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Abstract

Speculators can discover whether a signal is true or false by processing it but this takes

time. Hence they face a trade-off between trading fast on a signal (i.e., before processing

it), at the risk of trading on false news, or trading after processing the signal, at the

risk that prices already reflect their information. The number of speculators who choose

to trade fast increases with news reliability and decreases with the cost of fast trading

technologies. We derive testable implications for the effects of these variables on (i) the

value of information, (ii) patterns in returns and trades, (iii) the frequency of price re-

versals in a stock, and (iv) informational efficiency. Cheaper fast trading technologies

simultaneously raise informational efficiency and the frequency of “mini-flash crashes”:

large price movements that revert quickly.

Keywords: news, high-frequency trading, price reversals, informational efficiency, mini-

flash crashes.

JEL classification: G10, G12, G14

Résumé

Les spéculateurs peuvent découvrir si un signal est vrai ou faux en le traitant mais ceci

prend du temps. Par conséquent, ils font face à un choix entre l’utilisation rapide d’un

signal pour une transaction (c’est-à-dire avant de le traiter), au risque de se baser sur une

fausse nouvelle, ou bien réaliser la transaction après le traitement du signal, au risque

que les prix reflètent déjà l’information. Le nombre de spéculateurs qui choisissent de

réaliser des transactions rapidement augmente avec la fiabilité des nouvelles et diminue

avec le coût des technologies de transaction rapide. Nous tirons des implications testa-

bles pour les effets de ces variables sur (i) la valeur de l’information, (ii) les dynamiques

des rendements et des transactions, (iii) la fréquence des retournements de prix pour

un titre, et (iv) l’efficience informationnelle. Des technologies de négociation rapide à

meilleur marché relèvent simultanément l’efficience informationnelle et la fréquence des

“mini cracks boursiers”: de grands mouvements de prix qui se retournent rapidement.

Mots-clés: nouvelles, trading haute fréquence, retournements de prix, efficience infor-

mationnelle, mini cracks boursiers.

Classification JEL: G10, G12, G14
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Non Technical Summary

Improvement in trading technologies enable speculators to react to news in a few mil-

liseconds. However, in reacting fast to information, speculators take the risk of trading

on false news as information processing (e.g., checking news accuracy) takes time. And,

indeed, market participants claim that large sudden price drops or spikes followed by

quick price reversals are increasingly common and have nicknamed these patterns “mini

flash crashes”.

Mini-flash crashes are a source of concerns as they seem symptomatic of market

fragility and informational inefficiency. In particular, sharp price drops in one asset

might propagate to other assets leading to market-wide disruptions, as observed during

the 2010 flash crash. Media, practitioners, and regulators link mini-flash crashes and

more generally market instability to the growth of computerized and fast trading (the so

called “race to zero”)

However, academic studies do not support the view that computerized fast trading

is associated with less efficient markets. For instance, using Nasdaq data, Brogaard,

Hendershott, and Riordan (2013) conclude that high-frequency traders contribute to price

discovery. Boehmer et al.(2013) reach a similar conclusion in a cross-country study.

This disconnect between anecdotal and academic evidence raise the following ques-

tion: can faster trading on information make financial markets simultaneously more in-

formationally efficient and unstable? Our goal in this paper is to study this question,

building up on the idea that speculators might receive false signals and that process-

ing signals (e.g., checking the validity of a signal by obtaining additional signals) takes

time. Importantly, false signals are distinct from imprecise signals because they should

be subsequently corrected. This possibility is typically ignored in extant theories about

the effects of news arrivals and yet important empirically.

Our model considers the market for one risky asset (say a stock). Speculators receive

a signal (a tweet, a rumor on an internet forum, news from “google news”, newswires,

or news analytics from Reuters or Bloomberg, etc.) about the asset and trade with

uninformed, but rational, market participants in two trading rounds. The signal received

by speculators can be informative or just noise (false). Each signal is characterized by its

reliability, i.e., the likelihood that it is not false. When they receive a signal, speculators

cannot immediately tell its nature (false/true) without further analysis (“information

processing”), which takes one period. Thus, speculators can follow two types of strategies:

(a) trade on signals before and after processing them, at the risk of trading on noise or (b)
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trade on signals only after processing them, at the risk of losing a profitable opportunity.

Both strategies require speculators to pay a cost for receiving signals (e.g., a subscription

fee to a news analytics’ provider such as Thomson-Reuters). In addition, trading fast on

information (i.e., before others process it) require investing in fast trading technologies

(e.g., to pay exchange fees to co-locate speculators’ algorithms close to exchanges’ servers).

When the cost of trading fast is high enough, all speculators optimally choose to

be slow, that is, to process signals before trading. Hence, they never trade on false

information. As this cost falls, the number of fast speculators, who trade on signals

without processing them, increases whereas the number of slow speculators declines.

When the cost of trading fast becomes low enough, all speculators are fast: they trade

on signals both before and after processing them.

This model has a rich set of testable implications. First, it predicts that, when the

cost of trading fast decreases, the demand for information should decrease down to a

point and then increase. A second implication is that speculators’ order imbalances (i.e.,

their aggregate net trade) can be positively or negatively autocorrelated depending on

(i) the reliability of their signals and (ii) the cost of trading fast. Finally, when the cost

of trading fast declines, the likelihood of a price reversal after the first trading round

increases because more speculators choose to trade on the signal without processing it.

4



1 Introduction

Improvement in trading technologies enable speculators to react to news in a few mil-

liseconds.1 However, in reacting fast to information, speculators take the risk of trading

on false news as information processing (e.g., checking news accuracy) takes time. The

“Twitter Crash” of April 2013 is one example. At 1:08pm on April 23rd, 2013 a fake

tweet from a hacked Associated Press account announced that explosions at the White

House had injured Barack Obama. As Figure 1 shows, the Dow Jones immediately lost

145 basis points but it recovered in less than three minutes after the news proved to be

false.

  

Figure 1: The Twitter Crash: The Dow Jones Index on April 23, 2013.

The Twitter Crash is not an isolated example. Market participants claim that large

sudden price drops or spikes followed by quick price reversals (i.e., “V-shape” or “inverted

V-shape” price movements) are increasingly common and have nicknamed these patterns

“mini flash crashes”. For instance, according to an article from the Huffington Post: “[...]

mini-flash crashes happen all of the time now. Just Monday, shares of Google collapsed

briefly in a barely noticed flash crash of one of the country’s biggest and most important

companies.”2 Similarly, Nanex (a financial data provider) reports more than 18, 000 mini

flash-crashes from 2006 to 2010 in U.S. equity markets, that is, about 195 per month

1For instance, when the FED announced that it would not scale back on its buying program on
September 18, 2013, stock prices immediately spiked in less than a microsecond. See ”High speed
traders reacted instantly to FED” on CNNMoney (http://money.cnn.com/2013/09/19/investing/fed-
high-speed-trading/).

2See Huffington Post, ”Twitter causes a flash crash, highlighting market’s structural problems,”
04/23/2.
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(Nanex defines a flash-crash as an up or down price movement greater than 0.8% in less

than 1.5 second).3

Mini-flash crashes are a source of concerns as they seem symptomatic of market

fragility and informational inefficiency. In particular, sharp price drops in one asset

might propagate to other assets leading to market-wide disruptions, as observed during

the 2010 flash crash. Media, practitioners, and regulators link mini-flash crashes and

more generally market instability to the growth of computerized and fast trading (the so

called “race to zero”).4 For instance, in an article on the Twitter Crash, the Economist

Magazine writes:5

“Twitter’s credibility (a novel idea to non-tweeters) has taken a hit. But human

users must extract some sort of signal every day from the noise of innumerable tweets.

Computerised trading algorithms that scan news stories for words like “explosions” may

have proved less discerning and triggered the sell-off. That suggests a need for more

sophisticated algorithms that look for multiple sources to confirm stories.”

However, academic studies do not support the view that computerized fast trading

is associated with less efficient markets. For instance, using Nasdaq data, Brogaard,

Hendershott, and Riordan (2013) conclude that high-frequency traders contribute to price

discovery. Boehmer et al.(2013) reach a similar conclusion in a cross-country study.

This disconnect between anecdotal and academic evidence raise the following ques-

tion: can faster trading on information make financial markets simultaneously more in-

formationally efficient and unstable? Our goal in this paper is to study this question,

building up on the idea that speculators might receive false signals and that process-

ing signals (e.g., checking the validity of a signal by obtaining additional signals) takes

time. Importantly, false signals are distinct from imprecise signals because they should

be subsequently corrected. This possibility is typically ignored in extant theories about

the effects of news arrivals (see below for a discussion) and yet important empirically.6

Our model considers the market for one risky asset (say a stock). Speculators receive

3See http://www.nanex.net/FlashCrashEquities/FlashCrashAnalysisEquities.html.
4See, for instance, the speech (“The race to zero”) of Andrew Haldane (Executive Director , Financial

Stability, of the Bank of England) at the International Economic Association Sixteenth World Congress
in Beijing, 2011. Available at: http://www.bis.org/review/r110720a.pdf.

5The Economist, “#newscrashrecover”, April 27, 2013.
6For instance, von Beschwitz, Keim, and Massa (2013) study the reaction of prices to news analytics

provided by RavenPack. They find cases of news that were released as being highly relevant for a stock
by RavenPack but that more recent versions of its textual-analysis software classify as having in fact
low relevance. They show (see their Figure 4), that, for these news, prices follow a “V-shape” behavior:
they initially increase or decrease (depending on the direction of the news) and then quickly revert (in
less than 120 seconds). This suggests again that (i) news are sometimes false and (ii) participants learn
gradually about the nature of news so that price reactions to false news are eventually corrected.
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a signal (a tweet, a rumor on an internet forum, news from “google news”, newswires,

or news analytics from Reuters or Bloomberg, etc.) about the asset and trade with

uninformed, but rational, market participants (dealers, as in Glosten and Milgrom (1985))

in two trading rounds. The signal received by speculators can be informative or just

noise (false). Each signal is characterized by its reliability, i.e., the likelihood that it is

not false. When they receive a signal, speculators cannot immediately tell its nature

(false/true) without further analysis (“information processing”), which takes one period.

Thus, speculators can follow two types of strategies: (a) trade on signals before and

after processing them, at the risk of trading on noise or (b) trade on signals only after

processing them, at the risk of losing a profitable opportunity. Both strategies require

speculators to pay a cost for receiving signals (e.g., a subscription fee to a news analytics’

provider such as Thomson-Reuters). In addition, trading fast on information (i.e., before

others process it) require investing in fast trading technologies (e.g., to pay exchange fees

to co-locate speculators’ algorithms close to exchanges’ servers).

When the cost of trading fast is high enough, all speculators optimally choose to

be slow, that is, to process signals before trading. Hence, they never trade on false

information. As this cost falls, the number of fast speculators, who trade on signals

without processing them, increases whereas the number of slow speculators declines.

When the cost of trading fast becomes low enough, all speculators are fast: they trade

on signals both before and after processing them.

This model has a rich set of testable implications. First, it predicts that the demand

for information should be a U-shape function of the cost of trading fast. On the one

hand, a reduction in this cost makes the net expected profit of speculators who trade

twice on their information (before and after processing it) larger. On the other hand,

it reduces speculators’ expected profit when they trade on information after processing

it. The former effect raises the value of information while the latter reduces it. This

latter effect dominates only when the cost of trading fast is large enough so that not all

speculators choose to trade fast on information. Hence, the demand for information can

decrease or increase when the cost of trading fast is reduced.

A second implication is that speculators’ order imbalances (i.e., their aggregate net

trade) can be positively or negatively autocorrelated depending on (i) the reliability of

their signals and (ii) the cost of trading fast. To see why, suppose that speculators first

receive a negative signal about a firm (e.g., “google news” announces that the firm is
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bankrupt).7 In equilibrium, all speculators who choose to trade before processing the

signal optimally sell the stock and if their selling pressure is strong enough, the stock

price falls. If, after processing the signal, speculators realize that it is false, they all

(including those who traded without initially processing the signal) place buy orders to

exploit (and thereby correct) the erroneous initial price drop. If, in contrast, the signal

is correct then all speculators sell additional shares and the initial price drop continues.

