T
]
= E

θ
(i)
EM

[(
Ft − F

(i)
t|T

) (
Ft − F

(i)
t|T

)′

| Y T

]
is the date-t smoothed

variance-covariance matrix of the factors, and

- P
(i)
t−1,t|T = C

θ
(i)
EM

[
Ft−1, Ft | Y

T
]
= E

θ
(i)
EM

[(
Ft−1 − F

(i)
t−1|T

) (
Ft − F

(i)
t|T

)′

| Y T

]
is the date-

t smoothed one lag autocovariance of the factors;

(b) Given F
(i)
t|T from the previous step, the Maximization step (i + 1) results in the following

closed form estimators:

Λ
(i+1)
B,T = D

(i)
T C

(i)−1

T +K
(i)
Λ,T , µ

(i+1)
T = Y T − Λ

(i+1)
B,T F

(i)

T

Ω
(i+1)
B,T =

1

T

(
E
(i)
T −D

(i)
T C

(i)−1

T D
(i)′
T +K

(i)
Λ,T C

(i)

T K
(i)′
Λ,T

)

Φ
(i+1)
T = B

(i)
T A

(i)−1
T , Ψ

(i+1)
η,T =

1

T − 1

(
C
(i)
T − B

(i)
T A

(i)−1
T B

(i)′
T

)
,

(6)
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where:

A
(i)
T :=

∑T
t=2

(
F

(i)
t−1|T F

(i)′
t−1|T + P

(i)
t−1|T

)
, B

(i)
T :=

∑T
t=2

(
F

(i)
t|T F

(i)′
t−1|T + P

(i)′
t−1,t|T

)
,

C
(i)
T :=

∑T
t=2

(
F

(i)
t|T F

(i)′
t|T + P

(i)
t|T

)
, C

(i)

T :=
∑T

t=1

[(
F

(i)
t|T − F

(i)

T

) (
F

(i)
t|T − F

(i)

T

)′

+ P
(i)
t|T

]
,

D
(i)
T :=

∑T
t=1

(
Yt − Y T

) (
F

(i)
t|T − F

(i)

T

)′

, E
(i)
T :=

∑T
t=1

(
Yt − Y T

) (
Yt − Y T

)′
,

Y T := 1
T

∑T
t=1 Yt , F

(i)

T := 1
T

∑T
t=1 F

(i)
t|T ,

vec(K
(i)
Λ,T ) := (C

(i)−1

T ⊗ Ω
(u,i)
T )H′

Λ

[
HΛ (C

(i)−1

T ) ⊗ Ω
(u,i)
T )H′

Λ

]−1 [
κΛ −HΛ vec(D

(i)
T C

(i)−1

T )
]
,

Ω
(u,i)
T :=

1

T

(
E
(i)
T −D

(i)
T C

(i)−1

T D
(i)′
T

)
,

(7)

and where HΛ is a ϑ × Nk selection matrix such that:

HΛ vec (Λ) = κΛ (8)

with Λ the unrestricted N × k matrix of loadings and with κΛ the ϑ-dimensional vector of

zeros that enforces the block structure of ΛB at each iteration of the algorithm.

(c) Given the updated set of estimators θ
(i+1)
EM :=

(
µ
(i+1)
T ,Λ

(i+1)
B,T ,Ω

(i+1)
B,T ,Φ

(i+1)
T ,Ψ

(i+1)
η,T

)
from the

previous step, the associated normalized estimator denoted θ
∗(i+1)
EM satisfying the indentifica-

tion restrictions R.i) and R.ii), is given by:

Λ
∗(i+1)
B,T := Λ

(i+1)
B,T A∗ , µ

∗(i+1)
T = µ

(i+1)
T , Ω

∗(i+1)
B,T = Ω

(i+1)
B,T ,

Φ
∗(i+1)
T := (A∗)−1 Φ

(i+1)
T A∗ , Ψ

∗(i+1)
η,T := (A∗)−1 Ψ

(i+1)
η,T (A∗)−1′ ,

(9)

where the (unique) normalization matrix A∗ is:

A∗ :=
(
A⊥ Aη,(i+1) A

o
c,l,(i+1)

)
, (10)
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with

A−1
⊥ :=




Irc 0 . . . 0

−
(
Ψ

c(i+1)
10,T

) [
(Ψ

c(i+1)
00,T )

]−1

Ir1 . . . 0
...

...
. . .

...

−
(
Ψ

c(i+1)
n0,T

) [
(Ψ

c(i+1)
00,T )

]−1

0 . . . Irn



,

Ψ
(i+1)
η,T :=




Ψ
c(i+1)
00,T Ψ

c(i+1)
01,T . . . Ψ

c(i+1)
0n,T

Ψ
c(i+1)
10,T Ψ

(i+1)
11,T . . . Ψ

(i+1)
1n,T

...
...

. . .
...

Ψ
c(i+1)
n0,T Ψ

(i+1)
n1,T . . . Ψ

(i+1)
nn,T



6= Ψη,B ,

A−1
η,(i+1) := diag

[
A−1

η,c,(i+1), A
−1
η,1,(i+1), . . . , A

−1
η,n,(i+1)

]
,

A−1
η,c(i+1) :=

(
Uη,c(i+1) D

−1/2
η,c(i+1)

)′

, A−1
η,j(i+1) :=

(
Uη,j(i+1) D

−1/2
η,j(i+1)

)′

∀ j ∈ {1, . . . , n} ,

where Uη,c(i+1) and Dη,c(i+1) are matrices of eigenvectors and eigenvalues of Ψ
c(i+1)
00,T , Uη,j(i+1)

and Dη,j(i+1) are matrices of eigenvectors and eigenvalues of Ψ
(i+1)
jj,T , for j ∈ {1, . . . , n}, and

where:

(Ao
c,l,(i+1))

−1 := diag
[
(Uo

c,(i+1))
−1, (Uo

1,(i+1))
−1, . . . , (Uo

n,(i+1))
−1
]
,

with (Uo−1
c,(i+1)) and (Uo−1

j,(i+1)) respectively denoting the eigenvector matrix of Λo′
c,(i+1),TΛ

o
c,(i+1),T

and Λ
o(j)′
l,(i+1),TΛ

o(j)
l,(i+1),T , for j ∈ {1, . . . , n}, where:

Λo
B,(i+1),T :=

[
Λo

c,(i+1),T Λo
l,(i+1),T

]
= Λ

(i+1)
B,T

(
A⊥ Aη,(i+1)

)
.

(Proof: see Appendix B).

3.2 Initialization Algorithm Descriptions

The recursive procedure presented in Proposition 2 has been initialized in four possible ways.

A first method is to start with a Principal Components analysis and set θ
(0)
EM := θPF

T where

θPF
T := (µPF

T ,ΛPF
B,T ,Ω

PF
B,T ,Φ

PF
T ,ΨPF

η,T ) denotes the set of model parameters estimated by a three-

step Principal Factor methodology (see Appendix C for details). A second method is to use

randomized initial values for the factors, simulating (Ft) from a normalized k-dimensional Gaussian

distribution and using these values along with the observed yields to estimate all parameters by

10



OLS regressions4.

The last two methods, taking into account the possible presence of (one or two) common factors

as suggested by the literature, aim at selecting initial parameter values by means of a strategy that

favors the presence of such a common factors in the data. More precisely, the third one is based

on the following steps: for any given set of common and local factors, and using the estimation

methodology presented in Proposition 2, first we estimate the model with only common factors,

on the residuals we estimate the model with only local factors and then we use the associated

smoothed factors to select a new vector of parameter estimates, through OLS regressions, in order

to provide the new starting condition to the MLE recursive procedure.

The fourth one is tailored for nested MCTSMs with a fixed number of factors k, but different

combination of common and locals (including rc = 0), that we will analyze at the end of Section

4.2. The methodology is based on the following idea (for ease of presentation we consider here

the case n = 2 countries): for any given number of factors k and given an estimated model with

rc ≥ 0 commons and (r1, r2) locals, we move to the estimation of the nesting model with rc + 1

commons and (r1 − 1, r2) locals (say) by providing starting parameter values obtained from the

linear combination of the r1 local factors that best explains country-2 yields. More precisely, the

methodology is based on the following steps. First, we regress the average yield (across maturities)

of country-2, namely Y
(2)

t = 1
τ

∑τ
i=1 Y

(2)
j,t , on the r1 local factors, the estimated linear combination

of these factors is identified as the new common factor F
(c)
rc+1,t :=

∑r1
i=1 βi F

(l)
i,1,t (say) and the

associated noise is given by η
(c)
rc+1,t :=

∑r1
i=1 βi η

(1)
i,t . Second, we regress the first (r1 − 1) variables

η
(1)
i,t on η

(c)
rc+1,t and the noise of any of these regression is denoted ξ

(1)
i,t . Third, I orthonormalize

the ξ
(1)
i,t s and then, finally, I define the associated (orthonormalized) country-1 factor as the new

country-1 factors of the nesting model. With the newly specified common and country-1 factors,

along with the starting r2 local factors, we select a new vector of parameter estimates, through

OLS regressions, that we adopt as starting condition to estimate the nesting model following

Proposition 2.

In addition, in order to overcome the possible finding of a local (instead of the global) maximum

of the log-likelihood function, we randomly perturb the estimations obtained using Proposition

2 through the following procedure. First, given the smoothed factors F̂
(i∗)
t|T := E

θ
∗(i∗)
EM

[
Ft | Y

T
]
=

Eθ̂MLE
T

[
Ft | Y

T
]
and a randomly generated number ε(σ) drawn from N(0, σ2), we obtain a new set

of smoothed factors F̂
(σ)
t|T := F̂

(i∗)
t|T + ε(σ). For any given σ ∈ {0, 1, . . . , 5}, we use the associated

4Regarding the control for convergence of the algorithm, we adopt the following criterion:

Υ(i) =
| L(θ̂

∗(i+1)
EM )− L(θ̂

∗(i)
EM ) |

(| L(θ̂
∗(i+1)
EM ) |+ | L(θ̂

∗(i)
EM ) |)/2

and we stop the procedure after i∗ iterations if Υ(i∗) < 10−6.
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factors F̂
(σ)
t|T to obtain a new set parameters estimates, through OLS regressions, that are used

as new starting conditions to run again the recursive MLE procedure of Proposition 2. Second,

we select across the alternatives the vector of parameter estimates leading to the largest value

of the log-Likelihood function, we retrieve the associated smoothed factors and we run a second

set of perturbations with σ ∈ {0, 0.1, 0.2, . . . , 1}. We then select again the parameter estimates

maximizing the log-likelihood function across the alternatives and the associated factors are used

for a last set of perturbation assuming now σ ∈ {0, 0.01, 0.02, . . . , 0.1}. Finally, the vector of

parameter estimates of the model of interest is thus given by the vector θ̂
(σ∗)
T (say) leading to the

largest value of the log-Likelihood function across those obtained from the last perturbation stage.

The associated smoothed factors are denoted by F̂
(σ∗)
t|T .

4 Empirical Analysis

This empirical analysis presents the optimal number of common and local factors, for each of

several groups of countries and for both yield levels and yield differences, selected from MCTSM

models estimated using various given combinations of common and local factors. Section 4.1

presents the database of Treasury yield curves for the U.S., Germany, the U.K., and Japan,

measured weekly from 1986 to 2009. Model estimation results, along with the optimal model

for each group of countries and type of yield measurement (levels or differences) are presented

in Section 4.2 using the estimation methods of Section 3 and the Akaike Information Criterion

AIC = 2Ξ − 2L(θ̂MLE
T ), where Ξ = dim(θ̂MLE

T ) denotes the number of estimated parameters

of a given model. We also calculate a bootstrap variant of AIC (AICb) of Cavanaugh and

Shumway (1997) based on the Nonparametric Monte Carlo bootstrap for state-space models of

Stoffer and Wall (1991). The kind of bootstrap that is adopted is a block stationary bootstrap

able to properly taking into account the persistence and the heteroskedasticity of interest rates [see

Politis and Romano (1994), Politis and White (2004), and Patton, Politis, and White (2009)]. The

optimal model selection is unchanged if alternative methods are used (e.g., Bayesian Information

Criterion BIC or Hannan-Quinn HQ)5. Section 4.3 presents MCTSMs parameter estimates and

factors interpretations, while Section 4.4 explores the statistical dependence across international

local factors.

4.1 The International Treasury Yield Curves Database

We use the international Treasury yield curves database of Pegoraro, Siegel, and Tiozzo Pezzoli

(2012) consisting of four leading bond markets: the U.S., Germany, U.K. and Japan. We adopt the

criteria of Gurkaynak, Sack, and Wright (2007) to filter coupon bond Treasury raw data, to guar-

5Results for BIC and HQ are available upon request from the authors.
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antee a uniform level of liquidity, and to interpolate the discount function using the (parsimonious

smoothed) Nelson and Siegel (1987) methodology. We estimate with T = 1252 weekly observation

of these four countries, for residual maturities from 1 to 9 years (for any country), covering the

period from January 1, 1986 to December 31, 2009 [see Appendix D for yields summary statistics

and graphs and Pegoraro, Siegel, and Tiozzo Pezzoli (2012) for further details].

4.2 Estimating Optimal MCTSMs

In this section we compare model estimation results and select the optimal combination of common

and local factors, using AIC and AICb, for groups of 2, 3, and all 4 countries, and for both yield

levels and yield differences. In each case we compare combinations of common and local factors

(rc, rℓ) such that the yield curve of any economy is always explained by 3 to 5 factors, following

the single-country term structure literature [see Adrian, Crump, and Moench (2013) and Duffee

(2011)]. Accordingly, when we assume rc = 0, we fix rℓ = 3, rℓ = 4 and rℓ = 5, while, if rc = 1,

we consider rℓ = 2, rℓ = 3 and rℓ = 4 and, if rc = 2, we take rℓ = 1, rℓ = 2 and rℓ = 3.

When the number of local factors is identically rℓ in each of the n countries, we denote the

MCTSM model Mrc,rℓ
n (Φ,Ψη) where rc denotes the number of common factors. The maximum

value of the log-likelihood function of each model and the associated AIC and AICb values are

reported in Tables 2 and 3 for yield levels, and in Tables 4 and 5 for yield differences in the

Appendix E. When the number of local factors is not identical in each country, we denote the

MCTSM model M
rc,rj
n (Φ,Ψη) and specify the list for numbers of local factors by country rj. We

include the case of unequal numbers of local factors in order to compare alternative MCTSMs

specifications having the same factor’s dimension k but different combinations of common and

local factors.

Let us focus first on the case n = 2, that is the classical 2-country yield curve case frequently

studied in the international term structure literature [see, among others, Backus, Foresi, and

Telmer (2001), Ahn (2004), Bork, Dewachter, and Houssa (2009), Mosburger and Schneider (2005),

Leippold and Wu (2007) and Egorov, Li, and Ng (2011)]. As can be seen from Tables 2 and 4, if

we compare MCTSMs providing the same number of factors to any yield curve, we always prefer

the pure local factors specification M0,rℓ
2 and this is for any pair of countries and for both for

yields in level and in difference. Then, when we consider the cases n = 3 and n = 4 (Tables 3 and

5), once again we select models M0,rℓ
3 and M0,rℓ

4 instead of specifications where rc = 1 or rc = 2.