The first type of sequence ((a) signal, (b) trade, (c) signal correction) is a source of

negative autocorrelation in speculators’ order imbalances whereas the second type ((a)

signal, (b) trade, (c) signal confirmation) is a source of positive autocorrelation in these

imbalances. The former effect dominates (speculators’ trades are negatively autocorre-

lated) iff the cost of trading fast on information is low enough and for intermediate values

of signals’ reliability. Indeed, trade reversals happen when (a) signals turn out to be false

positive (which is more likely when signals are less reliable) and (b) fast speculators’

trades move prices, which is more likely if their mass is large enough. This happens when

the cost of trading fast on information is low and information is sufficiently reliable.

Another implication is that, depending on signal reliability, speculators may behave

as contrarian or momentum traders. If the reliability of speculators’ signals is small,

speculators behave as contrarian traders: the direction of their trade after processing

information is negatively correlated with the return following news arrival. Indeed, when

signal reliability is low, price movements following the arrival of speculators’ signals are

more likely to be due to false news and thereby to be subsequently corrected by trades in

the opposite direction of the initial price movement. In contrast, when signals’ reliability

is high, speculators’ signals are more likely to be confirmed subsequently (false news are

rare), which trigger additional speculators’ trades in the same direction as the price move-

ment following news arrivals. In this case, speculators behave like momentum traders:

their trades after processing information are positively correlated with past returns. Thus,

the effect of past returns on high-frequency (fast) traders’ net order imbalances should

depend on the reliability of signals received by these traders.8

7On Monday 8, 2008, the stock price of United Airlines dropped to $3 a share from nearly $12 in
about fifteen minutes. Then the price bounced back at $11 at the end of the Tuesday session. The cause
of this price swing was an old article about United Airlines’ 2002 bankruptcy-court filing that mistakenly
appeared on September 8, 2008 as a seemingly new headline on Google’s news service.

8One could test this prediction using VAR analysis by allowing lagged returns to affect fast traders’
order imbalances (as in Hirschey (2013)) and checking whether the sign of coefficients on lagged returns
depends on a measure of news reliability. Brogaard et al.(2013) (see their Figure 2) find that net trades
(buys minus sales) of high frequency traders are negatively correlated with past returns at the high
frequency. Hirschey (2013) find that high frequency traders’ order imbalances are positively related to
the first three lagged returns (measured at the one second frequency) and then negatively related to
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When the cost of trading fast declines, the likelihood of a price reversal after the first

trading round increases because more speculators choose to trade on the signal without

processing it.9 The likelihood of a price reversal is an inverse U-shape function of signal

reliability. The reason is that the number of speculators who trade on a signal without

first processing it increases with signal reliability. Thus, conditional on the signal being

false, the likelihood of an erroneous price movement following news arrival, and therefore

a subsequent reversal, is larger for more reliable news. The likelihood that the signal

is false is smaller, however so that eventually the relationship between the frequency of

price reversals and news reliability is non-monotonic.

We define a mini-flash as a price change in the first trading round that (i) is larger

than a fixed threshold R (say x% of the range of the payoff distribution for the asset) and

(ii) reverts in the second period. We show that, for any value of R, mini-flash crashes

become more frequent when the cost of trading fast decreases, as observed in recent years.

In addition, the frequency of mini-flash crashes in a stock is an inverse U-shape function

of the average news reliability in this stock.

Finally, we study the effect of the cost of trading fast on informational efficiency,

measured by the mean-squared pricing error (i.e., the squared difference between the

asset price and the asset payoff) in each trading round. Not surprisingly, a decline in

the cost of trading fast makes the price in the first period more informationally efficient:

signals contain information even though they are unreliable and having more speculators

trading fast accelerate price discovery. More interestingly, informational efficiency after

speculators process information is either unchanged or even improved when the cost

of trading fast declines. This finding is surprising because, as mentioned previously, a

decline in the cost of trading fast can reduce the number of informed investors and always

increases the number of speculators who take the risk of trading on false signals. One

might expect these effects to harm efficiency.

However, there is a countervailing force: gradual trading on signals enable dealers

to better filter out information from order flows. Indeed, dealers face two sources of

uncertainty: (i) they do not know the direction of speculators’ signal and (ii) they do

not know whether speculators’ signal is valid or not. Gradual trading by speculators,

returns at higher lags (see Table 4 in Hirschey (2013)). However there is cross-sectional variations in
the signs of these coefficients. Our model suggests news reliability as a potential determinant of this
cross-sectional variability.

9Prices are semi-strong form efficient in our model. Hence, consecutive price changes are uncorrelated.
However, conditional on the signal being false, a price change in the first period revert in the second
period.
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first on the direction of the signal and then on its validity, help dealers to better learn

about these two dimensions of uncertainty. Thus, paradoxically, a reduction in the cost of

trading fast can simultaneously increase the frequency of mini-flash crashes and improve

price discovery.

As in Froot, Scharfstein and Stein (1992), Hirshleifer, Subrahmanyam, and Titman

(1994), and Brunnermeier (2005), we consider a situation in which some informed traders

can trade on their signal before other informed traders. Our model differs from these

models in at least three important ways: (i) speculators receive signals that might be

false, (ii) they gradually learn whether signals are valid or false, and (iii) speculators

observe their signal simultaneously but endogenously choose to trade early or not on

the signal. These features are absent from models with early and late informed traders

and they are key for several of our predictions. For instance, our predictions regarding

the effects of the cost of trading fast stem from the possibility for speculators to choose

whether to trade early (before processing information) or not.10

As far as we know, our paper is first to analyze a model of trading with false news.

There exist many static (one trading round) models in which informed investors receive

imprecise signals (e.g., Kim and Verrechia (1994)). In static models, however, there is

no difference between imprecise signals and false signals as speculators cannot separate

information from noise. However, if signals can be false, in a dynamic setting, it is

natural to consider the possibility that speculators receive additional signals correcting

earlier signals (i.e., learn about the noise in their initial signal). Accounting for this could

be important in analyzing the effects of news on stock prices. For instance, using textual

analysis, Boudoukh et al.(2013) identify days with no or unidentified news and days with

news. They find that stock returns revert on the former and exhibit small continuations

on the latter. Our model predicts exactly this pattern if days with no or unidentified

news happen to be days with false news (and maybe classified for this reason as days

with no or unidentified news by textual analysis).

Several papers consider cases in which informed investors receive multiple signals over

time (e.g., Back and Pedersen (1998), Chau and Vayanos (2008), or Foucault, Hombert,

and Rosu (2012)). In these models, informed investors’ signals can be imprecise. However,

10This possibility is also key for our results regarding price reversals and mini-flash crashes because
the likelihood of an erroneous price movement is positively related to the mass of speculators who choose
to trade before processing information. In Froot et al.(1992), there exist equilibria in which a fraction
of speculators trade on noise. However, there is no possibility for traders to correct price changes due
to such trades. In contrast, in our model, speculators correct erroneous price changes in period 2, after
processing signals.
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informed investors do not receive additional signals about the noise in early signals.

That is, early signals are not subsequently corrected. To our knowledge, our paper is

first to introduce this possibility in models of informed trading. Biais, Foucault, and

Moinas (2012) and Jovanovic and Menkveld (2012) develop models in which fast traders’

advantage stems from a quick access information. However, in these models, informed

investors process news instantaneously. Hence, they face no trade-off between trading

fast on very noisy information or waiting to obtain a more precise signal.

The next section describes the model and Section ?? derives equilibrium prices at dates

1 and 2, taking the number of fast and slow speculators as given. Section ?? endogenizes

the number of speculators of each type and shows that the demand for information is a

U-shape function of the cost of being fast. Section ?? considers the implications of the

model for (a) price and trade patterns, (b) informational efficiency, and (c) the frequency

of mini-flash crashes. Section ?? concludes.

2 Model

We consider a model of trading in the market for a risky asset with four periods (t{∈
0, 1, 2, 3}). The payoff of the asset, V , is realized at date t = 3. It can be V = 1 or V = 0

with equal probabilities. Trades take place at dates t = 1 and t = 2. There are three

types of market participants: (i) liquidity traders, (ii) a continuum of speculators, (iii)

a competitive market-maker. Figure ?? summarizes the timing of actions and events in

our model.

We now describe in more detail traders’ actions at dates 0, 1, and 2.

Liquidity Traders. As in Glosten and Milgrom (1985), liquidity traders need to buy

or sell the asset for exogenous reasons. Their aggregate demand at date t ∈ {1, 2} is

denoted l̃t. It is uniformly distributed over [−Q,Q] with density:

φ(x) =
1

2Q
× I{x∈[−Q,Q]}. (1)

Fast and Slow Speculators. At date 0, speculators make two decisions: (i) they

decide to buy or not information at cost Cp and (ii) to invest or not in a fast trading

technology at cost ∆. If an investor acquires information, he receive a signal S̃1 ∈ {0, 1}
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t = 0

- Speculators
decide to become
informed, at cost
Cp.

- A fraction of
informed
speculators
decide to become
fast, at cost ∆.

t = 1

- Fast speculators
observe the
signal S , then
send orders.

- Liquidity traders
send orders.

- The market
maker observes
the aggregate
order flow, then
sets a price p1.

t = 2

- All informed
speculators
observe S and
U, then they
send orders.

- Liquidity traders
send orders.

- The market
maker observes
the aggregate
order flow, then
sets a price p2.

t = 3

The asset pays
off.

Figure 2: Market Participants’ Decisions: Timing.

about the payoff of the asset just before the first trading round at t = 1, with:

S̃1 = Ũ × Ṽ + (1− Ũ)× ε̃, (2)

where Ũ ∈ {0, 1} and ε̃ ∈ {0, 1}. Moreover, Pr[U = 0] = 1− θ and Pr[U = 1] = θ, with

Pr[ε = 0] = Pr[ε = 1] = 1/2. Thus, with probability θ, the signal is informative and

with probability (1− θ), the signal is just noise. Hence, θ measures the reliability of the

signal received by speculators at date 0. Speculators can process the signal to determine

whether it is informative (U = 1) or not (U = 0). Information processing however takes

time. Hence, U cannot be discovered before t = 2. A speculator can trade on the signal

before processing it, at date t = 1, only if he owns the fast trading technology.

We refer to speculators who invest in the fast trading technology as fast speculators

and to speculators who only trade at date t = 2 as slow speculators. The total cost borne

at date t = 0 by fast speculators is CF = Cp + ∆ whereas slow speculators bear a smaller

cost, Cp. We denote by β the mass of speculators (fast and slow) who acquire information

and by α the mass of fast speculators. We have α ≤ β because fast speculation requires

buying information in the first place.11

11A speculator without information expects a zero profit in our model because he expects to buy or
sell the asset at its fair value. Thus, investing in the fast trading technology without buying information
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Costs Cp and ∆ are of different nature. Cost Cp is an information acquisition cost. It

represents, for instance, the cost that speculators pay to obtain news analytics services

(e.g., from Bloomberg, Reuters etc.) and to process information (skilled analysts, com-

puters, etc.). In contrast, cost ∆ is a technological cost that is paid to trade fast once the

information is received. This cost represents investments made by high frequency trading

firms to maximize their speed of reaction to market events. One proxy for this cost could

be, for instance, the fee charged by exchanges for colocation services.12 Hence, β can be

seen as the demand for information and α as the demand for fast trading technologies by

investors buying information. We endogenize α and β in Section ??.

Order Flow. Let pt be the stock price at date t. As in Glosten and Milgrom (1985),

speculators only place market orders (i.e., orders that are non contingent on execution

price) of a fixed size, which is normalized to one share. This assumption is not key

because we do not a priori restrict α and β, the masses of speculators trading at dates 1

and 2. Hence, the total number of shares purchased or sold by speculators at each date

can be large, even though the trade of each speculator is small.

We denote the market order of speculator i at dates 1 and 2 by xi1(s) and xi2(s, u, p1),

respectively, where s and u are the realizations of S1 and U and xit ∈ {−1, 0, 1}. A

market order specifies the number of shares purchased or sold by the speculator given

his information (xit < 0 means selling |xi1(s)| shares at date t). At date 2, a speculator’s

market order depends on his information (s and u) and the last transaction price, p1. At

date 1, xi1(s) = 0 for speculators who do not have the fast trading technology.

The aggregate order flow at date t, ft, is therefore:

ft = l̃t +

∫ β

0

xit(s)di. (3)

We denote by fmaxt and fmint , the highest and smallest possible values of the order flow

at date t. Obviously, fmax1 = Q+α, fmin1 = −Q−α, fmax2 = Q+ β, and fmin2 = −Q− β.

The Market-Maker At each date, the market-maker sets a price, pt, for the asset

equal to the expected payoff of the asset conditional on his information. We assume that

the market-maker does not observe S̃ and Ũ until date t = 3 because our goal is to model

results in a loss equal to the investment ∆. Hence, no speculator would invest in the technology without
acquiring information.

12Colocation enables proprietary traders to locate their computers very close to exchanges’ servers.
In this way, traders reduce the time it takes for them to send new orders (e.g., in reaction to a signal
arrival) to exchanges.
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price dynamics just after the arrival of information, before information become known by

all market participants. The market-maker’s quotes however are contingent on the order

flow, ft, in each period (as in Kyle (1985)).

Formally, let Ωt be the information set of the market maker at date t (Ω1 = f1 and

Ω2 = f̃2, f̃1). The stock price at date t is:

pt = E[V |Ωt] = Pr[V = 1|Ωt]. (4)

A Proxy for Signal Reliability. In our model, speculators first observe a noisy signal,

S1, about V . Then, at date t = 2, they learn whether this signal was false or informative.

This information structure captures the idea that information processing takes time and

consists in filtering out noise from signals. Another, equivalent approach, to formalize

the same idea is to assume that speculators receive a sequence of signals about V . For

instance, suppose that at date 2, instead of observing U directly, speculators receive a

signal S
′
2 such that:

S
′
2 = S1, if U = 1,

and

S
′
2 =

1

2
, if U = 0.

This information structure captures the idea that a false signal at date 1 is subse-

quently corrected while a valid signal is not. Let ρθ be the autocorrelation between the

signal at date 1 and the change in the signal from date 1 to date 2, (S
′
2−S1). Calculations

yield:

ρθ = −
√

(1− θ).

Thus, the possibility for the signal at date 1 to be false (θ < 1) and therefore corrected

in the future (here at date 2) implies that changes in signals are negatively correlated.

Moreover, the smaller is a signal reliability (θ), the stronger is the negative autocorrelation

in signals. Hence, empirically the autocorrelation in the innovations of signals received by

market participants could be used to detect whether these signals are sometimes false (in

this case the autocorrelation in signals should be negative). Furthermore the inverse of

the absolute autocorrelation of these innovations can be used as a proxy for reliability.13

13For instance, news analytics providers assign a sentiment score and relevance score to each news
(e.g., +1 if the news is interpreted as positive by news analytics software and −1 if it is interpreted as
negative. One could use innovations in these scores to measure the autocorrelation in news for the same
stock. If less relevant news are also less reliable, the autocorrelation in news might become negative for
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3 Equilibrium Trading Strategies and Prices

In this section, we derive speculators’ optimal trading strategies and equilibrium prices,

taking the demands for information and fast trading technologies, β and α, as given.

Let µ(s) be the expected payoff of the asset at date 1 when the realization of the signal

observed by speculators at date 1 is s ∈ {0, 1}. We have:

µ(s) = Pr[V = 1|S1 = s] =
Pr[S1 = s|V = 1]Pr[V = 1]

Pr[S1 = s]
.

Hence:

µ(1) =
1 + θ

2
>

1

2
and µ(0) =

1− θ
2

<
1

2
.

The expected profit of a speculator who trades x1 shares in period 1, is therefore

π1(α, s) = x1(µ(s)− E[p1|S1 = s]).

We denote the ex-ante expectation of this profit by π̄1(α). The next proposition describes

the equilibrium (prices and fast speculators’ trading strategies) at date 1 and provides

the equilibrium ex-ante expected profit for the fast speculators on their first period trade.

Proposition 1. The equilibrium at date 1 is such that:

1. A fast speculator buys one share if his signal is high and sells one share if his signal

is low:

x1(1) = 1, x1(0) = −1. (5)

2. The equilibrium stock price at date 1 is:

p1(f1) = Pr[V = 1|f̃1 = f1] =
1

2

(
(1 + θ)φ(f1 − α) + (1− θ)φ(f1 + α)

φ(f1 − α) + φ(f1 + α)

)
, (6)

for f1 ∈ [fmin1 , fmax1 ].

3. Fast speculators’ expected profit at date 1 is:

π̄1(α) =
θ

2
Max{Q− α

Q
, 0}. (7)

As expected, fast speculators buy when they observe a good signal and sell when they

receive a bad signal. Thus, the order flow at date 1 is positively correlated with the

news with a relevance sufficiently low.
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signal received by speculators and is therefore informative about this signal. This signal

is noisy however because the order flow is also determined by liquidity traders’ orders,

which contain no information. For these reasons, the price of the asset at date 1 weakly

increases in the order flow. Specifically, using (??), we deduce from (??) that:

p1(f1) =


µ(0) if f1 ∈ [fmin1 ,−Q+ α],

1
2

if f1 ∈ [−Q+ α,Q− α],

µ(1) if f1 ∈ [Q− α, fmax1 ].

When the order flow at date 1 belongs to [−Q + α,Q − α], the market-maker cannot

infer speculators’ signal because realizations of order flow in this range are equally likely

when V = 1 and V = 0. Thus, the market-maker sets a price equal to the ex-ante

expected value of the asset. If the buying pressure is strong enough (f1 ≥ Q − α), the

market-maker infers that speculators are buying and deduces that S1 = 1. If instead the

selling pressure is strong (f1 ≤ −Q + α), the market-maker infers that speculators are

selling and deduces that S1 = −1. When α increases, the range of values for the order

flow such that it fully reveals speculators’ signal gets larger because speculators account

for a larger fraction of the trading volume. Correspondingly, their expected profit in the

first period declines because speculators can make a profit on the first round signal only

if prices do not fully reflect their information.

If Q ≤ α, the mass of fast speculators is so large relative to the mass of liquidity

traders that the order flow is always fully revealing (the interval [−Q + α,Q − α] is

empty). In this case, fast speculators make a zero expected profit at t = 1.14

At t = 2, speculators observe the realization of Ũ : they learn if the first period signal

is false or not. Hence, at t = 2, the expected profit of a speculator is:

π2(α, β, s, u) = x2(E[V |U = u, S1 = s]− E[p2|U = u, S1 = s, p1]).

We denote by π̄2(α, β), the ex-ante (i.e., date 0) speculators’ expected profit on their

trade at date 2. This expected profit does not depend on whether the speculator is fast

or not because, at date 2, all speculators have identical information and therefore follow

14When Q ≤ α, the equilibrium described in Proposition ?? is unique when α < Q and it is the unique
equilibrium in symmetric pure strategies when α ≥ Q. When α ≥ Q, speculators make zero expected
profit on all orders. Hence, there are also mixed strategy equilibria in this case. For instance, one can
construct equilibria in which only a mass Q of speculators trade. However, in all equilibria, speculators
expect a zero profit. Furthermore, the equilibrium mass of fast speculators is strictly less than Q when
∆ > 0 (see Section ??). Thus, α < Q is the more relevant case.
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the same strategy. The next proposition provides the equilibrium at date t = 2 and the

ex-ante expected profit of speculators on their trades at this date.

Proposition 2. Let M0(p1) = 2β(1
2
− p1). The equilibrium at date t = 2 is such that:

1. If signal S1 is informative (U = 1), speculators buy one share if tS1 = 1 (x2(1, 1, p1) =

1) and sell one share if S1 = 0 (x2(−1, 1, p1) = −1). If signal S1 is false (U = 0),

speculators buy one share if the price in the first period is less than 1
2

(x2(s, 0, µ(−1)) =

−1), sell one share if the price in the first period is greater than 1
2

(x2(s, 0, µ(1)) =

1)), and do not trade otherwise (x2(s, 0, µ(0)) = 0).

2. Hence, speculators’ aggregate demand at date t = 2 is M0(p1) = 2β(1
2
− p1) when

U = 0 and M1(S1) = 2β(S1 − 1
2
) when U = 1.

3. The equilibrium stock price at date 2 is

p2(f2, f1) =

θφ(f1 − α)φ(f2 − β) + 1−θ
2

[φ(f1 − α) + φ(f1 + α)]φ(f2 −M0(p1))

θ[φ(f1 − α)φ(f2 − β) + φ(f1 + α)φ(f2 + β)] + (1− θ)[φ(f1 − α) + φ(f1 + α)]φ(f2 −M0(p1))
.

(8)

for f2 ∈ {fmin2 , fmax2 }.

4. Speculators’ ex-ante expected profit at date 2 is continuous in α and β. Furthermore:

π̄2(α, β) =


θ

2Q2 × [(Q− α)× (Q− β(2− θ)−1) + α(1− θ)(Q− β)] if β ≤ Q,

θ
2Q2 (1−θ

2−θ )(Q− α)(2Q− β) if Q ≤ β ≤ 2Q,

0 if β > 2Q.

(9)

The market-maker’s valuation for the asset after observing trades at date 1 is p1.

At date 2, speculators buy the asset if their expectation of its payoff is higher than the

market-maker’s valuation and sells it otherwise, exactly as in period 1. As a result,

they trade in the same direction as in the first period if the signal is indeed informative

(Cov(M1(S1− 1), S1) > 0 if U=1)). If instead, the signal is false and the price reacted in

the first period, speculators trade in the opposite direction of the first period return to

correct it ((Cov(M1(S1 − 1), p1) < 0 if U=0). Hence, in the first case, speculators follow

a momentum strategy (they trade in the same direction as the first period return) while
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in the second case they follow a contrarian strategy (they trade in a direction opposite to

the first period return). Fast speculators trade in both periods. Thus, when the signal is

false, they unwind the position acquired in the first period. Otherwise they accumulate

more shares. In Section ??, we study more systematically the implications of the model

for time-series patterns in returns and speculators’ trades.

As in period 1, the order flow is informative because speculators buy (sell) the asset

when the last period price is too low (high) compared to their forecast of the asset payoff.

Thus, the second period price is again weakly increasing in the second period order flow.

Using the characterization of equilibrium price at dates 1 and 2, Figure ?? shows the

equilibrium price dynamics conditional on S1 = 1 and S1 = 0, for fixed value of α and

β (less than Q) and for all possible realizations of U at date 2. The probability of each

possible price change (up, down, or no change) at dates 1 and 2 are shown on each

branch. The unconditional probability of a given price path in equilibrium is obtained

by multiplying the likelihood of this path by 1/2.

For instance, suppose that S1 = 1. In this case, all fast speculators buy in period

1 and with probability α
Q

, this buying pressure is strong enough to push the price up.

At date 2, with probability θ, speculators learn that the signal in period 1 was indeed

correct. Hence, they keep buying the asset and with probability β
Q

, the buying pressure

at date 2 is so strong that the market maker infers that V = 1. Hence, the price goes up

as well at date 2. The overall unconditional probability of two consecutive up movements

in the price is therefore 1
2
αθβ
Q2 .

Alternatively, with probability (1−θ), speculators learn in period 2 that the firs period

signal is false. Hence, they revise their initial expectation about the asset payoff from

µ(1) = 1 to E(V ) = 1/2. If the price has not changed in period 1, they are indifferent

between trading or not at date 2 because they expect to trade the asset at 1/2.15 Thus,

they choose not to trade (M0(1
2
) = 0). If instead the price has increased in the first period,

speculators sell the asset in period 2 and with probability β
Q

, the selling pressure is strong

enough to push the price back to its initial level. Thus, the unconditional probability of

an up price movement followed by a down movement is 1
2

(1−θ)αβ
Q2 .