Nevertheless, as suggested by model selection literature [see Linhart and Zucchini (1986)], the

above presented selection of MCTSMs might be in favor of the pure local factors case M0,rℓ
n

simply because the latter turns out to be characterized by a factor’s dimension k larger than

the one of the competing models Mrc,rℓ
n . For instance, when n = 2 and the yield curve of any
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country is explained by three factors, we have that the specification M0,3
n implies k = 6, while

the alternative ones M1,2
n and M2,1

n have k = 5 and k = 4, respectively. In order to understand

which specification is required by the data, we thus compare MCTSMs having the same k but

different combination of common and local factors including, in particular, the case rc = 0. As

in the previous estimations, we consider all possible combinations of countries for both yields in

level and in difference. Nevertheless, for ease of presentation, the results (presented in Table 6 in

the appendix Appendix E) focus on the two pairs of countries, namely U.S.-U.K. and U.S.-GER,

and then on the sets U.S.-U.K.-GER and U.S.-U.K.-GER-JAP , the remaining ones providing

qualitatively the same information (and available upon request from the authors). From Table

6 we observe now, across alternative sets of countries and for both yield levels and differences,

that the specifications with two common factors and three correlated local factors are preferred

to the case rc = 1 and rc = 0 (the only exception being the U.S.-GER. case, and only for yield

differences and if we consider AIC, while AICb again prefers the case rc = 2)6.

4.3 Parameter Estimates and Interpretation of the Factors

Now, at that point of the analysis, we still do not know which is the nature of the common

and local (smoothed) factors that we have extracted. We do not know, for instance, if common

factors originate from a single economy or if they summarize some information over and above

the one provided by local factors and if this feature depends on the number and the kind of

analyzed countries. Indeed, we may have that some local factor of a given country loads also

on the other economies. In other words, two questions naturally stand out: first, what the local

factors extracted from the preferred M2,3
n specification look like? Second, are the common factors

in reality local factors loading on the other countries or are they common factors representing

yield curves driving forces other than local ones?

Before focusing on this analysis, it is important to point out the ability of our estimated

MCTSMs to properly share interest rates information between common and local factors. Indeed,

we may figure out the (extreme) case where, assuming (for ease of presentation) n = 2, rc = 1,

rℓ = 1, the two local factors have dynamics identical to the common one, being Φ = ϕ I and the

correlation between the two locals equal to one. In this case the two locals would look identical

to the common factor and therefore distinguishing between them would be impossible. Now, if we

look at the parameter estimates of M2,3
n (yield levels) for the same set of countries analyzed in

Table 6, we observe that this possible situation is completely and strongly overcome. Indeed, from

Tables 10, 11 and 12 in the Appendix F we observe the following relevant features. First, we have

statistically significant parameters in the AR matrix over and above those in the main diagonal; in

6This choice is, in addition, confirmed by likelihood ratio tests between nested models M
rc,rj
n (Φ,Ψη) with a

fixed k (these results are available upon request from the authors).
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addition, the latter are rather different one each other. Second, we have estimated instantaneous

correlations, between international local factors, that are statistically significant but never larger

than 0.4 (in absolute value) and, in general, between 0.10 and 0.25 (in absolute value).

Let us move back now to factors’ interpretations. An inspection of the estimated loadings in

Tables 10, 11 and 12 and of the optimally extracted (smoothed) factors, provided in Appendix G,

leads to the following comments. First, the local factors of any given model M2,3
n are precisely

identified with some of the local factors extracted from the associated pure local factors specifi-

cation M0,4
n . For instance, in the U.S.-U.K. case, the three local U.S. (U.K., respectively) factors

in M2,3
n are the slope, curvature and 4th (level, curvature and 4th, respectively) factors of the

specification M0,4
n (see Table 10 and Figure 2). In the U.S.-GER. case, they are easily identified,

for both countries, as level, slope and curvature factors (Table 10 and Figure 3). In the 3-country

case, the U.S. local factors are the level, slope and 4th U.S. factors in M0,4
n , while, for U.K. and

GER., they are level, slope and curvature factors; we always find level, slope and curvature factors

also in the 4-country case (see Tables 11 and 12, and Figures 4 and 5, respectively).

Second, the two common factors of any given model M2,3
n tend in general to track quite closely

two of the remaining (from the above mentioned identification) local factors obtained from the

associated pure local factor model M0,4
n . For instance, in the case U.S.-U.K., the two common

factors closely track the U.S. level and the U.K. slope factors obtained from the specification M0,4
2 .

In we consider the joint dynamics of U.S. and Germany yield curves, the two common factors now

look like the first U.S. and the 4th German local factors provided by M0,4
2 . If we now focus on the

case U.S.-U.K.-GER, the two commons become similar to the fourth local GER. and the third

local U.S. factors, respectively. In the general 4-country case, the two commons are similar to the

firth local German and U.S. factors.

In summary, our empirical analysis highlights, first, the preference for MCTSM models with

rc = 2 common factors that we complete with a set of rℓ = 3 local factors in order to provide to

each single-country yield curve five explanatory factors as suggested by the recent works of Duffee

(2011) and Adrian, Crump, and Moench (2013). Second, we find that these common factors seem

to be local ones (significantly) loading on the other countries.

4.4 What Drives the Dependence Between International Yield Curves?

The identification restrictions adopted for our MCTSM model, and presented in Proposition 1,

set up three possible sources of dependence between international term structures: the presence

of common factors F
(c)
t having a direct impact on all yield curves through the matrix Λc of

common loadings, the unconstrained autoregressive matrix Φ allowing for causalities between all

(common and local) latent factors and the instantaneous correlations between local factors of

different countries (Ψij 6= 0). The purpose of this section is to empirically assess the relative

15



importance of these three channels in explaining term structures commonality.

In order to assess the importance of the first channel, namely the role played by Λc, we compare

(through AIC and AICb) aMCTSM model having rc = 2 (as suggested by our empirical analysis)

with another one with the same k but with rc = 0. As far as the relevance of the second and

third channel is concerned, we estimate MCTSMs in which we first assume Φ block-diagonal but

with the first rc columns unconstrained (Φbd, say) and, then, we leave Φ unconstrained but we

force Ψ̃η = I. In the former case, we turn off Granger-causalities between local factors of different

countries, given that we maintain causalities of common towards local factors in order to guarantee

a normalized estimator compatible with identification restrictions. In the latter specification, we

switch off only the instantaneous causalities between international local factors. Let us denote

this specifications Mrc,rℓ
n (Φbd, Ψ̃η) and Mrc,rℓ

n (Φ, I), respectively. It is easily seen, following the

same steps as in Appendix B, that the EM-based estimator of Φbd and Ψ̃η are given by:

Φ
(i+1)
bd,T = B

(i)
T A

(i)−1
T +K

(i)
Φ,T , Ψ̃

(i+1)
η,T = 1

T−1

(
C
(i)
T − B

(i)
T A

(i)−1
T B

(i)′
T +K

(i)
Φ,T A

(i)
T K

(i)′
Φ,T

)
, (11)

with:

vec(K
(i)
Φ,T ) := (A

(i)−1
T ⊗ Ψ

(i+1)
η,T )H′

Φ

[
HΦ (A

(i)−1
T ⊗ Ψ

(i+1)
η,T )H′

Φ

]−1 [
κΦ −HΦ vec(B

(i)
T A

(i)−1
T )

]
,

(12)

where Ψ
(i+1)
η,T is given in Proposition 2, and where HΦ is a d × k2 selection matrix such that:

HΦ vec (Φ) = κΦ , (13)

with Φ the unrestricted k × k autoregressive matrix and with κΦ the d-dimensional vector of

zeros that guarantees to satisfy the above described structure of Φbd at each iteration of the EM

algorithm7.

Regarding the role played by matrix of common loadings, if we look at Table 6 (focusing on

yield levels), and we compare the specification rc = 2 with the one with rc = 0 (and k = 8), in

the U.S.-U.K. case AIC rises from −359198 to −356674, and in the U.S.-GER. one it rises from

−372030 to −371226. In the 3-country case (k = 11), AIC moves from −529322 to −526322

while, in the 4-country case (k = 14), it increases from −691060 to −688300 (we reach similar

conclusions if we consider AICb).

As far as the role played by the autoregressive matrix Φ is concerned, the results obtained for

the case Mrc,rℓ
n (Φbd, Ψ̃η), presented in Table 7, are compared to those of Mrc,rℓ

n (Φ,Ψη), in order

to assess how much international local factors’ dependencies are of Granger-causality kind. Let

us focus again on the comparison between rc = 2 and rc = 0 and let us consider AIC, first. If we

7It is straightforward to verify that the normalization matrix A∗ of equation (10) automatically preserve the
structure of Φbd.
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look at the 2-country U.S.-U.K. case (U.S.-GER. case, respectively), we observe that AIC rises

of only 232 (598, respectively) while, when we close the first channel, the variation is 2524 (804,

respectively). If we move to the U.S.-U.K.-GER. case, AIC rises of 2164 while, when we force

Λc = 0 (and Φ unconstrained) the variation is 3000. In the 4-country case the magnitude of this

positive variation is 2482 instead of 2760. A different picture stand out if we take into account

interest rate persistence using AICb. Indeed, while we reach the same conclusion in the U.S.-U.K.

case (the first channel is more important than the second one), we end up with an opposite result

in the other cases. More precisely, in the U.S.-GER. case, AICb rises of 5864 while, when we

close the first channel, the variation is 1050. In the 3-country case, AICb rises of 3952 while,

forcing common loadings equal to zero, induce a variation of 2232. Lastly, in the 4-country case,

the size of this positive variation is 11924 instead of 4092 when we turn off common loadings. In

other words, once the large interest rate dependence is taken into account through the lens of the

bootstrap variant of AIC, a full AR matrix Φ seems to be (in general, but not systematically)

more important than Λc.

Once we move to the case Mrc,rℓ
n (Φ, I) (see Table 8), in order to assess the role played by

the correlation terms Ψij , we observe that, across the different number and set of countries, for

several combination of common and local factors and regardless the fact to use AIC or AICb, the

specification Mrc,rℓ
n (Φ,Ψη) is strongly preferred. Indeed, in the U.S.-U.K. case the AIC (AICb)

difference is now 11524 (7966), and in the in the U.S.-GER. case it is as big as 12486 (9938).

If we consider the U.S.-U.K.-GER. and the 4-country case, the magnitude of the AIC (AICb)

difference is 16802 (13678) and 25308 (19096), respectively. In addition, the fact to turn off the

instantaneous causalities across locals, namely to impose Ψij = 0, not only strongly induces the

model to significantly reduce its ability to match the data, but it provides reductions much larger

(in absolute value) than the ones we have when the two other channels of dependence are closed.

These results seem therefore to suggest that dependence between international yield curves

are, first of all, driven by the instantaneous correlations between international yield curves local

factors, while the second most important channel seems to be provided more by the factors’ (full)

autoregressive matrix Φ than by the matrix Λc of common loadings. In other words, common

factors seem to be a scarce resource that are needed to represent truly global correlations, but

they may be insufficient in their ability to represent all of the regional covariance structure.
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5 Conclusions and Further Developments

The purpose of this paper has been to specify, exploiting a linear Gaussian state-space approach,

the preferred combination of common and local factors that are required to explain international

yield curves dynamics, and to efficiently estimate by Kalman Filter the factor scores when small

cross-sectional and large time-series dimensions, as well as strong serial and cross-sectional depen-

dence, characterize the database of interest.

Our extensive empirical analysis on MCTSMs, allowing for Granger-causalities and instanta-

neous causalities across factors and exploiting a fast and powerful MLE approach based on the

EM algorithm and Kalman Filter-Smoother recursions, finds that the specification with rc = 2

and rℓ = 3 seems to be preferred to alternative ones (of similar complexity) with rc = 1 and

rc = 0. We also find that each common factor closely mimics (or is similar to) a local factor

extracted from a pure local factor model. This result comes from an inspection of the (optimally)

extracted time series of common and local factors. Indeed, the common factors turns out to be

almost identical, or to closely track, local factors extracted from the associated pure local factor

model. We also reach the conclusion that dependence across international yield curves are driven,

first, by the instantaneous correlation between local factors of different countries and, then, by

the (full) autoregressive matrix of latent factors and by the matrix of common loadings.

The purpose of future research works will be to exploit what we have learned from this work

in the specification and implementation of no-arbitrage international affine term structure models

with latent factors and/or with macro-financial variables.
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Appendix A Proof of Proposition 1

Consider the identification problem induced by a non-singular matrix A for which the model fitted

values remain unchanged when modifying factors and loadings because ΛB Ft = (ΛB A) (A
−1 Ft).

Because the matrix of loadings ΛB = [Λc Λl] must preserve the following block structure:

Λc = [Λc,1 . . . ,Λc,rc] =




Λ
(1)
c,1 Λ

(1)
c,2 . . . Λ

(1)
c,rc

Λ
(2)
c,1 Λ

(2)
c,2 . . . Λ

(2)
c,rc

...
...

. . .
...

Λ
(n)
c,1 Λ

(n)
c,2 . . . Λ

(n)
c,rc



, Λl =




Λ
(1)
l 0 . . . 0

0 Λ
(2)
l . . . 0

...
...

. . .
...

0 0 . . . Λ
(n)
l



. (A.1)

the matrix A has to be such that Λ∗
B = ΛB A has the same block structure (i.e., the same pattern

of zeros) as ΛB. More precisely, if we partition the matrix A into blocks of size rc, r1, . . . , rn as

follows:

A =




Acc Ac1 . . . Acn

A1c A11 . . . A1n

...
...

. . .
...

Anc An1 . . . Ann



.

where the subscript c denotes entries that impact common factors, then the condition Λ∗
B = ΛB A

forces A to be of the form:

A =




Acc 0 0 . . . 0

A1c A11 0 . . . 0

A2c 0 A22 . . . 0
...

...
...

. . .
...

Anc 0 0 . . . Ann




, (A.2)

and therefore the number of free parameters is now given by r∗ := (rc)
2+rc

(∑n
j=1 rj

)
+
∑n

j=1 r2j =

(rc k)+
∑n

j=1 r2j . Accordingly, r
∗ is also the number of constraints we have to impose on the latent

factors and/or the loadings in order to solve the identification problem of the international yield

curve model (1)-(2)-(3) and obtain a unique model representation. The restrictions we impose are

the following:

• E
(
η
(c)
t η

(c)′
t

)
= Irc and E

(
η
(j)
t η

(j)′
t

)
= Irj for all j ∈ {1, . . . , n}, and from this set of

conditions we obtain rc(rc+1)
2

+
∑n

j=1
rj(rj+1)

2
restrictions;

• E
(
η
(c)
t η

(j)′
t

)
= 0 for all j ∈ {1, . . . , n}, and here the number of restrictions is rc (

∑n
j=1 rj);

• (Λ′
cΛc) and Λ

(j)′
l Λ

(j)
l for all j ∈ {1, . . . , n}, have to be all diagonal; these conditions imply
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rc(rc−1)
2

+
∑n

j=1
rj(rj−1)

2
restrictions.