Interestingly, the sequence of trades and price movements following false news might

be interpreted by outside observers (e.g., regulators) as an attempt to manipulate the

market by speculators. Indeed, speculators first buy the asset, the price increases as a

15The reason is that a speculator expects (i) liquidity traders’ aggregate demand and (ii) each specu-
lator’ demand to be zero. Hence, a speculator expects the price at date 2 to be identical to the price at
date 1 price because his demand is negligible compared to speculators’ aggregate demand.
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Price dynamics conditional on S = 1

p0 =
1
2

p1 =
1
2

Q−α
Q

p1 =
1+θ
2

α
Q

p2 =
1
2

Q−β
Q

p2 =
1+θ
2

Q−β
Q

p2 = 1

θβ
Q

(1−θ)β
Q

p2 =
1

2−θ

β
2Q

p2 =
1−θ
2−θ

(1−θ)β
2Q

θβ
2Q

Price dynamics conditional on S = 0

p0 =
1
2

p1 =
1
2

Q−α
Q

p1 =
1−θ
2

α
Q

p2 =
1
2

Q−β
Q

p2 =
1−θ
2

Q−β
Q

p2 = 0

θβ
Q

(1−θ)β
Q

p2 =
1−θ
2−θ

β
2Q
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1

2−θ

(1−θ)β
2Q

θβ
2Q

Figure 3: Price dynamics in equilibrium.

result, and finally speculators turn around their position to correct the erroneous price

increase. This sequence of events has the flavor of so called momentum ignition strategies

described by the SEC as follows:

“With this strategy, the proprietary firm may initiate a series of orders and trades

(along with perhaps spreading false rumors in the marketplace) in an attempt to ignite a
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rapid price move either up or down. For example, the trader may intend that the rapid

submission and cancellation of many orders, along with the execution of some trades, will

”spoof” the algorithms of other traders into action and cause them to buy (sell) more

aggressively. [...] By establishing a position early, the proprietary firm will attempt to

profit by subsequently liquidating the position if successful in igniting a price movement.”

(SEC, concept release on Equity market structure (2010)).

If, as is likely in reality, speculators do not all move simultaneously, but rather se-

quentially, one will in fact have in fact the impression that early traders are igniting the

trades of other traders. Furthermore, conditional on false news (which might well be

perceived as “rumors”), early traders liquidate their position in the second period if the

price moved in the first period (i.e., “if successful in igniting a price movement”). Yet,

there is no price manipulation in our model. In equilibrium, speculators’ behavior is just

a consequence of the fact that they might optimally choose to trade before processing

news and news being false.

The market maker’ s expected profit at date 2 is positive as long as β ≤ 2Q. As

explained in the next section, it will be satisfied in equilibrium when the cost of acquiring

information is large enough.

Corollary 1. In equilibrium, for fixed values of α and β:

1. Speculators’ ex-ante expected profit at date 1 increases with θ, the reliability of

information,

2. If β ≤ Q and α
Q−α + β

Q−β < 1, speculators’ ex-ante expected profit at date 2 increases

with θ.

3. If β ≤ Q and α
Q−α + β

Q−β > 1, there is unique Θ(α, β) ∈ [0, 1] (defined in the

proof) such that speculators’ ex-ante expected profit at date 2 increases with θ, on

the interval [0,Θ(α, β)], and decreases with θ on the interval [Θ(α, β), 1].

4. If Q < β ≤ 2Q, speculators’ ex-ante expected profit at date 2 increases with θ iff

θ ≤ 2−
√

2.

Furthermore, for a fixed value of θ, speculators’ ex-ante expected profits at dates 1 and 2

decrease with α and β.

Fast speculators are less at risk of trading on a false information when the signal

is more reliable. Thus, not surprisingly, the expected profit of fast speculators at date
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1 increases with the reliability of their information. In contrast, the effect of signal

reliability on speculators’ expected profit at date 2 is less clear-cut. On the one hand, an

increase in the signal reliability increases the likelihood for a speculator to be informed at

date 2, which everything else equal enhances his expected profit. On the other hand, it

raises the likelihood of a price movement in period 1. As θ increases, this price movement

is more likely to contain information, which reduces the profit of informed trading at date

2 if the signal at date 1 is indeed informative. The latter effect is small when α and β

are small or when θ is small enough. When α and β are large and when θ is large enough

then the former effect dominates and speculators’ expected profit decreases with θ.

The order flow at date 2 is more likely to be fully informative as the mass of spec-

ulators, β, increases. For this reason, speculators’ ex-ante expected profit in period 2

decreases with β. Speculators’ expected profit in period 1 decreases with α because an

increase in the mass of fast speculators increases the likelihood that the order flow is

fully informative. Speculators’ expected profit at date 2 also depends on the mass of fast

speculators, α for two reasons. First, an increase in α increases the likelihood that the

price at date 1 adjusts in the direction of speculators’ signal, S1. If the signal is correct

(U = 1), an early adjustment of the price to the signal lowers the expected profit of trad-

ing “late” on signal S1. If instead the signal is false, this early adjustment is a source of

profit for all speculators because they know that the first period price was erroneous. The

second part of Corollary shows that the first effect always dominates, so that speculators’

expected profit in period 2 decreases with the mass of fast speculators, α.

4 Demand for Information and the Cost of Fast Trad-

ing

We now derive the equilibrium demand for information and fast trading technologies,

namely equilibrium masses, β∗ and α∗, of speculators and fast speculators. Let β∗(α,Cp)

be the equilibrium mass of speculators when the mass of fast speculators is α and let α∗(∆)

be the equilibrium mass of fast speculators when the cost of trading fast is ∆. In any case

β∗(α) ≥ α because fast speculators also process the signal and finally discovers whether

the latter is informative or not. When β∗(α∗) > α∗ > 0, fast and slow speculators coexist.

When β∗(α∗) = α∗ > 0, all speculators are fast whereas when α∗ = 0, all speculators

are slow. We now analyze under which conditions each of these cases is obtained. In

particular we study the effect of the cost of being fast, ∆, on traders’ incentives to buy
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information.

A speculator who only trades after processing information obtains a net expected

profit of

ΠS(α, β) = π̄2(α, β)− Cp, (10)

whereas a fast speculator obtains a total net expected profit of:

ΠF (α, β) = π̄1(α) + π̄2(α, β)− (∆ + Cp). (11)

We now show that the demand for information, β∗(α∗), is a U-shape function of the cost

of trading fast, ∆. For given α and β, the marginal value of the fast trading technology

is:

ΠF (α, β)− ΠS(α, β) = π1(α)−∆. (12)

As π1(α) decreases with α, we deduce that no speculator chooses to be fast if:

π1(0) ≤ ∆, (13)

that is,

∆ ≥ θ

2
. (14)

In this case, no speculator chooses to trade on the signal without first processing it. Thus,

the equilibrium mass of speculators, solves:

ΠS(0, β∗(0)) = 0. (15)

That is,

π̄2(0, β∗(0)) = Cp. (16)

We deduce from the expression for π̄2(., .) in Proposition ?? that:

β∗(0) =


0 if Cp >

θ
2
,

(2− θ)Q
(

1− 2Cp
θ

)
if θ

2

(
1−θ
2−θ

)
< Cp <

θ
2
,

2Q
(

1− (2− θ) Cp
θ(1−θ)

)
if Cp ≤ θ

2

(
1−θ
2−θ

)
.

(17)

Thus, β∗(0) is greater than zero for Cp <
θ
2

and always less than 2Q for Cp > 0. Moreover,

for θ
2

(
1−θ
2−θ

)
< Cp <

θ
2
, β∗(0) ≤ Q and for Cp ≤ θ

2

(
1−θ
2−θ

)
, β∗(0) ≥ Q.

Now suppose that ∆ < θ
2
. In this case, some or all speculators choose to be fast:
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α∗ > 0. Furthermore, if α∗ < β∗(α∗), some speculators choose to remain slow and the

total mass of speculators adjusts so that the expected profit of just processing information

is zero. That is, if α∗ < β∗(α∗):

ΠS(α∗, β∗(α∗)) = 0. (18)

Consequently, in this case, the mass of fast speculators, α∗, must be such that:

ΠF (α∗, β∗) = π̄1(α∗) + π̄2(α∗, β∗)− (∆ + Cp) = π̄1(α∗)−∆ = 0,

so that in equilibrium, the marginal benefit of being fast (π1(α∗)) is just equal to the

marginal cost (∆). Hence, when both fast and slow speculators coexist:

α∗(∆) = Q

(
1− 2

∆

θ

)
. (19)

As ∆ decreases (starting from θ
2
), the mass of fast speculators increases in equilibrium

because ΠF (α, β) decreases with α and ∆ (see (??)). Accordingly, the expected profit of

slow speculators decline (Proposition ??). Hence, the value of β∗(α∗) such that (??) holds

is smaller because ΠS(α, β) decreases with β. Thus, there exists a threshold ∆̄(θ, Cp) such

that β∗(α∗(∆̄)) = α∗(∆̄), where α∗(∆) is given by eq.(??). This threshold solves:

ΠS(α∗(∆̄), α∗(∆̄)) = π̄2(α∗(∆̄), α∗(∆̄))− Cp = 0. (20)

Using the expression for π̄2(α, β) in Proposition ??, we have π̄2(0, 0) = θ
2
, π̄2(Q,Q) =

0, and π̄2(α, α) ≥ 0, ∀α ∈ [0, Q]. Hence, as π̄2(α, β) decreases in both α and β, we

deduce that eq. (??) has always a unique positive solution, ∆̄. We provide a closed-form

expression for ∆̄(θ, Cp) in the proof of Proposition ??.

Now, suppose that ∆ < ∆̄. We have α∗(∆) > α∗(∆̄) because α∗ decrease with ∆.

Hence, as π̄2(α, β) decreases with α and β, it must be the case that:

π̄2(α∗, β)− Cp < π̄2(α∗, α∗)− Cp < π̄2(α∗(∆̄), α∗(∆̄))− Cp = 0, (21)

for β ≥ α∗. Thus, it cannot be optimal for a speculator to be slow when ∆ < ∆̄ and

therefore in this case β∗(α∗) = α∗. In equilibrium, the mass of speculators must therefore

adjust so that all speculators make zero expected on average (rather than trade by trade).
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Thus, when ∆ < ∆̄, α∗ solves:

ΠF (α∗, α∗) = π̄1(α∗) + π̄2(α∗, α∗)− (∆ + Cp) = (π̄1(α∗)−∆)︸ ︷︷ ︸
>0

+ (π̄2(α∗, α∗)− Cp)︸ ︷︷ ︸
<0

= 0.

(22)

In this case as well, α∗ decreases with the cost of the fast trading technology, ∆, because

ΠF (α, α) decreases in α. Thus, when ∆ is larger, α∗ must be smaller for (??) to hold.

Furthermore, as π̄2(α∗, α∗) < Cp (eq. (??)), we must have π̄1(α∗) > ∆. That is, in

equilibrium, the marginal benefit of being fast remains strictly larger than the cost of

being fast in equilibrium (π̄1(α∗)) when ∆ < ∆̄. Yet speculators just make zero expected

profit once the cost of information is taken into account. This emphasizes the importance

of accounting for both technological costs and information costs in the evaluation of the

profitability of fast traders. Moreover, as π̄1(α∗) > ∆, it must be the case that α∗ < Q.

Hence, for ∆ < ∆̄, the total mass of speculators decreases with ∆ because β∗ = α∗ and

α∗ decreases with ∆. In contrast, for ∆ > ∆̄, the total mass of speculators increases with

∆ because in this case β∗ > α∗ and β∗ gets larger when ∆ is higher. Thus, the demand

for information, β∗, is a U-shape function of the cost of trading fast, ∆. We summarize

the results obtained so far in the next proposition. A closed form characterization of

∆̄(θ, Cp), α
∗, and β∗ is given in the proof of the proposition.

Proposition 3. If 0 < Cp <
θ
2
:

1. The demand for information in equilibrium (β∗) is a U-shape function of the cost

of trading fast on the signal, ∆ and it reaches a minimum for ∆ = ∆̄.

2. The demand for the fast trading technology (α∗) decreases with the cost of fast

trading, ∆.

3. For ∆ > ∆̄, (i) α∗(∆) = max
{
Q
(
1− 2∆

θ

)
, 0
}

, (ii) β∗ solves (??) and (iii) some

speculators never trade on the signal without first processing it (β∗ > α∗).

4. For ∆ ≤ ∆̄, (i) α∗ solves (??), (ii) β∗ = α∗ and (iii) all speculators choose to

process information before trading on it (β∗ = α∗).

5. There exists a value C∗p ∈ [ θ
2
(1−θ

2−θ ),
θ
2
] such that if Cp > C∗p then β∗ is maximal for

∆ = 0 while if Cp < C∗p then β∗ is maximal when ∆ ≥ θ
2

(i.e., when no speculator

chooses to trade without processing information).

Fast trading has two opposite effects on the value of information. On the one hand,

it enables speculators to trade multiple times (twice in our model) on their information.
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This effect enhances the value of information and therefore the demand for it. On the

other hand, by trading fast on information, speculators reduces the expected profit that

speculators can obtain after processing information (π̄2(α, β) decreases with α; see Corol-

lary ??). This effect lowers the value of information. It dominates when the cost of the

trading technology is larger than ∆̄ while the former effect dominates otherwise. This

explains why ultimately the demand for information in equilibrium is a U-shape function

of the cost of trading fast.

Figure ?? illustrates this property. It shows that the demand for information as

a function of the cost of trading fast for specific parameter values. When ∆ > ∆̄,

fast trading technologies and information technologies are substitutes. Indeed, in this

case, a decrease in ∆ increases the demand for fast trading technologies and, for this

reason, lowers the total demand for information (as β∗(α∗) decreases when α∗ increases for

∆ > ∆̄). In contrast, for ∆ < ∆̄, fast trading technologies and information technologies

are complements. Indeed, a reduction in the cost of trading fast (∆) simultaneously raises

the demand for fast trading technologies and information.

Figure ?? also shows that even when the cost of trading fast is zero, the total demand

for information can be smaller than when the cost of trading fast is so high that no

speculator chooses to trade on information without processing it first, as implied by the

last part of Proposition ??.
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Figure 4: Equilibrium demand for Information and Cost of Trading Fast.
Parameters: θ = 0.3 (dotted line), θ = 0.35 (dashed line), θ = 0.4 (thick line);

Cp = 0.1, Q = 10.

Corollary 2. In equilibrium, other things equal, the mass of fast speculators increases

with signal reliability when ∆ > ∆̄. Thus, in this case, the expected size of the immediate

price reaction following the signal (E(|p1 − 1
2
|) increases with signal reliability. When
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∆ < ∆̄, the mass of fast speculators may not be a monotonic function of the signal

reliability θ (because of corollary ??). However the immediate price reaction following the

signal still increases with signal reliability.

This corollary implies that one should see larger price reactions following the arrival

of more reliable signals. For instance, news analytics providers assigns a relevance score

to each news released to buyers of their service. If news relevance is a proxy for news

reliability then the previous corollary implies that more revelant news should move prices

more. This is consistent with the findings in von Beschwitz et al.(2013)

In Proposition ??, we focus on the case in which Cp <
θ
2
. This condition guarantees

that, in the absence of fast trading (∆ > θ
2
), some speculators buy information. For

completeness, we now consider the case in which Cp ≥ θ
2
.

Proposition 4. If θ
2
≤ Cp < θ:

1. When ∆ + Cp > θ, there is no demand for information, α∗ = β∗ = 0.

2. When ∆ + Cp < θ, all speculators choose to be fast in equilibrium β∗ = α∗ and α∗

solves equation (??) (see the proof for a closed-form solution).

3. The demand for information in equilibrium (β∗) is (weakly) decreasing in the cost

of trading fast on information, ∆.

As Cp ≥ θ
2
, buying information only to trade once on it is never profitable. Thus,

if the cost of trading fast is too large, then no speculator buys information (2nd part

of Proposition ??). When the cost of trading fast becomes small enough then buying

information becomes attractive as speculators can now trade multiple times on the same

signal, which enables them to better amortize the cost of information (3rd part of the

proposition). In this case, information acquisition and fast trading are always comple-

ments and for this reason the demand for information always declines with the cost of

fast trading.

5 Implications

5.1 Price and Trade Patterns

In this section, we analyze in more detail the return and trade patterns induced by

speculators’ equilibrium behavior. To focus on the interesting case, we assume throughout
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that ∆ < θ
2

so that at least some speculators choose to be fast (α∗ > 0). Otherwise, there

is no trading at date t = 1. As mentioned previously, fast speculators keep building up

their position at date 2 when after processing the signal they learn that it is informative,

whether the first period price moved or not. However, if they learn that the signal is false,

speculators revert their trades at date 2 only if the first period price moved. Conditional

on a false signal, the likelihood of an erroneous price movement is larger when the number

of fast speculators is higher, that is, when the cost of trading fast is lower. For this reason,

as the next proposition shows, the covariance between speculators’ trades at dates 1 and

2 declines when the cost of trading fast declines and can even become negative when this

cost is low enough.

Corollary 3. In equilibrium, the covariance between the trades of speculators at dates 1

and 2 is:

Cov(x1, x2) = θ − (1− θ)α
∗

Q
,

This covariance declines when the cost of trading fast becomes smaller because this re-

duction increases the mass of fast speculators, α∗. It can be positive or negative. For

instance, when ∆̄ < ∆, Cov(x1, x2) < 0 if and only if ∆ < 3
2
−
√

2 and θ ∈ [θ1(∆), θ2(∆)]

(where the thresholds θ1(∆) and θ2(∆) are defined in the proof of the proposition).

Thus, a decrease in the cost of trading fast always reduces the covariance between

speculators’ trades at dates 1 and 2. This covariance can even become negative so that

speculators are negatively autocorrelated (both at the speculator-level and at the group

level since all speculators trade in the same way at date 2). In our model, trade reversals

happen when (i) speculators realize that the signal was false and (ii) the first period price

deviates from the expected payoff of the asset conditional on the signal being false. The

first condition holds more frequently when θ is low while the second holds more frequently

when θ is large. For this reason, as shown by the second part of Corollary ??, the sign

of Cov(x1, x2) is non monotonic in θ and is negative for intermediate values of θ and

positive for extreme values.

Hirshleifer, Titman and Subrahmanyam (1994) and Brunnermeier (2005) also consider

two-periods models with early and late informed investors in which early investors might

unwind, at least partially, their position in the second period. However, the source of

trade reversals in these models are very different from that in our model. In Hirshleifer,

Titman and Subrahmanyam (1994), early informed investors partly unwind their position

in the second period because of risk aversion (they optimally share risk with dealers

and late informed investors at date 2). This effect is not present in our model because
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informed investors are risk neutral. In Brunnermeier (2005), trades reversals are due to

heterogeneity speculators’ signals. Again this effect is not present in our model because

all speculators have the same information. Furthermore, none of these papers predict

that the autocorrelation in early and late informed investors should depend on (i) the

cost of trading early and (b) the reliability of speculators’ signal.

Corollary 4. In equilibrium, the covariance between the first period return (p1− p0) and

the trade of a speculator at date 2 is:

Cov(p1, x2) = θ(2θ − 1)
α∗

2Q
.

Hence, speculators’ orders at date 2 are negatively correlated with the price movement at

date 1 iff θ < 1
2
. Furthermore, a decline in the cost of trading fast, ∆ raises the absolute

value of the covariance between speculators’ trade at date 2 and the first period return

because the mass of fast speculators, α∗, is higher when ∆ is smaller.

Conditional on a price movement at date 1, the likelihood that speculators correct

this movement at date 2 increases when the likelihood that the signal is false increases

(i.e., θ decreases). This explains why for θ small enough, Cov(p1, x2) < 0. Thus, fast

speculators will appear to behave as momentum traders when θ > 1
2

and contrarian

traders if θ < 1
2
. Moreover, holding θ constant, Corollary ?? implies that the relationship

between past returns and speculators’ trades should become stronger when the cost of

fast trading declines.

Figures ?? and ?? illustrate the results obtained in this section. They show Cov(x1, x2)

and Cov(p1, x2) as a function of θ for various values of ∆. In each case, covariances are U-

shape functions of θ. Furthermore, the covariance in speculators’ trades become smaller

and even negative as the cost of trading fast declines (see Figure ??). Last, the covariance

between speculators’ trades at date 2 and the price change at date 1 becomes smaller in

absolute value when the cost of trading fast declines (see Figure ??). In Figures ?? and

??, ∆ < ∆̄. This shows that the condition ∆ > ∆̄ is not necessary for the predictions

obtained in Corollaries ??.

5.2 Informational Efficiency

As is common in the literature, we measure market efficiency at date t by the average

pricing error at this date, that is, Et(∆, Cp) = E[(Ṽ − Pt)2]. Remember that the stock

price satisfies, pt = E[V |Ωt], at each date (where Ωt is the market maker’s information
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Figure 5: Covariance between speculators’ trades at date 1 and 2 as a
function of θ.Parameters: ∆ = 0.1 (dotted line), ∆ = 0.05 (dashed line),

∆ = 0.01 (thick line); Cp = 0.1, Q = 10.

Figure 6: Covariance between the return at date 1 and speculators’ trades at
date 2 as a function of θ.(Parameters: ∆ = 0.1 (dotted line), ∆ = 0.05 (dashed

line), ∆ = 0.01 (thick line); Cp = 0.1; Q = 10.

set at date t). Thus:

Et(∆, Cp) = E[(Ṽ − pt)2] = E[E[(V − pt)2|Ωt]]

= E[E[(V − E[V |Ωt])
2]|Ωt]

= E[V ar[V |Ωt]]

= E[pt(1− pt)]

Hence, the market is more efficient at a given date when the expected conditional

variance of the asset payoff at this date (E[V ar[V |Ωt]]) is lower. Calculations (see the
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proof of Corollary ??) show that for ∆ < θ
2

(i.e., α∗ > 0):

E1(∆, Cp) =
1

4
− θ

2

(
θ

2
− π̄1(α∗)

)
, (23)

and when ∆ > θ
2

(i.e., α∗ = 0), V1(∆) = 1
4
. Moreover:

E2(∆, Cp) =
1

4
− 1

2

(
θ

2
− π̄2(α∗, β∗)

)
. (24)

As π̄2(α∗, β∗) ≤ Cp <
θ
2
, we always have 0 < E2(∆, Cp) ≤ 1

4
. At each date, informational

efficiency is higher when equilibrium expected profits for speculators at this date are

lower. This is intuitive. Speculators exploit deviations of prices from fundamentals given

their information. Thus, their expected profits are larger when prices are less efficient.

Now consider the effect of ∆ on informational efficiency. If ∆̄ < ∆ < θ
2
, in equilibrium,

π̄1(α∗) = ∆ and π̄2(α∗, β∗) = Cp. Hence, in this case, a small decrease in the cost of fast

trading, ∆, leaves unchanged market efficiency at date 2 and increases market efficiency

at date 1. If 0 < ∆ < ∆̄, a decrease in ∆ raises the demand for fast trading technologies

and information because (i) α∗ is higher when ∆ is smaller and (ii) in this case, β∗ = α∗.

As, at each date, speculators’ expected profit decreases with the mass of speculators at

dates 1 and 2, we deduce that in this case a reduction in the cost of fast trading improves

informational efficiency both at dates 1 and 2. Hence, we have the following result.

Corollary 5. A reduction in the cost of fast trading technologies always improve infor-

mational efficiency at date 1. Furthermore, it improves informational efficiency at date

2 if 0 < ∆ < ∆̄. Otherwise, it has no effect on informational efficiency at date 2 when

∆̄ ≥ ∆.

Critics of high frequency trading usually agree that traders exploiting information at

the high frequency enable prices to adjust faster to new information, that is, agree that V1

might improve with fast trading. They argue however that it should leave informational

efficiency at lower frequency unchanged. The model vindicates this argument when ∆ >

∆̄ but not when ∆ < ∆̄. Indeed, in the former case, a reduction in the cost of fast

trading enhances informational efficiency in the very short term but this leaves unchanged

informational efficiency after information is processed. In contrast, when ∆ < ∆̄, a

reduction in the cost of fast trading improves informational efficiency both in the very

short run (before information is processed) and in the longer run, i.e., after information

is processed.
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There are two reasons for this finding. The first, obvious, reason is that when ∆ is

low enough relative to ∆̄ and Cp > C∗p , the total demand for information, β∗ is higher

than with no fast trading (see the last part of Proposition ??). However, when Cp < C∗p ,

the total demand for information is always higher when there is no fast trading at all

(β∗(0) > β∗(∆) ∀∆ < θ
2
). Yet, even in this case, it is still the case that informational

efficiency at date 2 is higher when 0 < ∆ < ∆̄ because there is another mechanism for

this result.