The total number of restrictions is thus exactly r∗. The first two sets of conditions force Ψη to

satisfy relation (4), while the last one implies Λ′
BΛB = ΠB.

Appendix B Proof of Proposition 2

(b)

Denoting Ỹt = Yt − µ, the joint log-Likelihood function of Yt and Ft (i.e., the complete data

likelihood function) can be written in the following way:

lnL(Y T , F T ) = −T
2
ln |ΩB| −

1
2

∑T
t=1(Ỹt − ΛBFt)

′Ω−1
B (Ỹt − ΛBFt)

−T−1
2

ln |Ψη| −
1
2

∑T
t=2(Ft − ΦFt−1)

′Ψ−1
η (Ft − ΦFt−1)

−1
2
ln |V1| −

1
2
(F1 − π1)

′V −1
1 (F1 − π1)−

T (N+k)
2

ln(2 π)

(A.3)

Using the following identities (with Ft|T = Eθ

[
Ft | Y

T
]
):

Ỹt − ΛBFt = Ỹt − ΛBFt|T + ΛB(Ft|T − Ft)

(A.4)

Ft − ΦFt−1 = Ft|T − ΦFt−1|T − (Ft|T − Ft) + Φ(Ft−1|T − Ft−1)

the conditional expectation E[lnL(Y T , F T ) | Y T ], namely, the criterion maximized by the EM
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algorithm, is given by:

E[lnL(Y T , F T )|Y T ]

= −1
2
ln |V1| −

1
2
(F1 − π1)

′V −1
1 (F1 − π1)−

T (N+k)
2

ln(2 π)− T
2
ln |ΩB| −

T−1
2

ln |Ψη|

−1
2
Tr

{
Ω−1

B

[(∑T
t=1 Ỹt Ỹ

′
t

)
−

(∑T
t=1 Ỹt F

′
t|T

)
Λ′

B − ΛB

(∑T
t=1 Ft|T Ỹ ′

t

)

+ΛB

(∑T
t=1 Ft|TF

′
t|T + Pt|T

)
Λ′

B

]}

−1
2
Tr

{
Ψ−1

η

[(∑T
t=2 Ft|TF

′
t|T + Pt|T

)
+ Φ

(∑T
t=2 Ft−1|T F ′

t−1|T + Pt−1|T

)
Φ′

−

(∑T
t=2 Ft|T F ′

t−1|T + P ′
t−1,t|T

)
Φ′ − Φ

(∑T
t=2 Ft−1|TF

′
t|T + Pt−1,t|T

)]}
.

(A.5)

If we consider, for a given ΛB, the first order conditions
∂E[lnL(Y T ,FT )|Y T ]

∂ µ
= 0 and ∂E[lnL(Y T ,FT )|Y T ]

∂ ΩB
=

0, we find

µT = Y T − ΛB F T , where Y T := 1
T

(∑T
t=1 Yt

)
, F T := 1

T

(∑T
t=1 Ft|T

)

ΩB,T = 1
T

{[∑T
t=1(Yt − Y T ) (Yt − Y T )

′

]
− ΛB,T

[∑T
t=1(Ft|T − F T )(Yt − Y T )

′

]}
.

(A.6)

The solution of the maximization problem with respect to Φ and Ψη provides the ΦT and Ψη,T

presented in equation (6). Then, given µT , if we focus on the matrix of factor loadings, the term

of (A.5) that depends on ΛB only, can be written in the following way:

−1
2
Tr

{
Ω−1

B

[
−

(∑T
t=1 Ỹt F

′
t|T

)
Λ′

B − ΛB

(∑T
t=1 Ft|T Ỹ ′

t

)

+ΛB

(∑T
t=1 Ft|T F ′

t|T

)
Λ′

B +
∑T

t=1 ΛBPt|TΛ
′
B

]}

= −1
2
Tr

{
Ω−1

B

[
−DΛ′

B − ΛB D
′ + ΛB C Λ′

B

]}
,

(A.7)
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where:

C =
∑T

t=1(Ft|T − F T ) (Ft|T − F T )
′ + Pt|T , D =

∑T
t=1(Yt − Y T ) (Ft|T − F T )

′ , (A.8)

and the EM-based estimator of ΛB is typically determined by solving the following problem:

minΛB

1
2
Tr

{
Ω−1

B

[
−DΛ′

B − ΛB D
′ + ΛB C Λ′

B

]}
. (A.9)

Nevertheless, this problem can be equivalently solved as a minimization problem with respect to

the unconstrained matrix of loadings Λ, that we partition (with obvious notation) as follows:

Λ =




Λc1 Λ11 Λ12 . . . Λ1n

Λc2 Λ21 Λ22 . . . Λ2n

...
...

...
. . .

...

Λcn Λn1 . . . . . . Λnn




, (A.10)

under the equality constraint:

HΛ vec (Λ) = κΛ (A.11)

where HΛ is a (ϑ × Nk) selection matrix that select from vec (Λ) only the matrices Λij such that

i 6= j, i, j ∈ {1, . . . , n} and κΛ is a ϑ-dimensional vector of zeros that forces Λ to be equal to ΛB.

The Lagrangian function is:

L(Λ) := 1
2
Tr

{
Ω−1

[
−DΛ′ − ΛD′ + Λ C Λ′

]}
− λ′

[
HΛ vec (Λ)− κΛ

]
, (A.12)

and the associated first order conditions are:





[
vec

{[(
C Λ′ −D

)
Ω−1

]′}]′
− λ′ HΛ = 0 ,

HΛ vec (Λ) = κΛ .

(A.13)

If we rewrite the first equation in (A.13) as follows:

(
C ⊗ Ω−1

)
vec

(
Λ

)
− vec

(
Ω−1 D

)
= H′

Λ λ , (A.14)

we pre-multiply it by HΛ

(
C
−1

⊗ Ω
)
and then we substitute from the second equation in (A.13)
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we find:

λ =

[
HΛ

(
C
−1

⊗ Ω

)
H′

Λ

]−1{
κΛ −HΛ

(
C
−1

⊗ Ω

)
vec

(
Ω−1D

)}
. (A.15)

We now substitute (A.15) in (A.14):

(
C ⊗ Ω−1

)
vec

(
Λ

)
− vec

(
Ω−1D

)
= H′

Λ

[
HΛ

(
C
−1

⊗ Ω

)
H′

Λ

]−1

×

{
κΛ −HΛ

(
C
−1

⊗ Ω

)
vec

(
Ω−1D

)}
,

(A.16)

and let us rewrite vec(Ω−1 D) = (D′ ⊗ Ω−1) vec(IN).

Then, the term (C
−1

⊗ Ω) vec(Ω−1 D) can be written as follows:

(
C
−1

⊗ Ω

)
(D′ ⊗ Ω−1) vec(IN) =

(
C
−1

D′ ⊗ ΩΩ−1

)
vec(IN)

=

(
C
−1

D′ ⊗ I

)
vec(IN)

= vec
(
DC

−1
)
.

(A.17)

If we substitute (A.17) in (A.16) and solve for vec(Λ) we find that the estimator of ΛB is:

vec (ΛB,T ) = vec
(
DC

−1
)
+ (C

−1
⊗ Ω)H′

Λ

[
HΛ (C

−1
⊗ Ω)H′

Λ

]−1 [
κΛ −HΛ vec(DC

−1
)
]
.

(A.18)

Now, if we substitute (A.18) into (A.6) we find the estimator of the variance-covariance matrix of

the measurement noise:

ΩB,T = 1
T

(
ET −DT C

−1

T D′
T +KΛ,T CT K′

Λ,T

)
, (A.19)

where vec(KΛ,T ) = (C
−1

⊗ Ω)H′
Λ

[
HΛ (C

−1
⊗ Ω)H′

Λ

]−1 [
κΛ −HΛ vec(DC

−1
)
]
.

23



(c)

For any given full rank k × k matrix A satisfying the structure (A.2), for a given factor Ft and

associated smoothed value Ft|T = Eθ

[
Ft | Y

T
]
we have the following re-parameterizations:

- F ∗
t = A−1 Ft and F ∗

t|T := Eθ

[
F ∗
t | Y

T
]
= Eθ

[
A−1 Ft | Y

T
]
= A−1 Ft|T ;

- P ∗
t|T := E[(F ∗

t − F ∗
t|T )(F

∗
t − F ∗

t|T )
′ | Y T ] = A−1 Pt|T (A−1)′ and P ∗

t−1,t|T = A−1 Pt−1,t|T (A−1)′;

- Λ∗
B,T := ΛB,T A, Φ∗

T := A−1ΦT A, Ψ∗
η,T := A−1Ψη,T (A−1)′, µ∗

T = µT and Ω∗
B,T = ΩB,T .

Let us assume now to have a given set of input parameters θ
(i)
EM , satisfying the identification

restrictions R.i) and R.ii), that we use to obtain F
(i)
t|T := (F

(i)
t|T , P

(i)
t|T , P

(i)
t−1,t|T ) from the Kalman

Filter and Kalman Smoother (Expectation step i). Given F
(i)
t|T , from the maximization step we

obtain θ
(i+1)
EM but, at the same time, the updated parameter values do not satisfy the identification

conditions anymore. More precisely, we have Ψη,T 6= ΨB and Λ
(i+1)′
B,T Λ

(i+1)
B,T 6= ΠB. This means that

we have to intervene in the EM recursions is such a way to guarantee, at each iteration, that the

identification conditions be satisfied. This requirement is satisfied by means of the following steps:

• orthogonalizing common and local factor residuals: here we force common-factor autore-

gressive residuals to be uncorrelated with local-factor residuals in such a way to have the

same patterns of zeros as ΨB. Let us define the following matrix:

A−1
⊥ :=




Irc 0 . . . 0

−
(
Ψ

c(i+1)
10,T

) [
(Ψ

c(i+1)
00,T )

]−1

Ir1 . . . 0
...

...
. . .

...

−
(
Ψ

c(i+1)
n0,T

) [
(Ψ

c(i+1)
00,T )

]−1

0 . . . Irn



. (A.20)

such that

Ψ
o(i+1)
η,T := (A−1

⊥ ) Ψ
(i+1)
η,T (A−1

⊥ )′ =




Ψ
c(i+1)
00,T 0 . . . 0

0 Ψ
o(i+1)
11,T . . . Ψ

o(i+1)
1n,T

...
...

. . .
...

0 Ψ
o(i+1)
n1,T . . . Ψ

o(i+1)
nn,T




, (A.21)

has the desired form, that is the same blocks of zeros as ΨB.

• orthogonalizing and normalizing within autoregressive residual blocks: now we force the ma-

trices in the main diagonal of (A.21) to be the identity matrix by applying a Jordan decom-

position to each of them. Let us denote by Uη,c(i+1) and Dη,c(i+1) the matrix of eigenvec-

tors and eigenvalues of Ψ
c(i+1)
00,T , respectively. Let us define the rotation matrix A−1

η,c(i+1) :=
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(
Uη,c(i+1) D

−1/2
η,c(i+1)

)′

and thus we have A−1
η,c(i+1) Ψ

c(i+1)
00,T

(
A−1

η,c(i+1)

)′

= Irc . Let us now denote

by Uη,i(i+1) and Dη,i(i+1) the matrix of eigenvectors and eigenvalues of Ψ
o(i+1)
jj,T , respectively,

for any j ∈ {1, . . . , n}. Let us define the rotation matrix A−1
η,j(i+1) :=

(
Uη,j(i+1) D

−1/2
η,j(i+1)

)′

and

thus we have A−1
η,j(i+1)Ψ

o(i+1)
jj,T

(
A−1

η,j(i+1)

)′

= Irj . We define the rotation matrix for Ψ
o(i+1)
η,T as

the block diagonal matrix

A−1
η,(i+1) := diag

[
A−1

η,c(i+1), A
−1
η,1(i+1), . . . , A

−1
η,n(i+1)

]
such that:

Ψ
oo(i+1)
T := (A−1

η,(1)) Ψ
o(i+1)
T (A−1

η,(i+1))
′ =




Irc 0 0 . . . 0

0 Ir1 Ψ
oo(i+1)
12,T . . . Ψ

oo(i+1)
1n,T

0 Ψ
oo(i+1)
21,T Ir2 . . . Ψ

oo(i+1)
2n,T

...
...

...
. . .

...

0 Ψ
oo(i+1)
n1,T Ψ

oo(i+1)
n2,T . . . Irn




= ΨB .

(A.22)

In a more compact form, we define the factor’s noise rotation matrix (Ao
η,(i+1))

−1 := A−1
η,(i+1) A

−1
⊥ =

(A⊥ Aη,(i+1))
−1 such that (Ao

η,(i+1))
−1Ψ

(i+1)
η,T [(Ao

η,(i+1))
−1]′ = ΨB.

• forcing orthogonality within blocks of loadings: here we intervene in the matrix of factor

loadings, given that Λ
(i+1)′
B,T Λ

(i+1)
B,T 6= ΠB. We know that, given the previously defined ma-

trix (Ao
η,(i+1))

−1 rotating factor’s noise, the associated rotation of the loadings is given by

Λ
o(i+1)
B,T := Λ

(i+1)
B,T Ao

η,(i+1), where Ao
η,(i+1) = A⊥ Aη,(i+1).

The matrix Λ
o(i+1)′

B,T Λ
o(i+1)
B,T has the same blocks of zeros as ΠB but the matrices in the main

diagonal are not diagonal matrices. Let us perform a Jordan decomposition of each of them.

Let us diagonalize first the positive definite symmetric matrix Λ
o(i+1)′
c,B,T Λ

o(i+1)
c,B,T associated to

common factors: 



Uo′
c

(
Λ

o(i+1)′
c,B,T Λ

o(i+1)
c,B,T

)
Uo
c = Do

c

Uo′
c Uo

c = Uo
c U

o′
c = Irc , Uo′

c = (Uo
c )

−1 ,

and any positive definite symmetric matrix Λ
o(i+1)′
j,l,B,T Λ

o(i+1)
j,l,B,T associated to the local factors of

any country j ∈ {1, . . . , n}:





Uo′
j

(
Λ

o(i+1)′
j,l,B,T Λ

o(i+1)
j,l,B,T

)
Uo
j = Do

j

Uo′
j Uo

j = Uo
j U

o′
j = Irj , Uo′

j = (Uo
j )

−1 ,

and let us define the matrix (Ao
c,l,(i+1))

−1 := diag
[
(Uo

c,(i+1))
−1, (Uo

1,(i+1))
−1, . . . , (Uo

n,(i+1))
−1
]
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such that (Ao
c,l,(i+1))

−1 = Ao′
c,l,(i+1). We define

Λ
∗(i+1)
B,T := Λ

o(i+1)
B,T Ao

c,l,(i+1) = Λ
(i+1)
B,T Ao

η,(i+1) A
o
c,l,(i+1) = Λ

(i+1)
B,T

(
A⊥Aη,(i+1) A

o
c,l,(i+1)

)

(A.23)

and we have

Λ
∗(i+1)′
B,T Λ

∗(i+1)
B,T = Ao′

c,l,(i+1)

(
Λ

o(i+1)′
j,l,B,T Λ

o(i+1)
j,l,B,T

)
Ao

c,l,(i+1) = ΠB . (A.24)

This matrix Ao
c,l,(i+1) does not perturb the structure already imposed on the factor’s noise

variance-covariance matrix given that, by block orthogonality, we have

Ψ
∗(i+1)
η,T := (Ao

c,l,(i+1))
−1Ψ

oo(1)
η,T [(Ao

c,l,(i+1))
−1]′ = Ao′

c,l,(i+1)Ψ
oo(i+1)
η,T Ao

c,l,(i+1) = ΨB . (A.25)

Thus, the normalization matrix A∗ :=
(
A⊥ Aη,(i+1) A

o
c,l,(i+1)

)
is such that Λ

∗(i+1)
B,T and Ψ

∗(i+1)
η,T

satisfy the indentification restrictions R.i) and R.ii), respectively. Moreover, it implies the factor’s

rotation F ∗
t|T := (A∗)−1 Ft|T and the rotated AR matrix Φ

∗(i+1)
T := (A∗)−1Φ

(i+1)
T A∗.

The uniqueness of the normalization matrix A∗ is given by the fact that the diagonal entries in

(5) are arranged in descending order and are distinct within each block. The latter condition is

satisfied by estimates from data produced by a continuous non-degenerate model.
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Appendix C A 3-Step Principal Factor Estimation Procedure

The purpose of this appendix is to briefly present a Principal Factor (PF ) estimation procedure

adapted to a linear Gaussian state-space model with a block structure characterizing the matrix of

factor loadings (i.e., in presence of VAR distributed common and local factors). This estimation

methodology is based on the following three steps:

First Step: we estimate Λc and F
(c)
t by PF assuming Λl = 0. More precisely, denoting Ỹt =

Yt − µ and for any t ∈ {1, . . . , T}, we have F
∗(c)
t := D

−1/2
c P ′

cỸt and ΛPF
c,T := PcD

1/2
c where

Dc = diag(λ
(c)
1 , . . . , λ

(c)
rc ) is the diagonal matrix of eigenvalues (in decreasing order of magnitude)

of the variance-covariance matrix denoted S of the centered data Ỹt, and where Pc = (p
(c)
1 , . . . , p

(c)
rc )

is the N × rc orthogonal matrix of associated unitary eigenvectors. Given F
∗(c)
t and Λc,T , we

calculate the errors Ỹ e
t := Yt − µPF

T − ΛPF
c,T F

∗(c)
t , with µPF

T := 1
T

∑T
t=1 Yt, and the associated

variance-covariance matrix denoted Se
j for any country j ∈ {1, . . . , n}.

Second Step: we estimate Λ
(j)
l and F

(l)
j,t by PF on Se

j and for any j ∈ {1, . . . , n}. We obtain

F
∗(l)
j,t := (D

(j)
l )−1/2 P

(j)′
l Ỹ

(j)
t and ΛPF

j,l,T := P
(j)
l (D

(j)
l )1/2 where D

(j)
l := diag(λ

(j)
1,l , . . . , λ

(j)
rj ,l

) denotes

the diagonal matrix of eigenvalues (in decreasing order of magnitude), and P
(j)
l = (p

(j)
1,l , . . . , p

(j)
rj ,l

)

the τ × rj orthogonal matrix of associated unitary eigenvectors of Se
j .

Third Step: given F ∗
t =

(
F

∗(c)′
t , F

∗(l)′
t

)′

, where F
∗(l)
t =

(
F

∗(l)′
1,t , . . . , F

∗(l)′
n,t

)′

, µPF
T and ΛPF

B,T :=

[Λc,T Λl,T ], we obtain ΩPF
B,T from yield errors Yt − µPF

T − ΛPF
B,T F ∗

t while, from the regression of F ∗
t

on F ∗
t−1, we estimate ΦPF

T and then ΨPF
η,T from associated model residuals.

Observe that, with this estimation procedure, the identification restrictions may be taken to be:

- E

(
F

(c)
t F

(c)′
t

)
= Irc and E

(
F

(l)
j,t F

(l)′
j,t

)
= Irj for all j ∈ {1, . . . , n};

- E

(
F

(c)
t F

(l)′
j,t

)
= 0 for all j ∈ {1, . . . , n};

- (Λ′
cΛc) and Λ

(j)′
l Λ

(j)
l , for all j ∈ {1, . . . , n}, have to be diagonal.

That is, we naturally require to the marginal variance-covariance matrix of the latent factors,

denoted Ψf , to be equal to ΨB.
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Appendix D International Treasury Yields Summary Statistics and

Graphs

Maturity (Months) Median Mean St. Dev. Min Max ρ(1) ρ(4) ρ(12) ρ(36)
U.S.
12 5.00 4.71 2.17 0.26 9.74 0.99 0.98 0.94 0.80
24 5.18 5.00 2.10 0.48 9.70 0.99 0.98 0.93 0.80
36 5.40 5.25 2.01 0.69 9.65 0.99 0.98 0.93 0.81
48 5.56 5.45 1.94 0.94 9.60 0.99 0.98 0.93 0.82
60 5.64 5.61 1.87 1.21 9.54 0.99 0.98 0.93 0.83
72 5.74 5.75 1.81 1.51 9.56 0.99 0.98 0.93 0.83
84 5.82 5.85 1.76 1.75 9.64 0.99 0.98 0.93 0.84
96 5.88 5.94 1.72 1.95 9.70 0.99 0.98 0.93 0.84
108 5.93 6.01 1.69 2.14 9.74 0.99 0.98 0.94 0.85
Germany
12 3.89 4.63 2.02 0.67 9.11 0.99 0.99 0.96 0.85
24 4.09 4.53 1.90 1.16 8.80 0.99 0.99 0.95 0.84
36 4.41 4.73 1.79 1.59 8.81 0.99 0.99 0.95 0.84
48 4.65 4.91 1.71 1.94 8.80 0.99 0.99 0.95 0.85
60 4.91 5.07 1.65 2.24 8.79 0.99 0.99 0.95 0.86
72 5.08 5.20 1.60 2.46 8.81 0.99 0.99 0.96 0.86
84 5.20 5.32 1.57 2.64 8.84 0.99 0.99 0.96 0.87
96 5.36 5.41 1.54 2.78 8.86 0.99 0.99 0.96 0.87
108 5.43 5.50 1.52 2.85 8.88 0.99 0.99 0.96 0.88
U.K.
12 5.86 6.57 2.92 0.56 14.36 0.99 0.98 0.93 0.82
24 6.19 6.62 2.67 1.18 13.74 0.99 0.98 0.93 0.83
36 6.23 6.69 2.54 1.72 13.34 0.99 0.98 0.93 0.84
48 6.28 6.74 2.47 2.07 13.09 0.99 0.98 0.94 0.85
60 6.22 6.78 2.43 2.28 12.93 0.99 0.98 0.94 0.86
72 6.14 6.81 2.40 2.45 12.81 0.99 0.98 0.95 0.87
84 6.09 6.83 2.39 2.63 12.69 0.99 0.98 0.95 0.88
96 6.09 6.84 2.37 2.82 12.57 0.99 0.98 0.95 0.89
108 6.07 6.84 2.35 3.00 12.43 0.99 0.98 0.96 0.89
Japan
12 0.59 1.91 2.24 0.01 8.35 0.99 0.99 0.97 0.91
24 0.78 2.01 2.17 0.01 8.28 0.99 0.99 0.97 0.90
36 0.99 2.18 2.12 0.07 8.21 0.99 0.99 0.96 0.90
48 1.25 2.36 2.07 0.10 8.13 0.99 0.99 0.96 0.90
60 1.47 2.52 2.03 0.15 8.06 0.99 0.99 0.96 0.90
72 1.62 2.68 1.99 0.20 7.98 0.99 0.99 0.96 0.90
84 1.74 2.83 1.96 0.26 7.90 0.99 0.99 0.96 0.90
96 1.88 2.96 1.93 0.33 7.82 0.99 0.99 0.96 0.91
108 1.99 3.08 1.90 0.40 7.74 0.99 0.99 0.96 0.91

Table 1: Summary Statistics for bond yields of U.S., Germany, U.K. and Japan daily yields. ρ(ℓ) denotes the
sample autocorrelation for a number of lags ℓ measured in days. The sample period is from January 1, 1986 to
December 31, 2009. Yields are in annual basis.

28



Treasury yield curves across countries and time
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Figure 1: Treasury yield curves of U.S., Germany, Japan and U.K. and for residual maturities 1, 5 and 9 years.
The term structures of interest rates of U.S., Germany and Japan are taken from while U.K. term structures are
taken from Pegoraro, Siegel, and Tiozzo Pezzoli (2012), while U.K term structures are taken from the Bank of
England data set.

.
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Appendix E Maximum Log-Likelihood of MCTSMs and Model Se-

lection

Mrc,rℓ
n (Φ,Ψη) for yield levels;

The 2-Country Case

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 159778 -319286 -322112 0 3 3 6 135 164955 -329640 -333404
0 4 4 8 188 178525 -356674 -360092 0 4 4 8 188 185801 -371226 -375164
0 5 5 10 251 191826 -383150 -386914 0 5 5 10 251 198543 -396584 -401122
1 2 2 5 119 149652 -299066 -301856 1 2 2 5 119 153828 -307418 -310800
1 3 3 7 166 170927 -341522 -344418 1 3 3 7 166 176150 -351968 -356308
1 4 4 9 223 186159 -371872 -375132 1 4 4 9 223 192456 -384466 -388910
2 1 1 4 107 138919 -277624 -280736 2 1 1 4 107 140508 -280802 -283416
2 2 2 6 148 160764 -321232 -324218 2 2 2 6 148 165476 -330656 -334980
2 3 3 8 199 179798 -359198 -361954 2 3 3 8 199 186214 -372030 -376214

U.S.− JAP. U.K.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 162186 -324102 -325156 0 3 3 6 135 160199 -320128 -322470
0 4 4 8 188 184013 -367650 -369030 0 4 4 8 188 177953 -355530 -358312
0 5 5 10 251 197486 -394470 -397430 0 5 5 10 251 190553 -380604 -384090
1 2 2 5 119 151547 -302856 -302432 1 2 2 5 119 151689 -303140 -305824
1 3 3 7 166 173371 -346410 -348280 1 3 3 7 166 170884 -341436 -344394
1 4 4 9 223 190845 -381244 -383178 1 4 4 9 223 184642 -368838 -371960
2 1 1 4 107 140173 -280132 -280060 2 1 1 4 107 138761 -277308 -280490
2 2 2 6 148 162576 -324856 -326524 2 2 2 6 148 161144 -321992 -325470
2 3 3 8 199 184357 -368316 -369678 2 3 3 8 199 179642 -358886 -361306

GER.− JAP. U.K.− JAP.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 162666 -325062 -328264 0 3 3 6 135 157484 -314698 -315300
0 4 4 8 188 183493 -366610 -369434 0 4 4 8 188 176205 -352034 -350272
0 5 5 10 251 195508 -390514 -394096 0 5 5 10 251 188779 -377056 -378448
1 2 2 5 119 151143 -302048 -304832 1 2 2 5 119 147837 -295436 -297934
1 3 3 7 166 173732 -347132 -350520 1 3 3 7 166 169090 -337848 -339070
1 4 4 9 223 189533 -378620 -382858 1 4 4 9 223 182946 -365446 -364368
2 1 1 4 107 140653 -281092 -281184 2 1 1 4 107 136423 -272632 -274402
2 2 2 6 148 162903 -325510 -328752 2 2 2 6 148 158907 -317518 -319896
2 3 3 8 199 183775 -367152 -370498 2 3 3 8 199 177459 -354520 -352702

Table 2: For any given set of n = 2 countries and for any given number of latent factors k, shared between
rc common factors and rℓ local factors, we provide the number of parameters (Ξ), the maximum value of the

log-likelihood function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant

(AICb) of MCTSMs Mrc,rℓ
n (Φ,Ψη). We use for any country weekly yields (in level) observed from January 1,

1986 to December 31, 2009 (1252 observations) and with residual maturities from 1 to 9 years.
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The 3-Country and 4-Country Case

U.S.− U.K.−GER. U.S.− U.K.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 3 9 243 242733 -484980 -491432 0 3 3 3 9 243 239937 -479388 -483898
0 4 4 4 12 354 271533 -542358 -549436 0 4 4 4 12 354 269563 -538418 -541068
0 5 5 5 15 489 290810 -580642 -587562 0 5 5 5 15 489 288959 -576940 -583108
1 2 2 2 7 196 223047 -445702 -452496 1 2 2 2 7 196 219448 -438504 -442416
1 3 3 3 10 289 254223 -507868 -514970 1 3 3 3 10 289 251755 -502932 -507008
1 4 4 4 13 406 278610 -556408 -564154 1 4 4 4 13 406 276865 -552918 -556256
2 1 1 1 5 163 197180 -394034 -397888 2 1 1 1 5 163 195551 -390776 -393626
2 2 2 2 8 238 234589 -468702 -476422 2 2 2 2 8 238 231298 -462120 -468380
2 3 3 3 11 337 264618 -529322 -535750 2 3 3 3 11 337 262946 -525218 -528064

U.S.−GER.− JAP. U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 3 9 243 245072 -489658 -496280 0 3 3 3 9 243 240351 -480216 -486776
0 4 4 4 12 354 276840 -552972 -559126 0 4 4 4 12 354 269122 -537536 -541712
0 5 5 5 15 489 295646 -590314 -597880 0 5 5 5 15 489 287695 -574412 -580700
1 2 2 2 7 196 222296 -444200 -449490 1 2 2 2 7 196 219371 -438350 -445270
1 3 3 3 10 289 256369 -512160 -519226 1 3 3 3 10 289 252061 -503544 -509000
1 4 4 4 13 406 283476 -566140 -572512 1 4 4 4 13 406 275945 -551078 -556400
2 1 1 1 5 163 198341 -396350 -399524 2 1 1 1 5 163 196220 -392114 -397642
2 2 2 2 8 238 234520 -468564 -475800 2 2 2 2 8 238 232278 -464080 -471688
2 3 3 3 11 337 267502 -534330 -541276 2 3 3 3 11 337 262646 -524618 -530336

U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 r4 k Ξ L(θ̂MLE
T ) AIC AICb

0 3 3 3 3 12 378 323397 -646038 -655300
0 4 4 4 4 16 568 362485 -723834 -733018
0 5 5 5 5 20 802 388039 -774474 -783988
1 2 2 2 2 9 285 290509 -580448 -590858
1 3 3 3 3 13 439 334773 -668668 -678682
1 4 4 4 4 17 637 369489 -737704 -747770
2 1 1 1 1 6 222 255090 -509736 -516604
2 2 2 2 2 10 340 303748 -606816 -618450
2 3 3 3 3 14 502 346032 -691060 -700900