This second mechanism is more subtle than the first: fast trading enables the dealer

to gradually discover the various dimensions of speculators’ informational advantage (the

direction of their signal, S, and its actual informativeness, U). Actually, if there is no

informed trading at date 1, the market-maker at date 2 faces uncertainty on both the

direction of speculators’ signal and its actual informativeness, that is, uncertainty on

both S and U . In contrast, if some speculators choose to trade fast on information,

the market-maker obtains information on the direction of speculators signal in the first

period from the order flow in this period. In fact, with probability α
Q

, the market maker

learns S1. When this happens, only U remains uncertain in the second period. This

facilitates price discovery in the second period, especially if the increase in the mass of

fast speculators due to a lower ∆ is large enough, that is when ∆ < ∆̄. This second

mechanism always plays a role as long as θ < 1, that is, there is uncertainty on U .

This beneficial effect of fast trading on informational efficiency will persist in a model

with more trading rounds as long as it takes time for speculators to fully process a signal.

For instance, suppose that there are N trading rounds before the uncertainty on the asset

payoff is resolved. At date n = 1, speculators receive signal S1:

S1 = U1S2 + (1− U1)ε1.

At date 2, before trading, speculators learn whether U1 = 1 or U1 = 0. In the latter

case, they know that the signal is false with certainty. If instead U1 = 1, they must keep

processing the signal (make further investigation) to decide whether the signal is false

or not. Specifically, they observe S2 = U2S3 + (1 − U2)ε2 where U2 is distributed as U1.

This process is repeated until date N − 1. At the first date, n + 1, at which Un = 0,

speculators discover that the initial signal was false. If there is no such date, they know

with certainty the payoff of the asset at date t = N (set SN = V ). Therefore it can

take up to N trading rounds for investors to fully process the signal received just before

trading at date 1. Then, in this case, early trading by informed investors (even on very
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noisy signal) will enable the dealer to better learn about the realizations of S1, U1, U2 etc.

and thereby will make the market eventually more efficient. For signals that are difficult

to process, N can be large. In this case, fast trading on information might eventually

contribute to market efficiency in the “long run.”

5.3 Price Reversals and Mini-Flash Crashes

The analysis of the previous section shows that a reduction in the cost of fast trading

(and thereby an increase in the number of speculators who trade before processing signals)

improves informational efficiency at date 1, and can even improve it at date 2. These

findings are consistent with recent empirical findings about the effects of high frequency

traders on price discovery (in particular Brogaard, Hendershott, and Riordan (2013)).

Yet, as mentioned in the introduction, market participants have expressed concerns that

fast trading makes financial markets less stable. In particular, the rise of high frequency

trading seems to coincide with more frequent sharp price movements followed by quick

price reversals. At first glance, this possibility seems inconsistent with academic findings

regarding the effects of high frequency traders on price discovery. We now show that this is

not necessarily the case because a reduction in the cost of trading fast can simultaneously

make the market more information efficient (as shown in the previous section) and increase

the likelihood of large price reversals (as shown below).

In our model, price changes are serially uncorrelated because prices are semi-strong

form efficient at each date (pt = E[V |Ωt]). Yet, conditional on the arrival of a false signal

(U = 0), price reversals occur when some speculators choose to trade fast on information

(α∗ > 0). To see this, consider Figure ?? and suppose that S1 = 0. In this case with

probability α
Q

, there is a strong sell order imbalance at date t = 1 and the price falls

at p1 = 1−θ
2

. Now suppose that the signal turns out to be false (U = 0). In this case

speculators realize that the current price level (p1) is not in line with the fundamental

value of the asset and buys it back. With probability β
Q

, this buying pressure is strong

enough and the price of the asset reverts to its unconditional value 1
2
. With probability

(1− β
Q

), this buying pressure is not sufficient to correct the mispricing and the price of the

asset remains at p1 = 1−θ
2
. However, on average, the price at date 3 will be 1

2
and therefore

the price will eventually revert at 1
2

on average. Conditional on {S1 = 1, U = 0}, price

movements are symmetric.

Thus, conditional on the initial signal being false, the price movement from t = 0 to

t = 1 reverts with probability α∗
Q2 in equilibrium. Furthermore, conditional on a reversal,

32



this reversal is quick (i.e., take place before t = 3) with probability α∗β∗

2Q2 . Hence, the

unconditional likelihood of a price reversal is:

pReversal(∆, θ) = (1− θ)α
∗

Q
, (25)

and the unconditional likelihood of a quick price reversal is:

pquick Reversal(∆, θ) = (1− θ)α
∗β∗

Q2
. (26)

Obviously, these probabilities are strictly positive iff α∗ > 0. Thus, price reversals oc-

cur only if some speculators choose to trade before processing information, which requires

∆ < θ
2
. Under this condition, we first study the effect of θ and ∆ on the likelihood of a

reversal at any horizon (short, i.e., t = 2 or longer, i.e., t = 3).

Corollary 6. 1. Holding θ fixed, the likelihood of a price reversal, pReversal(∆, θ), is

zero when ∆ > θ
2

and positive when ∆ < θ
2
. In this case, the likelihood of a price

reversal is inversely related to the cost of trading fast, ∆ (∂pReversal(∆,θ)
∂∆

when ∆ < θ
2
).

2. When ∆̄ < ∆ < θ/2, the likelihood of a price reversal, pReversal(∆, θ), is an inverse

U-shape function of signal reliability θ with a maximum for θ =
√

2∆.

When fast trading becomes less costly, the mass of fast speculators increases. As a

result, trades are more likely to move prices at date 1. Thus, holding fixed the frequency

of erroneous signals (θ), the likelihood of price reversals become larger when the cost of

fast trading decreases, as claimed in the first part of the proposition.

More surprisingly, as shown by the second part of the proposition, an increase in

the reliability of speculators’ signals can also generate an increase in the unconditional

likelihood of a reversal when ∆̄ < ∆ < θ
2

since pReversal(∆, θ) then peaks at θ =
√

2∆

(holding ∆ constant). When reliability increases, the signal received by speculators is

false less frequently. However, a greater mass of speculators choose to trade at date

1 because waiting to process information before trading has less value. As a result, a

larger mass of speculators trades on the signal when it is false, making the likelihood of

an erroneous price movement at date 1 larger. This effect dominates the former when

θ <
√

2∆.

Thus, a reduction in the cost of trading fast causes an increase in the likelihood of

price reversals. In addition, the model implies that the horizon over which price reversals

take place should be shorter when fast trading becomes less costly, as claimed in the next
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proposition.

Corollary 7. Suppose ∆ < ∆̄. Holding θ fixed, the likelihood of a quick price reversal,

pquick Reversal(∆, θ) increases when the cost of trading fast, ∆, decreases.

Occurrences of quick price reversals after a false signal requires combining two forces.

First, one needs to have a large number of speculators, α∗, reacting to a false signal.

Indeed, this increases the chance that the buying or selling pressure following signal

arrival will be strong enough to trigger an erroneous price change. Second, one needs

to have a large number of speculators, β∗ correcting this erroneous price change, once

speculators realize that the signal is false. When ∆ < ∆̄, a reduction in the cost of trading

fast strengthens these two forces because it increases both α∗ and β∗ (see Proposition

??).

When ∆ > ∆̄, a reduction in the cost of trading fast increases the number of fast

speculators, α∗ but it reduces the number of speculators trading after processing infor-

mation, β∗. Thus, the net effect of a reduction in ∆ on the likelihood of a quick price

reversal is ambiguous. However, we have checked through numerical simulations that the

first effect tends to dominate so that Corollary ?? still holds when ∆̄ < ∆ < θ
2
.

Figure ?? illustrates this point. It shows the likelihood of a quick price reversal as

a function of θ for various values of the cost of trading fast. For the parameter values

in Figure ??, Condition ∆ < ∆̄ is not always satisfied. Yet, it is still the case that

the likelihood of a quick price reversal is inversely related to the cost of trading fast ∆.

Moreover, this likelihood is an inverse U-shape function of θ, just as the likelihood of a

price reversal is.

Corollary ?? suggests a possible explanation for the perception that mini-flash crashes

are more frequent. A reduction in the cost of fast trading implies that more speculators

choose to trade on information without processing it. As a result, holding θ constant,

the likelihood of a price movement followed by a quick correction of this movement gets

larger. If there are time-variations in θ for a given stock, the initial price movement can

be large when speculators are quite confident that the initial signal is informative (that is

when θ is large). This type of situation can generate “mini flash crashes”: a sharp drop

(or spike) in prices followed by a very quick correction.

To formalize this idea, consider the following extension of the model in which θ is

stochastic. Specifically, at date t = 0+, θ is drawn from a distribution with support [0, 1]

and mean θ̄. All market participants observe θ but speculators must decide to acquire
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Figure 7: Probability of a quick price reversal as a function of θ.Parameters:
∆ = 0.2 (dotted line), ∆ = 0.15 (dashed line), ∆ = 0.12 (thick line); Cp = 0.1,

Q = 10.

information and to be fast before observing θ.16 The idea is that there are time-variations

in speculators’ signal reliability for a given asset and when they make their decision to

buy information about an asset speculators only know the distribution of the reliability

of the information they will receive.

Empirically, it is natural to define a ”mini flash crash” as a price movement that is

(i) large relative to some measure of normal return volatility for the asset and (ii) quickly

corrected, that is, followed by a similar price movement in the opposite direction. In our

model, the standard deviation of the asset return from date 0 to date 3 is 1
2
. Hence, we

say that a mini-flash crash happens if the following conditions are satisfied:

1. The change in price from date t = 1 to date t = 2 has a sign opposite to the change

in price from date t = 0 to date t = 1.

2. The size of this quick reversal is larger than R
2

where 0 << R ≤ 1.

As speculators must decide to invest in the fast trading technology at date 0, the

analysis of the determination of α∗ and β∗ follows the same steps as in Proposition ??.

16For tractability, we assume that when a signal arrives the market-maker knows that the signal has
arrived and the reliability of this signal, θ. This assumption is implicit in many models of trading with
asymmetric information (e.g., Glosten and Milgrom (1985)).
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The only difference is that α∗ and β∗ are determined by expected profits taken over all

values of θ, as shown in Appendix B. In particular, β∗ remains a U-shape function of ∆

with a minimum for ∆ = ∆̄r. Moreover, for ∆̄r < ∆ < θ̄
2
, we have:

α∗ = Q

(
1− 2

θ̄
∆

)
.

and β∗ solves:

Eθ[π̄2(α∗, β∗)] = Cp,

while for ∆ < ∆̄, we have α∗ = β∗ such that:

Eθ[Π
F (α∗, α∗)] = Cp + ∆,

Conditional on the realization of a signal reliability, the likelihood of a mini flash-crash

is then given by:

pccrash(θ) =
α∗β∗

4Q2
(1− θ)Iθ>R,

where Iθ>R is the indicator function. The unconditional probability of a mini-flash crash

is therefore:

pcrash =

∫ 1

0

pccrash(x)f(x)dx =
α∗β∗

4Q2

∫ 1

R

(1− x)f(x)dx,

which yields:

pcrash =
α∗β∗

4Q2
(1− E[θ|θ > R])Pr[θ > R]. (27)

First, obviously, the likelihood of a flash crash declines when R gets larger, that is, when

one imposes a larger threshold on the size of a price reversal to categorize this reversal as

a mini-flash crash. Second, when ∆ < ∆̄r, the likelihood of a mini flash crash increases

when the cost of trading fast decreases because α∗ and β∗ then increases. This is the

mechanism leading to Corollary ?? when θ is constant.

To gain further insight on the determinants of the likelihood of a flash crash in our

setting, we use numerical simulations.17 We assume that θ = Xλ, where X is a random

variable drawn from the uniform distribution on [0, 1] and λ ∈ [0,+∞) is a real number.

In this particular case, θ is distributed on [0, 1]. The higher is λ, the more likely are small

realizations of θ. To see this, let g and G be the pdf and cdf of θ. We have:

G(x) = Pr[X < x
1
λ ] = x

1
λ ,

17We explain how we perform these simulations in the last part of Appendix B.
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g(x) =
1

λ
x

1
λ
−1.

Thus, a signal with λ = λ0 dominates, in the sense of first order stochastic dominance,

a signal with λ1 iff λ1 > λ0. That is, increasing λ makes signals with a low reliability

more likely. We have:

θ̄ = E[Xλ] =

∫ 1

0

xλdx =
1

λ+ 1
,

P r[θ > R] = 1−R
1
λ ,

θ̄ = E[θ|θ > R] =

∫ 1

R
1
α
xλdx

1−R 1
λ

=
1

λ+ 1

1−R 1
λ

+1

1−R 1
λ

.

When λ increases, θ̄ and E[θ|θ > R] decrease because large realizations of θ are less likely.

Thus, λ−1 plays the role of θ in the baseline model. As there is a one-to-one mapping

between λ and θ̄, we can express λ as a function of θ̄ and use the expected reliability

rather than λ as the choice parameter for the distribution of θ (keeping in mind that

increasing θ̄ changes the entire distribution of θ). Using this observation, we obtain that

the likelihood of a mini flash crash with this parametrization is:

pcrash =
α∗β∗

4Q2
[1− θ̄ −R

θ̄
1−θ̄ (1− θ̄R)].

Based on Corollaries ?? and ??, we expect the likelihood of a flash crash to increase

when the cost of trading fast decreases (∆ smaller) and to be an inverse U-shape function

of θ̄. Numerical simulations show that this intuition is correct.

As an example, consider Figure ??. It shows that the likelihood of a mini-flash

crash is an inverse U-shape function of the mean reliability of speculators’ signals. Thus,

mini-flash crashes are more likely for stocks for which news are neither too unreliable,

nor too reliable. Moreover, Figure ?? shows that the likelihood of a mini-flash crash

increases, other things equal, when the cost of trading fast on information gets smaller.

Interestingly, the likelihood of a mini-flash crash per news can be quite large even for

conservative values of R. For instance, for R = 70% and ∆ = 0.1, the likelihood of a

mini flash-crash can be as high as 10% and it peaks for stocks in which news tend to be

very accurate on average (θ̄ ≈ 0.9).
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Figure 8: Likelihood of a quick price reversal as a function of the mean signal
reliability θ̄ for different values of R: R = 10% (plain line), R = 30% (dashed

line), and R = 70% (dotted line). In each case, ∆ = 0.1, Cp = 0.06, and Q = 10.
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Figure 9: Likelihood of a quick price reversal as a function of the mean signal
reliability θ̄ for different values of ∆: ∆ = 0.1 (plain line), ∆ = 0.05 (dashed

line), and ∆ = 0.01 (dotted line). In each case, R = 10%, Cp = 0.06, and Q = 10.

6 Conclusion

We have considered a model in which speculators can discover whether a signal is true or

false by processing it but this takes time. Hence they face a trade-off between trading fast

on unreliable signals, at the risk of trading on false signals, or trading after processing

the signal, at the risk of losing an opportunity. The model generates a rich set of testable

implications regarding patterns of trades and prices following the arrival of private signals

(e.g., the release of news to a subset of investors who buy access to these news). In

particular the model implies that a reduction in the cost of trading fast should:
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1. Increase the frequency of quick price reversals, including large price reversals (“mini-

flash crashes”).

2. Lower the covariance in speculators’ trades observed before and after processing

news and even potentially generate a negative autocorrelation in these trades.

3. Increase the absolute covariance in speculators’ trades after processing news and

past returns.

4. Reduce or leave unchanged average pricing errors at each trading date, even though

a reduction in the cost of trading fast increases the likelihood of trading on false

news.

The first and the last implication means that a decline in the cost of trading fast

can, paradoxically, simultaneously makes financial markets more efficient but more prone

to large and transient price reversals. Thus, the model offers an explanation for two

apparently incompatible observations: (i) the perception by market participants that

large and quick price reversals (mini-flash crashes) are more frequent and (ii) academic

findings suggesting that high frequency traders contribute to price discovery.

In our model, prices are set by rational traders taking into account all publicly avail-

able information when they set their quotes. Hence, unconditionally, change in prices are

not serially correlated. Thus, price and trade patterns predicted by our model are not

due to deviations of prices from fair values given available information (as for instance in

Daniel, Hirshleifer, and Subrahmanyam (1998)). They are just a consequence of the fact

that (i) news are not perfectly reliable (they might be false), (ii) speculators learn pro-

gressively about whether the news they receive are false or not and (iii) optimally choose

to trade on signals before processing them or not. Overall, the model suggests that

empirical analyses relating news to returns should account for news reliability and the

possibility that some news on which participants trade are indeed false. These features

could explain systematic patterns in returns and trades observed in the data.
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Appendix A

Proof of proposition ??.

Stock Price. We first derive the equilibrium stock price when speculators behave as de-

scribed in part 1 of the proposition. As explained in the text:

p1(f1) = Pr[V = 1|f̃1 = f1] =
Pr[f̃1 = f1|V = 1]Pr[V = 1]

Pr[f̃1 = f1]
. (28)

Fast speculators buy the asset at date 1 when they observe S1 = 1. Hence, conditional on

V = 1, aggregate speculators’ demand is α with probability (1 + θ)/2 and −α with probability

(1− θ)/2. Thus:

Pr[f̃1 = f1|V = 1] = (
1 + θ

2
)φ(f1 − α) +

1− θ
2

φ(f1 + α). (29)

Furthermore, by symmetry:

Pr[f̃1 = f1] =
1

2
φ(f1 − α) +

1

2
φ(f1 + α). (30)

Substituting (??) and (??) in (??) and using the fact that Pr[V = 1] = 1/2, we obtain (??).

Trading strategies. Consider a fast speculator first. For a given trade x1, his expected

profit at date 1 when he observes signal S1 = s is:

π1(α, s) = x1(µ(S1)− E[p1|S1 = s]).

Now remember that p1 = E[V |f̃1]. As the market-maker’s information set at date 1 is coarser

than speculators’ information set, we have:

µ(0) ≤ p1 ≤ µ(1),

with a strict inequality when f1 ∈ [−Q + α,Q − α] because in this case the order flow at date

1 contains no information. We deduce that:

µ(0) < E[p1|S1] < µ(1),
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when α ≤ Q. Thus, in this case, it is a strictly dominant strategy for a speculator to buy the

asset when S1 = 1 and sell the asset when S1 = 0. It follows that the equilibrium at date 1 is

unique when α ≤ Q.

When α ≥ Q, [−Q + α,Q − α] is an empty set. Thus, the order flow is fully revealing

and p1 = µ(S1). Hence, a speculator obtains a zero expected profit for all x1 whether S1 = 1

or S1 = 0. Buying the asset when S1 = 1 and selling the asset when S1 = 0 is then weakly

dominant.

Speculators’ Expected Profit in Period 1. If a speculator receives the signal S1 = 1

and α ≤ Q, his expected profit is:

π1(α, 1) =

∫
[−Q,Q]

[
1 + θ

2
− (1 + θ)φ(l1) + (1− θ)φ(l1 + 2α)

φ(l) + φ(l + 2α)
× 1

2

]
φ(l1)dl1,

=

∫
[−Q,Q]

θφ(l1 + 2α)

φ(l1) + φ(l + 2α)
φ(l1)dl1,

=

∫
[−Q+α,Q+α]

θφ(l1 + α)

φ(l − α) + φ(l + α)
φ(l1 − α)dl1,

=

∫
[−Q+α,Q−α]

θφ(l1 + α)

φ(l − α) + φ(l + α)
φ(l1 − α)dl1,

=

∫
[−Q+α,Q−α]

θ

2
dl1,

=
θ

2

(
Q− α
Q

)
.

because φ(l1 + α) = 0 for l1 > Q− α. By symmetry, this is also a speculator’s expected profit

when he receives a signal S1 = 0. As S1 = 1 is as likely as S1 = 0, we deduce that, for α ≤ Q,

π̄1(α) =
θ

2

(
Q− α
Q

)
.

For α > Q, the order flow at date 1 fully reveals speculators’ signal and accordingly speculators’

expected profit is zero. Hence, speculators’ expected profit is:

π̄1(α) =
θ

2

(
Max{Q− α

Q
, 0}
)
.

Proof of Proposition ??.
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Step 1. Stock Price. We first derive the equilibrium stock price when speculators behave

as described in part 1 of Proposition ??. As explained in the text:

p2(f2, f1) = Pr[V = 1|f̃2 = f2, f̃1 = f1] =
Pr[f̃2 = f2, f̃1 = f1|V = 1]

Pr[f̃2 = f2, f̃1 = f1]
. (31)

Conditional on V = 1, three events can happen at date 2. If U = 1, speculators learn that the

signal was correct in period 1. As V = 1, this means that speculators observed S1 = 1 at date

1. In this case, their aggregate demand at dates 1 and 2 are α and β, respectively. If U = 0,

speculators learn that their signal was in fact incorrect. Thus, speculators’ aggregate demand

in period 2 is M0. With probability 1/2, speculators observed S1 = 1 in period 1 and with

probability 1/2, they observed S1 = 0. In the first case, speculators’ aggregate demand for the

asset is α and in the second case, speculators’ aggregate demand is −α. We deduce that:

Pr[f̃2 = f2, f̃1 = f1|V = 1] =

φ(f2 − β)φ(f1 − α)θ +
1

2
(φ(f2 −M0)φ(f1 − α)(1− θ) + φ(f2 −M0)φ(f1 + α)(1− θ)) . (32)

Furthermore, by symmetry:

Pr[f̃2 = f2, f̃1 = f1] =

1

2
(φ(f2−β)φ(f1−α)θ+φ(f2+β)φ(f1+α)θ+φ(f2−M0)φ(f1−α)(1−θ)+φ(f2−M0)φ(f1+α)(1−θ)).

(33)

We deduce that:

p2(f2, f1) =
θφ(f1 − α)φ(f2 − β) + 1−θ

2 [φ(f1 − α) + φ(f1 + α)]φ(f2 −M0(f1))

θ[φ(f1 − α)φ(f2 − β) + φ(f1 + α)φ(f2 + β)] + (1− θ)[φ(f1 − α) + φ(f1 + α)]φ(f2 −M0(f1))

(34)
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If β ≤ Q, this means:

Case A1: if f1 ∈ [−Q− α,−Q+ α), p2(f2, f1) =



0 if f2 ∈ [−Q− β,−Q+ β)

1−θ
2 if f2 ∈ [−Q+ β,Q− β]

1
2 if f2 ∈ (Q− β,Q+ β]

Case B1: if f1 ∈ [−Q+ α,Q− α], p2(f2, f1) =



0 if f2 ∈ [−Q− β,−Q)

1−θ
2−θ if f2 ∈ [−Q,−Q+ β)

1
2 if f2 ∈ [−Q+ β,Q− β]

1
2−θ if f2 ∈ (Q− β,Q]

1 if f2 ∈ (Q,Q+ β]

Case C1: if f1 ∈ (Q− α,Q+ α], p2(f2, f1) =



1
2 if f2 ∈ [−Q− β,−Q+ β)

1+θ
2 if f2 ∈ [−Q+ β,Q− β]

1 if f2 ∈ (Q− β,Q+ β]
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If instead Q < β ≤ 2Q, we have:

Case A2: if f1 ∈ [−Q− α,−Q+ α), p2(f2, f1) =


0 if f2 ∈ [−Q− β,Q− β]

1
2 if f2 ∈ [−Q+ β,Q+ β]

Case B2: if f1 ∈ [−Q+ α,Q− α], p2(f2, f1) =



0 if f2 ∈ [−Q− β,−Q)

1−θ
2−θ if f2 ∈ [−Q,Q− β)

1
2 if f2 ∈ [Q− β,−Q+ β]

1
2−θ if f2 ∈ (−Q+ β,Q]

1 if f2 ∈ (Q,Q+ β]

Case C2: if f1 ∈ (Q− α,Q+ α], p2(f2, f1) =


1
2 if f2 ∈ [−Q− β,Q− β)

1 if f2 ∈ (−Q+ β,Q− β]

Step 2. Speculators’ Trading strategies. If U = 1, speculators’ trading strategies are

as at t = 1. As the proof is similar to that at t = 1, we skip it for brevity and only discuss the

case U = 0 now. We show that a speculator’s optimal trading strategy is as described in the

first part of Proposition ?? when (a) he expects other speculators to behave as described in the

first part of Proposition ?? and (b) the stock price to be given by (??).