Table 3: For any given set of n = 3 and n = 4 countries and for any given number of latent factors k, shared
between rc common factors and rℓ local factors, we provide the number of parameters (Ξ), the maximum value

of the log-likelihood function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap

variant (AICb), of MCTSMs Mrc,rℓ
n (Φ,Ψη). We use for any country weekly yields (in level) observed from

January 1, 1986 to December 31, 2009 (1252 observations) and with residual maturities from 1 to 9 years.
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Mrc,rℓ
n (Φ,Ψη) for yield differences

The 2-Country Case

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 178797 -357324 -363034 0 3 3 6 135 180839 -361408 -367448
0 4 4 8 188 192625 -384874 -388406 0 4 4 8 188 194919 -389462 -392958
0 5 5 10 251 201177 -401852 -405164 0 5 5 10 251 205097 -409692 -413870
1 2 2 5 119 172329 -344420 -350652 1 2 2 5 119 172591 -344944 -349458
1 3 3 7 166 186301 -372270 -376756 1 3 3 7 166 188330 -376328 -381174
1 4 4 9 223 197519 -394592 -398148 1 4 4 9 223 199857 -399268 -403090
2 1 1 4 107 164085 -327956 -332634 2 1 1 4 107 164296 -328378 -331552
2 2 2 6 148 179358 -358420 -361948 2 2 2 6 148 180856 -361416 -367574
2 3 3 8 199 192670 -384942 -388464 2 3 3 8 199 194948 -389498 -393066

U.S.− JAP. U.K.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 180717 -361164 -366994 0 3 3 6 135 178714 -357158 -362968
0 4 4 8 188 194520 -388664 -391706 0 4 4 8 188 191642 -382908 -386264
0 5 5 10 251 204786 -409070 -412776 0 5 5 10 251 200250 -399998 -403584
1 2 2 5 119 172463 -344688 -349080 1 2 2 5 119 172174 -344110 -350110
1 3 3 7 166 188187 -376042 -380574 1 3 3 7 166 185104 -369876 -374526
1 4 4 9 223 199491 -398536 -401942 1 4 4 9 223 196562 -392678 -396470
2 1 1 4 107 164319 -328424 -331868 2 1 1 4 107 163212 -326210 -332166
2 2 2 6 148 180722 -361148 -367048 2 2 2 6 148 178676 -357056 -362906
2 3 3 8 199 194558 -388718 -391732 2 3 3 8 199 191685 -382972 -386440

GER.− JAP. U.K.− JAP.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 180588 -360906 -366592 0 3 3 6 135 178545 -356820 -362294
0 4 4 8 188 193529 -386682 -389722 0 4 4 8 188 191247 -382118 -385060
0 5 5 10 251 203834 -407166 -411104 0 5 5 10 251 199937 -399372 -402502
1 2 2 5 119 171453 -342668 -347142 1 2 2 5 119 172003 -343768 -347496
1 3 3 7 166 187193 -374054 -378512 1 3 3 7 166 184927 -369522 -373960
1 4 4 9 223 198503 -396560 -399956 1 4 4 9 223 196218 -391990 -395446
2 1 1 4 107 164216 -328218 -331524 2 1 1 4 107 163342 -326470 -332160
2 2 2 6 148 180611 -360926 -366600 2 2 2 6 148 178629 -356962 -362546
2 3 3 8 199 193539 -386680 -389714 2 3 3 8 199 191271 -382144 -385144

Table 4: For any given set of n = 2 countries and for any given number of latent factors k, shared between
rc common factors and rℓ local factors, we provide the number of parameters (Ξ), the maximum value of the

log-likelihood function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant

(AICb), of MCTSMs Mrc,rℓ
n (Φ,Ψη). We use for any country weekly yields (in difference) observed from January

1, 1986 to December 31, 2009 (1252 observations) and with residual maturities from 1 to 9 years.
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The 3-Country and 4-Country Case

U.S.− U.K.−GER. U.S.− U.K.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 3 9 243 269345 -538204 -547028 0 3 3 3 9 243 269141 -537796 -546420
0 4 4 4 12 354 289903 -579098 -584214 0 4 4 4 12 354 289437 -578166 -582962
0 5 5 5 15 489 303370 -605762 -611596 0 5 5 5 15 489 302932 -604886 -610362
1 2 2 2 7 196 254623 -508854 -516378 1 2 2 2 7 196 254330 -508268 -515792
1 3 3 3 10 289 276859 -553140 -560646 1 3 3 3 10 289 276627 -552676 -558732
1 4 4 4 13 406 295056 -589300 -594850 1 4 4 4 13 406 294216 -587620 -592986
2 1 1 1 5 163 238002 -475678 -480106 2 1 1 1 5 163 238033 -475740 -480960
2 2 2 2 8 238 262827 -525178 -534116 2 2 2 2 8 238 262595 -524714 -533586
2 3 3 3 11 337 283347 -566020 -572388 2 3 3 3 11 337 283067 -565460 -571926

U.S.−GER.− JAP. U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 3 9 243 271224 -541962 -550812 0 3 3 3 9 243 269102 -537718 -546316
0 4 4 4 12 354 291724 -582740 -587990 0 4 4 4 12 354 288506 -576304 -581190
0 5 5 5 15 489 306868 -612758 -618998 0 5 5 5 15 489 301962 -602946 -608724
1 2 2 2 7 196 253829 -507266 -513396 1 2 2 2 7 196 253412 -506432 -513882
1 3 3 3 10 289 278698 -556844 -564380 1 3 3 3 10 289 275679 -550780 -557998
1 4 4 4 13 406 296510 -592208 -597602 1 4 4 4 13 406 293252 -585692 -591232
2 1 1 1 5 163 238028 -475730 -479152 2 1 1 1 5 163 237111 -473896 -478184
2 2 2 2 8 238 262981 -525486 -533022 2 2 2 2 8 238 262469 -524462 -533278
2 3 3 3 11 337 285356 -570038 -576552 2 3 3 3 11 337 282110 -563546 -569884

U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 r4 k Ξ L(θ̂MLE
T ) AIC AICb

0 3 3 3 3 12 378 359853 -718950 -730844
0 4 4 4 4 16 568 386765 -772394 -779328
0 5 5 5 5 20 802 403614 -805624
1 2 2 2 2 9 285 336575 -672580 -680120
1 3 3 3 3 13 439 367232 -733586 -744314
1 4 4 4 4 17 637 391400 -781526 -788674
2 1 1 1 1 6 222 311688 -622932 -628596
2 2 2 2 2 10 340 344911 -689142 -699856
2 3 3 3 3 14 502 373710 -746416 -755034

Table 5: For any given set of n = 3 and n = 4 countries and for any given number of latent factors k, shared
between rc common factors and rℓ local factors, we provide the number of parameters (Ξ), the maximum value

of the log-likelihood function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap

variant (AICb), of MCTSMs Mrc,rℓ
n (Φ,Ψη). We use for any country weekly yields (in difference) observed from

January 1, 1986 to December 31, 2009 (1252 observations) and with residual maturities from 1 to 9 years.
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M
rc,rj
n (Φ,Ψη) for both yield levels and differences

yield levels

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 159778 -319286 -322112 0 3 3 6 135 164955 -329640 -333404
0 4 4 8 188 178525 -356674 -360092 0 4 4 8 188 185801 -371226 -375164
1 3 2 6 141 160650 -321018 -323982 1 2 3 6 141 165279 -330276 -334518
1 3 4 8 193 179576 -358766 -361692 1 4 3 8 193 186180 -371974 -375812
2 2 2 6 148 160764 -321232 -324218 2 2 2 6 148 165476 -330656 -334980
2 3 3 8 199 179798 -359198 -361954 2 3 3 8 199 186214 -372030 -376214

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 211 232124 -463826 -469930 0 2 2 3 3 10 299 301081 -601564 -611526
0 4 3 4 11 314 263475 -526322 -533518 0 4 3 3 4 14 467 344617 -688300 -696808
1 3 2 2 8 224 234184 -467920 -475558 1 2 2 2 3 10 319 302975 -605312 -616618
1 4 3 3 11 325 264395 -528140 -535298 1 4 3 3 3 14 484 345486 -690004 -697722
2 2 2 2 8 238 234589 -468702 -476422 2 2 2 2 2 10 340 303748 -606816 -618450
2 3 3 3 11 337 264618 -529322 -535750 2 3 3 3 3 14 502 346032 -691060 -700900

yield differences

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 135 178797 -357324 -363034 0 3 3 6 135 180839 -361408 -367448
0 4 4 8 188 192625 -384874 -388406 0 4 4 8 188 194919 -389462 -392958
1 3 2 6 141 179330 -358378 -361856 1 2 3 6 141 180849 -361416 -367618
1 3 4 8 193 192656 -384926 -388290 1 4 3 8 193 194944 -389502 -393040
2 2 2 6 148 179358 -358420 -361948 2 2 2 6 148 180856 -361416 -367574
2 3 3 8 199 192670 -384942 -388464 2 3 3 8 199 194948 -389498 -393066

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 211 262322 -524222 -532094 0 2 2 3 3 10 299 343934 -687270 -695888
0 4 4 3 11 314 283103 -565578 -572062 0 4 4 3 3 14 467 372925 -744916 -753436
1 2 2 3 8 224 262349 -524250 -532146 1 2 2 2 3 10 319 343969 -687300 -696162
1 3 3 4 11 325 283327 -566004 -571762 1 4 3 3 3 14 484 373007 -745046 -753830
2 2 2 2 8 238 262827 -525178 -534116 2 2 2 2 2 10 340 344911 -689142 -699856
2 3 3 3 11 337 283347 -566020 -572388 2 3 3 3 3 14 502 373710 -746416 -755034

Table 6: For any given set of n countries and for any given number of latent factors k, shared between rc common
factors and rj local factors, we provide the number of parameters (Ξ), the maximum value of the log-likelihood

function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant (AICb), of

MCTSMs M
rc,rj
n (Φ,Ψη). We use for any country weekly yields observed from January 1, 1986 to December 31,

2009 (1252 observations) and with residual maturities from 1 to 9 years.
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M
rc,rj
n (Φbd, Ψ̃η) for both yield levels and differences

yield levels

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 117 159679 -319124 -319660 0 3 3 6 117 164845 -329456 -328330
0 4 4 8 156 178508 -356704 -357864 0 4 4 8 156 182945 -365578 -363390
1 3 2 6 124 160300 -320352 -320978 1 2 3 6 124 165101 -329954 -330694
1 3 4 8 162 179378 -358432 -360822 1 4 3 8 162 185875 -371426 -370624
2 2 2 6 132 160734 -321204 -323554 2 2 2 6 132 165264 -330264 -332096
2 3 3 8 169 179652 -358966 -361694 2 3 3 8 169 185885 -371432 -370350

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 169 232058 -463778 -464598 0 2 2 3 3 10 225 300958 -601466 -602048
0 4 3 4 11 234 263179 -525890 -526390 0 4 3 3 4 14 321 342878 -684358 -686292
1 3 2 2 8 185 233904 -467438 -469188 1 2 2 2 3 10 250 302700 -604900 -606586
1 4 3 3 11 249 263198 -525898 -527638 1 4 3 3 3 14 345 342904 -685118 -686426
2 2 2 2 8 202 234361 -468318 -471578 2 2 2 2 2 10 276 303387 -606222 -609128
2 3 3 3 11 265 263844 -527158 -531798 2 3 3 3 3 14 370 343561 -686382 -688976

yield differences

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 117 178030 -355826 -361132 0 3 3 6 117 180602 -360970 -366920
0 4 4 8 156 192515 -384718 -388068 0 4 4 8 156 194788 -389264 -392662
1 2 3 6 124 178088 -355928 -361286 1 2 3 6 124 180615 -360982 -366858
1 4 3 8 162 192548 -384772 -387962 1 3 4 8 162 194820 -389316 -392664
2 2 2 6 132 178165 -356066 -360794 2 2 2 6 132 180736 -361208 -367344
2 3 3 8 169 192557 -384776 -388092 2 3 3 8 169 194833 -389328 -392806

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 169 262213 -524088 -531752 0 2 2 3 3 10 225 344013 -687576 -696454
0 4 4 3 11 234 282981 -565494 -571710 0 4 3 4 3 14 321 373285 -745928 -753908
1 2 2 3 8 185 262258 -524146 -531976 1 2 2 2 3 10 250 344029 -687558 -696668
1 4 3 3 11 249 283066 -565634 -571934 1 4 3 3 3 14 345 373389 -746088 -755074
2 2 2 2 8 202 262256 -524108 -531940 2 2 2 2 2 10 276 344310 -688068 -697324
2 3 3 3 11 265 283093 -565656 -572090 2 3 3 3 3 14 370 373448 -746156 -755336

Table 7: For any given set of n countries and for any given number of latent factors k, shared between rc common
factors and rj local factors, we provide the number of parameters (Ξ), the maximum value of the log-likelihood

function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant (AICb), of

MCTSMs M
rc,rj
n

(
Φbd, Ψ̃η

)
. We use for any country weekly yields observed from January 1, 1986 to December

31, 2009 (1252 observations) and with residual maturities from 1 to 9 years.
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M
rc,rj
n (Φ, I) for both yield levels and differences

yield levels

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 126 153344 -306436 -311544 0 3 3 6 126 158113 -315974 -322558
0 4 4 8 172 171278 -342212 -348900 0 4 4 8 172 178253 -356702 -363412
1 2 3 6 135 154842 -309414 -314440 1 2 3 6 135 159761 -319252 -325756
1 3 4 8 181 173022 -345682 -352214 1 4 3 8 181 179397 -358432 -365276
2 2 2 6 144 155261 -310234 -315958 2 2 2 6 144 159847 -319406 -325208
2 3 3 8 190 174027 -347674 -353988 2 3 3 8 190 179962 -359544 -366276

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 190 222523 -444666 -452714 0 2 2 3 3 10 262 288629 -576734 -588374
0 4 3 4 11 274 252780 -505012 -513968 0 4 3 3 4 14 394 330392 -659996 -673336
1 3 2 2 8 208 226558 -452700 -463024 1 2 2 3 2 10 289 292316 -584054 -596682
1 3 3 4 11 292 255021 -509458 -520720 1 4 3 3 3 14 421 333407 -665972 -681088
2 2 2 2 8 226 227664 -454876 -465198 2 2 2 2 2 10 316 295071 -589510 -603812
2 3 3 3 11 310 256370 -512120 -522072 2 3 3 3 3 14 448 333732 -666568 -681804

yield differences

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 126 176873 -353494 -357296 0 3 3 6 126 179222 -358192 -362544
0 4 4 8 172 190640 -380936 -384030 0 4 4 8 172 193020 -385696 -388548
1 2 3 6 135 176903 -353536 -357594 1 2 3 6 135 179240 -358210 -362712
1 4 3 8 181 190743 -381124 -384290 1 3 4 8 181 193064 -385766 -388718
2 2 2 6 144 176969 -353650 -357594 2 2 2 6 144 179339 -358390 -362722
2 3 3 8 190 190812 -381244 -384260 2 3 3 8 190 193149 -385918 -389134

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 190 259813 -519246 -525386 0 2 2 3 3 10 262 341160 -681796 -689238
0 4 4 3 11 274 280156 -559764 -565166 0 4 4 3 3 14 394 369721 -738654 -746008
1 2 2 3 8 208 259908 -519400 -525790 1 2 2 2 3 10 289 341173 -681768 -689366
1 4 3 3 11 292 280233 -559882 -565368 1 4 3 3 3 14 421 370294 -739746 -747654
2 2 2 2 8 226 260168 -519884 -526274 2 2 2 2 2 10 316 341592 -682552 -689568
2 3 3 3 11 310 280387 -560154 -565728 2 3 3 3 3 14 448 370300 -739704 -747754

Table 8: For any given set of n countries and for any given number of latent factors k, shared between rc common
factors and rj local factors, we provide the number of parameters (Ξ), the maximum value of the log-likelihood

function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant (AICb), of

MCTSMs M
rc,rj
n (Φ, I). We use for any country weekly yields observed from January 1, 1986 to December 31,

2009 (1252 observations) and with residual maturities from 1 to 9 years.
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M
rc,rj
n (Φbd, I) for both yield levels and differences

yield levels

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 108 153180 -306144 -307770 0 3 3 6 108 158086 -315956 -317854
0 4 4 8 140 171073 -341866 -346398 0 4 4 8 140 177248 -354216 -357754
1 2 3 6 118 154329 -308422 -310210 1 3 2 6 118 159600 -318964 -319624
1 4 3 8 150 173132 -345964 -347736 1 3 4 8 150 179799 -359298 -362646
2 2 2 6 128 155585 -310914 -311542 2 2 2 6 128 160279 -320302 -319996
2 3 3 8 160 174076 -347832 -351980 2 3 3 8 160 180114 -359908 -359762

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 148 222160 -444024 -445862 0 2 2 3 3 10 188 287904 -575432 -575928
0 4 3 4 11 194 252354 -504320 -506624 0 4 3 3 4 14 248 329806 -659116 -661400
1 2 2 3 8 169 225683 -451028 -453308 1 3 2 2 2 10 220 292286 -584132 -585020
1 4 3 3 11 216 255333 -510234 -512588 1 4 3 3 3 14 282 333440 -666316 -688284
2 2 2 2 8 190 228490 -456600 -460682 2 2 2 2 2 10 252 295940 -591376 -595346
2 3 3 3 11 238 256089 -511702 -517102 2 3 3 3 3 14 316 333843 -667054 -671976

yield differences

U.S.− U.K. U.S.−GER.

rc r1 r2 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 3 6 108 176441 -352666 -356844 0 3 3 6 108 179148 -358080 -362512
0 4 4 8 140 190637 -380994 -383978 0 4 4 8 140 192944 -385608 -388492
1 2 3 6 118 176481 -352726 -356956 1 3 2 6 118 179210 -358184 -362492
1 4 3 8 150 190715 -381130 -384290 1 4 3 8 150 192973 -385646 -388658
2 2 2 6 128 177060 -353864 -358022 2 2 2 6 128 179440 -358624 -363000
2 3 3 8 160 190927 -381534 -384816 2 3 3 8 160 193298 -386276 -389320

U.S.− U.K.−GER. U.S.− U.K.−GER.− JAP.

rc r1 r2 r3 k Ξ L(θ̂MLE
T ) AIC AICb rc r1 r2 r3 r4 k Ξ L(θ̂MLE

T ) AIC AICb
0 3 2 3 8 148 259654 -519012 -524880 0 2 2 3 3 10 188 340965 -681554 -688634
0 4 4 3 11 194 280166 -559944 -564860 0 4 3 3 4 14 248 369494 -738492 -744938
1 2 2 3 8 169 259675 -519012 -525056 1 2 2 2 3 10 220 340968 -681496 -688788
1 4 3 3 11 216 280232 -560032 -565346 1 3 4 3 3 14 282 369536 -738508 -745832
2 2 2 2 8 190 259777 -519174 -525200 2 2 2 2 2 10 252 341371 -682238 -690458
2 3 3 3 11 238 280800 -561124 -566678 2 3 3 3 3 14 316 370744 -740856 -748418

Table 9: For any given set of n countries and for any given number of latent factors k, shared between rc common
factors and rj local factors, we provide the number of parameters (Ξ), the maximum value of the log-likelihood

function (L(θ̂MLE
T )), the associated Akaike Information Criterion (AIC), and its bootstrap variant (AICb), of

MCTSMs M
rc,rj
n (Φbd, I). We use for any country weekly yields observed from January 1, 1986 to December 31,

2009 (1252 observations) and with residual maturities from 1 to 9 years.
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Appendix F Parameters Estimates
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U.S.− U.K. U.S.−GER.

ΛB × 10−3 ΛB × 10−3

Λ
(1)
c,1 Λ

(2)
c,1 Λ

(1)
c,2 Λ

(2)
c,2 Λ

(1)
l Λ

(2)
l Λ

(1)
c,1 Λ

(2)
c,1 Λ

(1)
c,2 Λ

(2)
c,2 Λ

(1)
l Λ

(2)
l

0.9057∗∗ 0.4906∗∗ -0.0543∗ -1.0331∗∗ -0.8897∗∗ -0.3545∗∗ -0.0471∗∗ 1.3687∗∗ 0.5412∗∗ 0.0426∗∗ -0.5830∗∗ -0.2665∗∗ 0.1469∗∗ -0.0173 1.0964∗∗ -0.3662∗∗ 0.2188∗∗ -0.7448∗∗ 0.5043∗∗ -0.3220∗∗

(15.24) (4.23) (-1.94) (-7.15) (-20.29) (-20.02) (-11.48) (16.93) (16.20) (9.06) (-12.07) (-7.52) (3.52) (-0.0721) (23.77) (-14.09) (14.55) (-14.14) (13.25) (-14.25)
1.1490∗∗ 0.6400∗∗ 0.0145 -0.8467∗∗ -0.8104∗∗ -0.0110∗∗ 0.0800∗∗ 1.3282∗∗ 0.0800∗∗ 0.0307∗∗ -0.9648∗∗ -0.3580∗∗ 0.0632 -0.2441∗∗ 0.9561∗∗ -0.3349∗∗ 0.0110∗∗ -0.8369∗∗ 0.4106∗∗ -0.0073∗

(19.64) (6.91) (0.62) (-7.59) (-24.56) (-3.17) (12.94) (20.47) (12.60) (8.80) (-18.74) (-9.42) (1.63) (-5.32) (23.43) (-17.23) (3.32) (-18.96) (21.86) (-1.91)
1.2921∗∗ 0.6708∗∗ 0.0545 -0.6077∗∗ -0.6830∗∗ 0.1471∗∗ 0.0566∗∗ 1.3312∗∗ -0.1219∗∗ 0.0433∗∗ -1.1296∗∗ -0.4110∗∗ 0.0629∗ -0.2820∗∗ 0.9013∗∗ -0.1975∗∗ -0.1108∗∗ -0.8913∗∗ 0.2556∗∗ 0.1486∗∗

(20.17) (8.16) (0.12) (-6.03) (-22.67) (15.54) (12.73) (20.62) (-18.11) (15.89) (-20.12) (-10.18) (1.67) (-5.55) (21.05) (-13.37) (-19.79) (-21.32) (12.88) (13.29)
1.3674∗∗ 0.6661∗∗ 0.0887 -0.3760∗∗ -0.5494∗∗ 0.1890∗∗ -0.0042 1.3321∗∗ -0.1787∗∗ 0.0546∗∗ -1.1867∗∗ -0.4338∗∗ 0.0726∗∗ -0.2520∗∗ 0.8737∗∗ -0.0414∗∗ -0.1495∗∗ -0.9139∗∗ 0.0955∗∗ 0.1885∗∗

(19.98) (8.89) (0.75) (-3.75) (-19.71) (22.18) (-0.97) (20.42) (-18.40) (14.25) (-20.22) (-10.57) (2.08) (-4.47) (18.21) (-5.45) (-21.27) (-22.19) (5.94) (19.09)
1.4026∗∗ 0.6530∗∗ 0.1208 -0.1701 -0.4252∗∗ 0.1695∗∗ -0.0524∗∗ 1.3198∗∗ -0.1633∗∗ 0.0495∗∗ -1.1986∗∗ -0.4422∗∗ 0.0802∗∗ -0.2183∗∗ 0.8462∗∗ 0.0963∗∗ -0.1314∗∗ -0.9127∗∗ -0.0475 0.1568∗∗

(19.55) (9.40) (1.36) (-1.39) (-17.35) (20.65) (-14.68) (20.48) (-18.42) (14.45) (-19.86) (-10.73) (2.53) (-3.49) (15.85) (6.21) (-20.09) (-21.96) (-0.37) (19.83)
1.4152∗∗ 0.6397∗∗ 0.1503∗ 0.0030 -0.3146∗∗ 0.1211∗∗ -0.0717∗∗ 1.2937∗∗ -0.1169∗∗ 0.0227∗∗ -1.1959∗∗ -0.4459∗∗ 0.0864∗∗ -0.2058∗∗ 0.8097∗∗ 0.2045∗∗ -0.0787∗∗ -0.8952∗∗ -0.1676∗∗ 0.0842∗∗

(19.01) (9.78) (1.93) (0.79) (-15.98) (16.59) (-15.51) (20.69) (-18.97) (13.55) (-19.15) (-10.69) (2.99) (-2.97) (14.09) (18.81) (-16.49) (-20.89) (-9.14) (13.73)
1.4155∗∗ 0.6269∗∗ 0.1770∗∗ 0.1412∗∗ -0.2177∗∗ 0.0615∗∗ -0.0608∗∗ 1.2579∗∗ -0.0638∗∗ -0.0247∗∗ -1.1923∗∗ -0.4497∗∗ 0.0933∗∗ -0.2207∗∗ 0.7624 ∗∗ 0.2830∗∗ -0.0062∗∗ -0.8673∗∗ -0.2655∗∗ -0.0098
(18.34) (10.03) (2.46) (2.66) (-16.06) (12.03) (-15.37) (20.89) (-15.26) (-16.07) (-18.12) (-10.47) (3.46) (-2.88) (12.73) (23.74) (-2.33) (-19.28) (-17.32) (-0.37)

1.4094∗∗ 0.6130∗∗ 0.2006∗∗ 0.2460∗∗ -0.1331∗∗ -0.0006 -0.0239∗∗ 1.2177∗∗ -0.0169∗∗ -0.0875∗∗ -1.1932∗∗ -0.4555∗∗ 0.1022∗∗ -0.2608∗∗ 0.7057∗∗ 0.3358∗∗ 0.0768∗∗ -0.8329∗∗ -0.3443∗∗ -0.1133∗∗

(17.52) (10.14) (2.93) (4.15) (-19.95) (-0.63) (-13.45) (20.94) (-2.55) (-16.82) (-16.85) (-10.07) (3.89) (-3.04) (11.59) (22.32) (13.77) (-17.46) (-16.87) (-9.26)
1.4001∗∗ 0.5967∗∗ 0.2214∗∗ 0.3221∗∗ -0.0589∗∗ -0.0609∗∗ 0.0337∗∗ 1.1774∗∗ 0.0177∗ -0.1585∗∗ -1.1999∗∗ -0.4636∗∗ 0.1135∗∗ -0.3215∗∗ 0.6419∗∗ 0.3677∗∗ 0.1644∗∗ -0.7951∗∗ -0.4076∗∗ -0.2193∗∗

(16.52) (10.13) (3.34) (5.26) (-7.86) (-16.48) (13.62) (20.75) (1.67) (-16.91) (-15.50) (-9.54) (4.21) (-3.29) (10.54) (19.53) (18.01) (-15.63) (-14.34) (-13.16)

Φ Ψ12 Φ Ψ12

0.9838∗∗ -0.0167∗ -0.0124∗∗ 0.0207∗∗ -0.0027 -0.0092 -0.0143∗ 0.0046 0.0809∗∗ 0.0222 -0.0387 0.9610∗∗ -0.0068 -0.0283∗ -0.0239 0.0104∗∗ -0.0008 0.0088 0.0146 -0.2381∗∗ 0.0346 -0.0449
(162.69) (-1.90) (-2.30) (2.55) (0.99) (-0.56) (-1.70) (1.31) (2.16) (0.21) (-0.71) (128.49) (-0.47) (-1.95) (-1.42) (1.96) (-0.41) (1.45) (1.04) (-5.48) (-0.96) (-1.06)
0.0075∗ 0.9551∗∗ -0.0095 0.0099 -0.0110 0.0043 -0.0202 0.0236 0.0297 0.0619∗∗ -0.0137 -0.0084 0.8113∗∗ 0.0059 0.0082 0.0063 0.0045 0.0168 -0.0110 -0.0448 -0.2279∗∗ -0.0017
(1.73) (165.20) (-0.53) (0.28) (-1.09) (1.16) (-0.18) (1.43) (1.09) (2.20) (-0.65) (0.16) (83.69) (1.01) (1.06) (-0.14) (1.15) (1.38) (-1.25) (-0.85) (-6.13) (0.23)

-0.0223∗∗ 0.0031 0.9862∗∗ 0.0139 0.0554∗∗ -0.0165∗∗ -0.0032 0.0039 0.0145 -0.0884∗∗ -0.0310 -0.0662∗∗ -0.0051 0.9443∗∗ -0.0502∗∗ 0.0258 0.0129∗∗ -0.0009 -0.0128∗∗ 0.0343 -0.1104∗∗ -0.0656∗

(-2.29) (1.49) (154.90) (-0.0320) (3.67) (-2.79) (0.63) (0.03) (0.88) (-2.45) (-1.14) (-3.57) (-0.37) (114.86) (-2.88) (-0.27) (3.18) (-1.35) (-1.99) (0.52) (-2.67) (-1.78)
-0.0059 0.0239∗∗ 0.0249∗∗ 0.9374∗∗ -0.0201 0.0039 0.0244∗∗ -0.0159∗∗ -0.0074∗∗ 0.0210 -0.0213∗∗ 0.9725∗∗ -0.0091∗∗ -0.0145∗∗ 0.0034 0.0194∗∗

(-1.56) (2.69) (2.50) (144.80) (-0.78) (-0.25) (2.10) (-2.73) (3.66) (1.20) (2.43) (149.37) (-2.87) (-4.13) (1.10) (3.07)
0.0113 0.0056 0.0066 0.0111 0.8702∗∗ 0.0068 -0.0031 -0.0073 0.0199 0.0192 0.0449∗∗ 0.0246 0.9329∗∗ -0.0017 -0.0030 0.0066
(-0.08) (0.70) (-0.32) (0.91) (118.12) (0.24) (-0.20) (-0.69) (0.34) (0.29) (2.44) (1.49) (118.10) (0.92) (-0.74) (-0.08)
-0.0205 0.0049 0.0049 -0.0125∗ -0.0132 0.9789∗∗ 0.0110 0.0026 0.0450 ∗∗ 0.0224 0.0113 0.0200∗ -0.0057 0.9777∗∗ -0.0142 0.0112
(-0.82) (1.04) (1.59) (-1.66) (-0.98) (181.93) (0.82) (-1.62) (2.17) (-0.84) (0.27) (1.66) (0.80) (217.36) (-1.24) (-0.74)
-0.0035 -0.0288 0.0001 0.0095 -0.0116 0.0084 0.9606∗∗ 0.0021 0.0035 0.0278 0.0104 -0.0008 -0.0056 -0.0005 0.9924∗∗ 0.0018
(-0.39) (0.24) (1.54) (-1.18) (-0.91) (0.54) (147.41) (-1.58) (-1.30) (-0.11) (0.47) (-0.90) (-0.45) (1.43) (223.13) (0.26)
0.0065 0.0132 -0.0058 0.0090 0.0026 0.0116 0.0048 0.9742∗∗ -0.0004 -0.0240 -0.0067 -0.0102 0.0001 0.0120 -0.0095 0.9521∗∗

(0.56) (-0.57) (-1.32) (1.11) (0.02) (0.66) (-0.19) (237.28) (-0.07) (-1.30) (-1.04) (-0.83) (0.26) (-0.08) (-1.08) (182.31)

Table 10: We report the maximum likelihood estimates of ΛB, Φ and Ψη parameters and the associated bootstrap
t-values (in parenthesis). We use Nonparametric Monte Carlo block stationary bootstrap [see Stoffer and Wall
(1991) and Politis and Romano (1994); the optimal block sizes are chosen following Politis and White (2004) and
Patton, Politis, and White (2009)]. One and two asterisks denote statistical significance at 10% and 5% levels,
respectively. The (statistically significant) parameter estimates of µ and Ω are not reported for ease of presentation.
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U.S.− U.K.−GER.

ΛB × 10−3

Λ
(1)
c,1 Λ

(2)
c,1 Λ

(3)
c,1 Λ

(1)
c,2 Λ

(2)
c,2 Λ

(3)
c,2 Λ

(1)
l Λ

(2)
l Λ

(3)
l

-0.5913∗∗ -0.1354∗∗ -0.2318∗∗ -0.1468∗∗ -0.3759∗∗ 0.0496 1.0749∗∗ -0.4659∗∗ -0.0860∗∗ 1.7600∗∗ -0.7916∗∗ -0.2316∗∗ -0.8004∗∗ 0.4190∗∗ 0.3181∗∗

(-10.96) (-2.12) (-6.42) (-4.64) (-3.99) (1.67) (22.11) (-20.73) (-11.96) (14.90) (-16.57) (-14.48) (-15.46) (11.10) (13.91)
-0.8316∗∗ -0.3804∗∗ -0.3505∗∗ -0.0797∗∗ -0.0225 0.3074∗∗ 1.1051∗∗ -0.1503∗∗ 0.1105∗∗ 1.6198∗∗ -0.4908∗∗ 0.0250∗∗ -0.8315∗∗ 0.3738∗∗ 0.0180∗∗

(-15.31) (-6.20) (-8.83) (-3.15) (0.75) (8.77) (25.81) (-14.55) (15.07) (18.18) (-17.02) (3.67) (-19.89) (22.29) (2.57)
-0.9812∗∗ -0.4874∗∗ -0.4248∗∗ -0.0933∗∗ 0.0638∗∗ 0.3769∗∗ 1.0698∗∗ 0.0475∗∗ 0.1117∗∗ 1.5216∗∗ -0.2059∗∗ 0.1428∗∗ -0.8507∗∗ 0.2353∗∗ -0.1395∗∗

(-16.36) (-8.02) (-9.94) (-3.69) (2.64) (9.86) (25.18) (3.23) (16.02) (20.54) (-9.17) (17.29) (-22.32) (13.74) (-12.07)
-1.0781∗∗ -0.5401∗∗ -0.4651∗∗ -0.1232∗∗ 0.0754∗∗ 0.3714∗∗ 0.9933∗∗ 0.1450∗∗ 0.0471∗∗ 1.4383∗∗ 0.0189 0.1662∗∗ -0.8525∗∗ 0.0778∗∗ -0.1861∗∗

(-16.73) (-8.96) (-10.68) (-4.74) (2.90) (9.61) (23.83) (19.36) (12.46) (21.53) (1.20) (18.99) (-22.37) (5.60) (-19.39)
-1.1449∗∗ -0.5720∗∗ -0.4890∗∗ -0.1539∗∗ 0.0681∗∗ 0.3523∗∗ 0.8976∗∗ 0.1769∗∗ -0.0200∗∗ 1.3571∗∗ 0.1945∗∗ 0.1315∗∗ -0.8363∗∗ -0.0651 -0.1605∗∗

(-16.93) (-9.65) (-11.18) (-5.78) (2.66) (9.04) (22.58) (24.54) (-7.63) (21.52) (9.17) (18.89) (-20.89) (-1.40) (-19.94)
-1.1945∗∗ -0.5960∗∗ -0.5077∗∗ -0.1824∗∗ 0.0602∗∗ 0.3454∗∗ 0.7958∗∗ 0.1693∗∗ -0.0654∗∗ 1.2740∗∗ 0.3342∗∗ 0.0632∗∗ -0.8050∗∗ -0.1826∗∗ -0.0919∗∗

(-17.08) (-10.22) (-11.38) (-6.67) (2.36) (8.13) (21.74) (21.53) (-16.65) (20.79) (14.30) (14.22) (-18.90) (-10.35) (-13.34)
-1.2339∗∗ -0.6155∗∗ -0.5261∗∗ -0.2088∗∗ 0.0578∗∗ 0.3586∗∗ 0.6951∗∗ 0.1391∗∗ -0.0831∗∗ 1.1900∗∗ 0.4483∗∗ -0.0217∗∗ -0.7626∗∗ -0.2740∗∗ 0.0006
(-17.12) (-10.73) (-11.27) (-7.29) (2.23) (7.16) (21.44) (18.20) (-17.37) (19.58) (16.70) (-6.54) (-16.87) (-18.79) (-0.72)

-1.2669∗∗ -0.6300∗∗ -0.5462∗∗ -0.2338∗∗ 0.0615∗∗ 0.3916∗∗ 0.5988∗∗ 0.0965∗∗ -0.0751∗∗ 1.1084∗∗ 0.5444∗∗ -0.1104∗∗ -0.7128∗∗ -0.3425∗∗ 0.1049∗∗

(-16.92) (-11.12) (-10.89) (-7.58) (2.27) (6.46) (21.82) (15.60) (-17.46) (18.01) (17.22) (-15.36) (-14.94) (-18.25) (8.71)
-1.2959∗∗ -0.6385∗∗ -0.5686∗∗ -0.2578∗∗ 0.0698∗∗ 0.4414∗∗ 0.5083∗∗ 0.0476∗∗ -0.0457∗∗ 1.0322∗∗ 0.6275∗∗ -0.1939∗∗ -0.6584∗∗ -0.3921∗∗ 0.2138∗∗

(-16.43) (-11.34) (-10.36) (-7.56) (2.41) (6.02) (23.07) (12.90) (-17.12) (16.26) (16.88) (-17.36) (-13.14) (-14.99) (13.53)

Φ Ψ1,2 Ψ1,3 Ψ2,3

0.9612∗∗ 0.0319 -0.0192∗∗ -0.0248∗∗ 0.0206∗ -0.0184∗ -0.0207∗∗ -0.0024 -0.0022 0.0061 -0.0008 0.2547∗∗ -0.0879∗∗ -0.0225 -0.2461∗∗ 0.1393∗∗ 0.0150 -0.3222∗∗ 0.0699∗∗ -0.0080
(119.15) (1.45) (-3.06) (-3.11) (1.71) (-1.80) (-2.73) (-0.75) (-0.26) (-0.23) (0.96) (6.40) (-2.06) (-0.85) (-5.31) (4.29) (0.48) (-8.50) (2.46) (-0.30)
0.0217 0.8170∗∗ 0.0108 -0.0010 0.0152∗ 0.0030 0.0131∗ 0.0278∗∗ -0.0244∗∗ -0.0425∗∗ -0.0202∗ -0.0088 -0.0325 0.0033 -0.0564 -0.0063 -0.0755∗ -0.0003 -0.1558∗∗ -0.0060
(0.66) (64.03) (0.07) (-0.78) (1.80) (0.37) (1.83) (2.39) (-2.06) (-2.03) (-1.77) (-0.80) (-0.23) (0.32) (-1.05) (-0.52) (-1.90) (-1.39) (-4.63) (-0.11)

-0.0324∗∗ 0.0287 0.9724∗∗ -0.0293 0.0598∗∗ 0.0121∗ -0.0126 0.0096∗ 0.0279∗∗ 0.0003 0.0375∗∗ 0.0046 -0.0300 0.1112∗∗ -0.0085 0.0643∗ -0.0261 -0.0713 0.0172 -0.0765∗∗

(-2.35) (0.85) (119.53) (-1.19) (3.41) (1.75) (-0.47) (1.65) (3.90) (-0.66) (3.32) (0.73) (-0.64) (3.63) (-0.71) (1.87) (-0.82) (-1.62) (1.00) (-2.15)
-0.0092 0.0282 -0.0368∗ 0.9549∗∗ 0.0217 -0.0108∗∗ -0.0176 -0.0092∗∗ -0.0072∗∗ 0.0010 0.0059
(0.74) (0.71) (-1.78) (138.45) (0.06) (-2.64) (-1.43) (-2.66) (-2.84) (0.34) (-1.29)
0.0173 0.0093 0.0036 -0.0022 0.8845∗∗ 0.0122 0.0001 0.0147 0.0096∗ -0.0032 0.0167∗∗

(-0.47) (0.74) (-1.47) (-1.47) (122.11) (0.99) (-0.77) (0.92) (1.68) (-0.44) (2.15)
-0.0217 0.0117 0.0159 0.0081 0.0050 0.9725∗∗ -0.0041 -0.0133∗ 0.0022∗ 0.0030 0.0074
(-0.36) (-0.19) (1.51) (1.38) (-0.12) (129.07) (0.48) (1.74) (1.75) (-0.01) (0.62)
-0.0104 0.0498 -0.0120 -0.0007 -0.0027 -0.0058 0.9703∗∗ -0.0156 0.0041 0.0053 0.0182
(0.60) (0.58) (-0.12) (0.33) (-0.47) (-0.02) (129.27) (-1.07) (0.64) (1.47) (0.15)

-0.0045 0.0183 0.0081 0.0081 0.0116 -0.0326∗ 0.0055 0.9577∗∗ -0.0036 0.0073 0.0062
(-0.58) (0.24) (-0.50) (-0.63) (1.04) (-1.65) (0.08) (140.83) (0.09) (0.30) (0.77)
0.0285 -0.0483 -0.0010 0.0059 -0.0251 -0.0181 0.0059 -0.0126∗∗ 0.9620∗∗ -0.0251 -0.0283
(1.41) (0.57) (-0.66) (0.14) (-1.60) (-1.41) (0.33) (-2.05) (114.94) (-0.38) (-0.10)
0.0058 -0.0588 0.0040 -0.0015 -0.0054 -0.0053 -0.0292∗∗ 0.0083 -0.0213 0.9602∗∗ -0.0009
(-1.12) (-0.05) (0.54) (0.02) (0.12) (0.17) (-2.92) (0.88) (-0.18) (143.61) (0.68)
-0.0042 -0.0390 0.0049 0.0017 -0.0073 -0.0156 0.0024 -0.0064 -0.0261 0.0031 0.9416∗∗

(-0.45) (-1.49) (0.35) (-0.05) (-0.44) (-0.23) (-1.15) (0.33) (-1.46) (-0.64) (128.77)

Table 11: We report the maximum likelihood estimates of ΛB, Φ and Ψη parameters and the associated bootstrap
t-values (in parenthesis). We use Nonparametric Monte Carlo block stationary bootstrap [see Stoffer and Wall
(1991) and Politis and Romano (1994); the optimal block sizes are chosen following Politis and White (2004) and
Patton, Politis, and White (2009)]. One and two asterisks denote statistical significance at 10% and 5% levels,
respectively. The (statistically significant) parameter estimates of µ and Ω are not reported for ease of presentation.
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U.S.− U.K.−GER.− JAP.

ΛB × 10−3

Λ
(1)
c,1 Λ

(2)
c,1 Λ

(3)
c,1 Λ

(4)
c,1 Λ

(1)
c,2 Λ

(2)
c,2 Λ

(3)
c,2 Λ

(4)
c,2 Λ

(1)
l Λ

(2)
l Λ

(3)
l Λ

(4)
l

0.0691∗∗ -0.3359∗∗ 0.0633∗∗ -0.0340 0.0030 -0.0469 0.0173 0.0337 1.1204∗∗ 0.6323∗∗ -0.2475∗∗ 1.6742∗∗ -0.9017∗∗ -0.2467∗∗ -0.8160∗∗ -0.4650∗∗ -0.3035∗∗ -0.6280∗∗ 0.4677∗∗ -0.2535∗∗

(2.32) (-2.94) (1.72) (-0.59) (0.86) (-0.30) (0.34) (1.00) (21.23) (24.04) (-18.41) (14.28) (-20.29) (-16.04) (-16.27) (-11.65) (-12.28) (-11.77) (14.65) (-15.49)
0.2445∗∗ 0.0765∗∗ 0.3295∗∗ 0.0497∗∗ -0.0551 0.0005 0.0756 -0.0079 1.3004∗∗ 0.4143∗∗ 0.0588∗∗ 1.6333∗∗ -0.5350∗∗ 0.0378∗∗ -0.8706∗∗ -0.4042∗∗ -0.0217∗∗ -0.6837∗∗ 0.4163∗∗ -0.0580∗∗

(5.45) (2.49) (6.98) (2.49) (-0.13) (0.06) (0.99) (-0.37) (25.21) (26.12) (8.16) (18.24) (-20.40) (5.86) (-19.95) (-22.30) (-2.69) (-14.69) (19.54) (-5.82)
0.2878∗∗ 0.2027∗∗ 0.4135∗∗ 0.0843∗∗ -0.0279 -0.0118 0.0855 -0.0180 1.4007∗∗ 0.2122∗∗ 0.1621∗∗ 1.5757∗∗ -0.2281∗∗ 0.1554∗∗ -0.9148∗∗ -0.2602∗∗ 0.1325∗∗ -0.7569∗∗ 0.2865∗∗ 0.0839∗∗

(5.91) (4.50) (7.70) (3.54) (0.32) (-0.20) (0.94) (-0.69) (25.18) (15.19) (20.94) (20.98) (-10.25) (19.62) (-21.93) (-13.24) (11.77) (-17.47) (16.09) (12.34)
0.2927∗∗ 0.2360∗∗ 0.4140∗∗ 0.0937∗∗ 0.0065 -0.0306 0.0743 -0.0158 1.4357∗∗ 0.0474∗∗ 0.1530∗∗ 1.5126∗∗ 0.0053 0.1729∗∗ -0.9379∗∗ -0.1019∗∗ 0.1823∗∗ -0.8134∗∗ 0.1404∗∗ 0.1527∗∗

(5.85) (4.95) (7.15) (3.73) (0.69) (-0.60) (0.84) (-0.55) (24.20) (6.37) (22.22) (22.30) (0.87) (21.12) (-22.36) (-6.01) (18.45) (-18.78) (6.89) (20.70)
0.2903∗∗ 0.2432∗∗ 0.3951∗∗ 0.0919∗∗ 0.0184 -0.0472 0.0594 -0.0100 1.4340∗∗ -0.0813∗∗ 0.0954∗∗ 1.4452∗∗ 0.1861∗∗ 0.1321∗∗ -0.9414∗∗ 0.0423 0.1611∗∗ -0.8472∗∗ 0.0019 0.1583∗∗

(5.69) (4.99) (6.33) (3.63) (0.68) (-1.01) (0.72) (-0.27) (22.87) (-5.72) (21.22) (22.64) (9.07) (20.93) (-21.79) (0.03) (17.89) (-19.08) (-0.66) (21.37)
0.2900∗∗ 0.2473∗∗ 0.3859∗∗ 0.0868∗∗ 0.0010 -0.0587 0.0483 -0.0064 1.4123∗∗ -0.1800∗∗ 0.0236∗∗ 1.3744∗∗ 0.3309∗∗ 0.0588∗∗ -0.9294∗∗ 0.1637∗∗ 0.0955∗∗ -0.8603∗∗ -0.1220∗∗ 0.1141∗∗

(5.53) (5.01) (5.59) (3.47) (0.38) (-1.34) (0.59) (-0.08) (21.47) (-22.72) (9.76) (22.24) (14.74) (15.08) (-20.70) (8.45) (12.28) (-18.80) (-7.72) (17.45)
0.2937∗∗ 0.2540∗∗ 0.3961∗∗ 0.0826∗∗ -0.0433 -0.0622 0.0431 -0.0096 1.3806∗∗ -0.2556∗∗ -0.0462∗∗ 1.3024∗∗ 0.4505∗∗ -0.0296∗∗ -0.9066∗∗ 0.2619∗∗ 0.0038 -0.8564∗∗ -0.2310∗∗ 0.0312∗∗

(5.25) (5.18) (5.06) (3.39) (-0.15) (-1.50) (0.50) (-0.14) (20.17) (-26.06) (-10.54) (21.25) (14.75) (-9.20) (-19.38) (17.46) (1.36) (-18.10) (-14.98) (3.95)
0.3010∗∗ 0.2617∗∗ 0.4264∗∗ 0.0815∗∗ -0.1092 -0.0565 0.0437 -0.0225 1.3446∗∗ -0.3136∗∗ -0.1077∗∗ 1.2315∗∗ 0.5520∗∗ -0.1207∗∗ -0.8767∗∗ 0.3398∗∗ -0.1019∗∗ -0.8386∗∗ -0.3269∗∗ -0.0823∗∗

(4.78) (5.45) (4.75) (3.38) (-0.79) (-1.49) (0.47) (-0.60) (19.06) (-23.63) (-16.65) (19.79) (18.65) (-17.55) (-17.96) (16.19) (-8.59) (-16.87) (-18.04) (-11.21)
0.3110∗∗ 0.2668∗∗ 0.4742∗∗ 0.0845∗∗ -0.1911 -0.0432 0.0494 -0.0475 1.3073∗∗ -0.3583∗∗ -0.1589∗∗ 1.1641∗∗ 0.6397∗∗ -0.2059∗∗ -0.8422∗∗ 0.4008∗∗ -0.2138∗∗ -0.8099∗∗ -0.4125∗∗ -0.2210∗∗

(4.18) (5.70) (4.59) (3.27) (-1.34) (-1.26) (0.48) (-1.37) (18.13) (-21.69) (-18.57) (18.07) (18.55) (-19.27) (-16.52) (13.03) (-13.80) (-15.01) (-15.47) (-17.29)

Φ

0.7992∗∗ -0.0220 0.0304∗∗ -0.0095 -0.0017 0.0033 -0.0022 0.0334∗ 0.0046 0.0369 0.0258 -0.0198 -0.0068 0.0064
(56.67) (-0.65) (2.21) (-1.03) (0.41) (1.22) (1.33) (1.74) (1.01) (0.43) (1.38) (-1.61) (-0.02) (1.42)
-0.0069 0.8632∗∗ 0.0046 0.0006 0.0310 -0.0223 -0.0216 -0.0017 -0.0115 0.0112 0.0127 -0.0079 -0.0094 -0.0066
(-0.06) (94.06) (0.03) (0.95) (1.58) (-1.50) (-0.92) (-0.40) (-1.37) (0.55) (0.61) (-0.46) (-0.57) (-0.76)
0.0444 -0.0108 0.9739∗∗ 0.0127 0.0174∗ 0.0083∗ -0.0171 0.0050 0.0175∗∗ 0.0099 -0.0388∗ -0.0146 -0.0059 -0.0049
(0.44) (0.23) (110.49) (0.60) (1.81) (1.70) (0.25) (0.81) (2.87) (0.68) (-1.78) (-1.24) (0.13) (0.86)

-0.0021 -0.0378∗ 0.0252 0.9803∗∗ -0.0105 0.0107 -0.0066 0.0141∗ 0.0220∗∗ -0.0012 -0.0102∗ -0.0030 -0.0114∗∗ 0.0061
(0.90) (-1.67) (1.50) (158.41) (0.21) (1.48) (-1.00) (1.78) (3.38) (0.51) (-1.84) (-1.07) (-1.96) (-0.15)
0.0238 -0.0023 -0.0183∗ -0.0068 0.9373∗∗ -0.0043 -0.0238 0.0092 -0.0008 0.0106 -0.0270 -0.0039 0.0011 0.0046
(1.24) (-0.68) (-1.73) (0.11) (157.85) (-1.29) (-1.54) (-0.20) (-1.32) (1.35) (-1.42) (-0.21) (1.06) (-0.10)
0.0174 0.0167 0.0182∗ 0.0048 0.0211 0.9672∗∗ -0.0142 -0.0048 0.0005∗∗ 0.0160 -0.0262 -0.0101 0.0099∗ -0.0017
(-0.13) (0.78) (1.66) (0.15) (1.51) (93.13) (0.78) (1.52) (2.24) (0.60) (-1.30) (-0.25) (1.83) (1.31)
0.0332 0.0105 -0.0243 0.0005 0.0045 -0.0241 0.9365∗∗ -0.0061 -0.0050 0.0189 -0.0279 -0.0303 -0.0172 -0.0074
(0.07) (0.38) (-0.79) (-0.17) (0.20) (-0.19) (79.12) (-1.13) (0.73) (-0.27) (-0.52) (-1.37) (-0.34) (-0.93)
0.0201 -0.0080 0.0087 0.0021 0.0160 -0.0354 0.0054 0.9581∗∗ -0.0084 -0.0037 -0.0080 0.0015 0.0025 -0.0006
(0.50) (-0.74) (-0.27) (0.79) (0.59) (-1.63) (-0.31) (121.01) (-0.65) (0.43) (-0.63) (-0.33) (0.23) (-0.85)

-0.0482 0.0033 -0.0154∗∗ -0.0006 -0.0171 -0.0304∗ -0.0031 -0.0191∗∗ 0.9542∗∗ 0.0077 0.0511 0.0018 -0.0264∗ -0.0300∗

(0.37) (0.41) (-2.32) (-0.02) (-1.44) (-1.66) (-0.32) (-2.14) (100.32) (-0.50) (0.94) (0.70) (-1.86) (-1.67)
0.0509 0.0067 -0.0101 -0.0006 0.0048 0.0331 0.0620∗∗ -0.0235∗ 0.0245 0.9458∗∗ 0.0093 0.0185 0.0052 0.0231
(-0.14) (0.26) (-0.96) (-0.38) (-0.33) (1.38) (3.35) (-1.83) (1.41) (89.70) (1.25) (1.24) (-0.15) (1.47)
0.0488∗ 0.0153 -0.0149 0.0107 0.0143 0.0166 -0.0103 0.0193 0.0284 0.0258 0.9038∗∗ -0.0056 0.0325∗ 0.0245
(1.80) (0.37) (-1.52) (1.52) (0.95) (0.60) (0.87) (0.02) (1.12) (0.67) (84.86) (-0.01) (1.90) (1.05)

-0.0247 -0.0028 -0.0158 -0.0004 -0.0201 -0.0161 -0.0133 0.0132 -0.0186∗∗ 0.0015 0.0396∗∗ 0.9793∗∗ -0.0341∗∗ -0.0234∗∗

(-0.39) (-0.11) (-1.45) (0.44) (-1.13) (-0.99) (0.78) (0.06) (-2.48) (-1.35) (2.96) (109.35) (-2.44) (-2.81)
-0.0296 -0.0026 0.0098 -0.0007 -0.0131 -0.0212 -0.0126 -0.0109 -0.0057 0.00004 0.0121 -0.0066 0.9714∗∗ -0.0213
(-0.29) (0.03) (1.28) (0.17) (-0.47) (-1.27) (-0.01) (-0.94) (-0.19) (0.36) (-0.48) (0.79) (125.97) (0.12)
0.0049 0.0146 -0.0287∗ 0.0226 0.0070 -0.0059 0.0043 0.0091 -0.0212 -0.0027 0.0165 0.0055 -0.0266 0.9316∗∗

(0.18) (-0.004) (-1.69) (1.40) (0.09) (0.35) (0.34) (1.03) (-0.83) (-0.49) (0.62) (0.82) (-0.94) (108.99)

Ψ1,2 Ψ1,3 Ψ1,4 Ψ2,3 Ψ2,4 Ψ3,4

0.4001∗∗ 0.1324∗∗ -0.0884∗∗ -0.4144∗∗ 0.0671 -0.0117 -0.1619∗∗ -0.0487∗ 0.0054 -0.4007∗∗ -0.0234 0.0034 -0.1504∗∗ -0.0261 -0.0824∗∗ 0.2500∗∗ 0.0287 0.0123
(13.12) (3.79) (-3.94) (-12.66) (1.30) (-0.15) (-4.68) (-1.84) (-1.05) (-11.45) (-1.20) (0.10) (-3.79) (-1.08) (-3.11) (6.28) (1.18) (0.50)
0.0048 -0.2008∗∗ 0.0618∗∗ 0.0434 -0.2296∗∗ -0.0368 0.0499 0.0373 0.0203 -0.0879∗∗ 0.2301∗∗ -0.0009 -0.0826∗∗ -0.0403∗∗ -0.0019 0.0033 -0.0893∗∗ -0.0132
(1.01) (-5.21) (2.11) (0.77) (-6.35) (-1.10) (0.84) (0.81) (0.94) (-3.54) (6.40) (0.02) (-3.48) (-2.01) (-0.66) (0.69) (-2.30) (-0.52)

-0.0138 -0.1319∗∗ 0.0861∗∗ -0.0303 -0.1254∗∗ 0.0642∗ 0.0291 0.0293 0.0254 -0.0466 -0.0514∗∗ 0.0775∗∗ -0.0128 0.0086 -0.0098 0.0829 0.0440∗ 0.0060
(-0.14) (-2.88) (2.61) (-0.76) (-3.14) (1.82) (0.50) (0.35) (0.81) (-0.41) (-2.47) (2.64) (0.56) (0.36) (0.10) (1.51) (1.68) (1.07)

Table 12: We report the maximum likelihood estimates of ΛB, Φ and Ψη parameters and the associated bootstrap
t-values (in parenthesis). We use Nonparametric Monte Carlo block stationary bootstrap [see Stoffer and Wall
(1991) and Politis and Romano (1994); the optimal block sizes are chosen following Politis and White (2004) and
Patton, Politis, and White (2009)]. One and two asterisks denote statistical significance at 10% and 5% levels,
respectively. The (statistically significant) parameter estimates of µ and Ω are not reported for ease of presentation.
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Appendix G Smoothed Common and Local Factors

2-country case: U.S.-U.K.
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Figure 2: Smoothed factors in the 2-country U.S.-U.K. case when (rc = 0, rℓ = 4) and (rc = 2, rℓ = 3).
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2-country case: U.S.-GER.
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Figure 3: Smoothed factors in the 2-country U.S.-GER case when (rc = 0, rℓ = 4) and (rc = 2, rℓ = 3).
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3-country case: U.S.-U.K.-GER.

86 90 94 98 02 06 10
−4

−2

0

2

4

 

 

4th Local U.S. (n = 3; r
c
 = 0, r

l
 = 4) 3rd Local U.S. (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−4

−2

0

2

4

 

 

1st Local U.S. (n = 3; r
c
 = 0, r

l
 = 4) 1st Local U.S. (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−10

−5

0

5

10

 

 

2nd Local U.S. (n = 3; r
c
 = 0, r

l
 = 4) 2nd Local U.S. (n = 3; r

c
 = 2, r

l
 = 3)

(a) Local U.S. factors of M0,4
3 and M2,3

3

86 90 94 98 02 06 10
−2

−1

0

1

2

3

 

 

3rd Local U.K. (n = 3; r
c
 = 0, r

l
 = 4) 3rd Local U.K. (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−2

0

2

4

 

 

1st Local U.K. (n = 3; r
c
 = 0, r

l
 = 4) 1st Local U.K. (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−4

−2

0

2

4

 

 

2nd Local U.K. (n = 3; r
c
 = 0, r

l
 = 4) 2nd Local U.K. (n = 3; r

c
 = 2, r

l
 = 3)

(b) Local U.K. factors of M0,4
3 and M2,3

3

86 90 94 98 02 06 10
−2

−1

0

1

2

3

 

 

3rd Local GER (n = 3; r
c
 = 0, r

l
 = 4) 3rd Local GER (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−4

−2

0

2

4

 

 

1st Local GER (n = 3; r
c
 = 0, r

l
 = 4) 1st Local GER (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−4

−2

0

2

4

 

 

2nd Local GER (n = 3; r
c
 = 0, r

l
 = 4) 2nd Local GER (n = 3; r

c
 = 2, r

l
 = 3)

(c) Local GER factors of M0,4
3 and M2,3

3

86 90 94 98 02 06 10
−3

−2

−1

0

1

2

3

4

 

 

4th Local GER (n = 3; r
c
 = 0, r

l
 = 4) 1st Common Factor (n = 3; r

c
 = 2, r

l
 = 3)

86 90 94 98 02 06 10
−4

−3

−2

−1

0

1

2

3

 

 

3rd Local U.S. (n = 3; r
c
 = 0, r

l
 = 4) 2nd Common Factor (n = 3; r

c
 = 2, r

l
 = 3)

(d) 1st and 2nd common factor of M2,3
3

Figure 4: Smoothed factors in the 3-country case U.S.−U.K.−GER when (rc = 0, rℓ = 4) and (rc = 2, rℓ = 3).
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4-country case: U.S.-U.K.-GER-JAP .
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Figure 5: Smoothed factors in the 4-country case when (rc = 0, rℓ = 4) and (rc = 2, rℓ = 3).
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