The expected profit of a speculator who trades x2 shares at date 2 when U = 0 and S1 = s

is:

π2(α, β, s, 0) = x2(E[V |U = 0, S1 = s]− E[p2|U = 0, S1 = s, p1]) = x2 × Σ(f1,M0), (35)

where

Σ(f1,M0) =

∫
[−Q−β,Q+β]

[
1

2
− p2(f2, f1)]φ(f2 −M0)df2,

is the expected difference between the speculator’s valuation of the asset conditional on U = 0

(i.e., 1/2) and the speculator’s expectation of the stock price given other speculators’ aggregate

demand, M0.
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Suppose first that β ≤ Q. Using (??), we deduce that:

Σ(f1,M0) = −1

2

∫
θ[φ(f1 − α)φ(f2 − β)− φ(f1 + α)φ(f2 + β)]φ(f2 −M0)

θ[φ(f1 − α)φ(f2 − β) + φ(f1 + α)φ(f2 + β)] + (1− θ)[φ(f1 − α) + φ(f1 + α)]φ(f2 −M0)
df2,

which is equal to

Σ(f1,M0) = − 1

2Q

∫
[−Q−β,Q+β]

1

2

N(f1, f2)

D(f1, f2)
df2,

with

N(f1, f2) = θ[I{f1∈[−Q+α,Q+α]}I{f2∈[−Q+β,Q+β]}−I{f1∈[−Q−α,Q−α]}I{f2∈[−Q−β,Q−β]}]I{f2∈[−Q+M0,Q+M0]},

and

D(f1, f2) = θ[I{f1∈[−Q+α,Q+α]}I{f2∈[−Q+β,Q+β]} + I{f1∈[−Q−α,Q−α]}I{f2∈[−Q−β,Q−β]}]

+ (1− θ)[I{f1∈[−Q+α,Q+α]} + I{f1∈[−Q−α,Q−α]}]I{f2∈[−Q+M0,Q+M0]}].

Now suppose that f1 ∈ [−Q − α,−Q + α). In this case, the first period stock price is p1 =

µ(0) < 1/2 and each speculator expects other speculators to buy the asset (M0 = β). Thus:

N(f1, f2)

D(f1, f2)
=



0 if f2 ∈ [−Q− β,−Q+ β),

+1 if f2 ∈ [−Q+M0, Q− β],

0 if f2 ∈ (Q− β,Q+ β].

Consequently

Σ(f1,M0) = θ
Q− β

2Q
> 0.

Hence, a speculator’s expected profit is maximized when x2 = 1, as prescribed by the strategy

described in the first part of the proposition.

The case in which f1 ∈]Q−α,Q+α] is symmetric. In this case, the first period stock price is

p1 = µ(1) and the speculator expects other speculators to sell the asset when U = 0. Following

the same steps as when f1 ∈ [−Q − α,−Q + α), we conclude that the speculator’s expected

profit is maximized when x2 = −1.

If f1 ∈ [−Q+ α,Q− α], the first period price is p1 = 1/2 and the speculator expects other
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speculators not to trade (M0 = 0). Hence:

N(f1, f2)

D(f1, f2)
=



0 if f2 ∈ [−Q− β,−Q[

+ θ
2−θ if f2 ∈ [−Q,−Q+ β[

0 if f2 ∈ [−Q+ β,Q− β]

− θ
2−θ if f2 ∈]Q− β,Q]

0 if f2 ∈]Q,Q+ β]

Then

Σ(f1,M0) = (
θ

2− θ
β)− θ

2− θ
β = 0.

Hence, the speculator’s expected profit is zero for any x2 ∈ {−1, 0, 1}. Thus, x2 = 0 is a best

response in this case.

In sum, we have shown that, if β ≤ Q, the trading strategies described in Part 1 of

Proposition ?? when U = 0 form an equilibrium. Now suppose that Q ≤ β ≤ 2Q. If

f1 ∈ [−Q− α,−Q+ α) then the order flow in the first period is fully revealing and the market

maker infers that S1 = −1. In this case, if U = 1, then M0 = β in the second period and in this

case f2 ∈ [−Q−β,Q−β]. As Q−β ≤ −Q+β, the market maker infers that speculators in the

second period observed U = 1 and sets p2 = 0 (see Case A2 in Step 1). Hence, the speculator’s

expected profit is zero. The case f1 ∈ [Q− α,Q+ α) is symmetric.

If f1 ∈ [−Q + α,Q − α] (p1 = 1/2), then the order flow in the first period contains no

information. Furthermore, the order flow in the second period is not fully revealing as well

(Case B2 in Step1) as long as β ≤ 2Q. In this case, we can follow the same steps as when

β ≤ Q to show that the trading strategy described in the first part of the proposition is a best

response for each speculator when each expects other speculators to follow this strategy and

the stock price is given by (??).

Step 3. Speculators’ Expected Profit. As a good and a bad signal are equally likely,

speculators’ expected profit at date 2 is identical when S1 = 1 and S1 = 0. Thus, we just

need to compute a speculator’s expected profit conditional on S1 = 1. When S1 = 1, all fast

speculators buy the asset at date 1. Thus, f1 ∈ [−Q+ α,Q+ α]. Suppose first that β ≤ Q.

Case 1. If f1 ∈ [−Q+α,Q−α], the order flow contains no information at date 1. Speculators
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buy the asset again at date 2 when U = 1 and stay put if U = 0. Thus, using the expression

for the stock price in Case B1 of Step 2, speculators’ expected profit in this case is:

θ ×
[
Pr[f2 ∈ [−Q+ β,Q− β]]×

(
1− 1

2

)
+ Pr[f2 ∈ [Q− β,Q]]×

(
1− 1

2− θ

)
+ Pr[f2 ∈ [Q,Q+ β]]× 0

]
=

[
Q− β
Q

× 1

2
+

β

2Q
× 1− θ

2− θ

]
=

θ

2Q
×
[(
Q− β + β

1− θ
2− θ

)]
.

Case 2. If f1 ∈ [Q − α,Q + α], the stock price at date 1 is µ(1). Hence, in period 2

speculators buy if U = 1 (in which case f2 ∈ [−Q + β,Q + β]; Case C1 in Step 2) and sell if

U = 0 (in which case f2 ∈ [−Q− β,Q− β]; Case A1 in Step 2). Their expected profit is then:

{
θ ×

[
Pr[f2 ∈ [−Q+ β,Q− β]]×

(
1− 1 + θ

2

)
+ Pr[f2 ∈ [Q− β,Q+ β]]× 0

]
+

(1− θ)×
[
Pr[f2 ∈ [−Q− β,−Q+ β]]× 0 + Pr[f2 ∈ [−Q+ β,Q− β]]×

(
1 + θ

2
− 1

2

)]}
=

[
θ ×

(
Q− β
Q

× 1− θ
2

)
+ (1− θ)×

(
Q− β
Q

× θ

2

)]
=

θ

2Q
× (1− θ)(Q− β).

Case 1 happens with probability (Q−αQ ) and Case 2 happens with probability α
Q . Hence:

π2(α, β, 1) =
θ

2Q2
×
[
(Q− α)

(
Q− β + β

1− θ
2− θ

)
+ (1− θ)α(Q− β)

]
.

By symmetry, we have π2(α, β, 0) = π2(α, β, 1). Thus:

π̄2(α, β) =
θ

2Q2
×
[
(Q− α)

(
Q− β + β

1− θ
2− θ

)
+ (1− θ)α(Q− β)

]
for β ≤ Q.

Now suppose that Q ≤ β ≤ 2Q. In this case, speculators obtain a positive expected profit

only when p1 = 1/2 (i.e., f1 ∈ [−Q+ α,Q− α] and U1 = 1 (see the last part of Step 2). Hence

their expected profit when S1 = 1 is:

π̄2(α, β, 1) = θ(
Q− α
Q

)×
(

1− 1

2− θ

)
× (

2Q− β
2Q

)

= θ

(
1− θ
2− θ

)(
Q− α
Q

)(
2Q− β
Q

)
.

Proof of Corollary ??.. It is immediate from (??) that π̄1(α) increases with θ and decreases
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with α. This proves part 1 of the corollary and the statement regarding α in the last part. Let:

G(x, y, θ) = θ

[
(1− x)

(
1− 1

2− θ
y

)
+ (1− θ)x(1− y)

]
.

Observe that π̄2(α, β, θ) = G(α/Q, β/Q, θ)/2 when β ≤ Q. Thus, when β ≤ Q, the derivative

of π̄2 with respect to θ has the same sign that the derivative of G(x, y, θ) with respect to θ for

x, y, θ in [0, 1]. We have:

∂G

∂θ
= (1− x)

(
1− 1

2− θ
y

)
+ (1− θ)x(1− y) + θ

[
− 1

(2− θ)2
(1− x)y − x(1− y)

]
,

= 1− x− (1− x)y

[
θ

(2− θ)2
− 1

2− θ

]
+ x(1− y)(1− 2θ),

= 1− x− (1− x)y
2

(2− θ)2
+ x(1− y)(1− 2θ),

= 1− xy − 2

[
(1− x)y

1

(2− θ)2
+ x(1− y)θ

]
.

Clearly:

∂2G

∂θ2
< 0.

Thus, ∂G
∂θ decreases with θ on [0, 1]. Moreover,

∂G

∂θ
|θ=0 = 1− y

2
− xy

2
= 1− (1 + x)y

2
> 0,

and using the first line for the expression of ∂G
∂θ , we find:

∂G

∂θ
|θ=1 = (1− x)(1− y)− (1− x)y − x(1− y) = (1− x)(1− y)

[
1− x

1− x
− y

1− y

]
.

If x
1−x + y

1−y < 1, ∂G
∂θ |θ=1 > 0. Hence, as ∂G

∂θ decreases on in θ on [0, 1] then

∂G

∂θ
> 0 ∀θ ∈ [0, 1].

If x
1−x + y

1−y > 1, ∂G
∂θ |θ=1 < 0. Hence, as ∂G

∂θ decreases on in θ on [0, 1], there is a unique θ(x, y)

such that:

∂G

∂θ
> 0 ∀θ ∈ [0, θ(x, y)] and

∂G

∂θ
< 0 ∀θ ∈ [θ(x, y), 1].

48



This unique θ(x, y) solves:

∂G

∂θ
= 0.

Parts 2 and 3 of the corollary follows defining Θ(α, β) = θ(α/Q, β/Q).

When Q ≤ β ≤ 2Q, using the last part of Proposition ??, we obtain:

∂π̄2

∂θ
=

(1− 2θ)(2− θ) + θ(1− θ)
(2− θ)2

=
2− 4θ + θ2

(2− θ)2
=

(2 +
√

2− θ)(2−
√

2− θ)
(2− θ)2

.

This is positive for θ ∈ [0, 2−
√

2] and negative for θ ∈ [2−
√

2, 1].

Now consider the effect of α and β on π̄2. When β ≤ Q, we have:

∂π̄2(α, β)

∂α
=

θ

2Q

[
−(1− 1

2− θ
β

Q
) + (1− θ)(1− β

Q
)

]
, = − θ

2Q

[
θ + (1− θ − 1

2− θ
)
β

Q

]
. (36)

If 1− θ − 1
2−θ > 0 then

∂π̄2(α, β)

∂α
< 0.

If 1− θ − 1
2−θ < 0, then (??) implies that ∂π̄2(α,β)

∂α is maximal for β = Q. Hence:

∂π̄2(α, β)

∂α
<

θ

2Q

[
−θ + (

1

2− θ
− (1− θ))

]
= − θ

2Q

[
1− θ
2− θ

]
< 0.

We deduce that, when β ≤ Q,

∂π̄2(α, β)

∂β
< 0.

This is also clearly the case when Q ≤ β ≤ 2Q using (??). Finally, using (??) again, it is

straightforward that π̄2(α, β) decreases with β.

Proof of Proposition ??.

The three first parts of the proposition follows directly from the text. For the last part, we

need to compare β∗(0) and β∗(α∗(0)). As ∆̄ > 0, we deduce that β∗(α∗(0)) = α∗(0). Thus,

using (??), we deduce that β∗(α∗(0)) solves:

ΠF (β∗(α∗(0)), β∗(α∗(0))) = π̄1(β∗(α∗(0))) + π̄2(β∗(α∗(0)), β∗(α∗(0))) = Cp.

As (a) ΠF (α, β) decreases in α and β, (b) ΠF (0, 0) = θ, and (c) ΠF (Q,Q) = 0, we deduce that

0 ≤ β∗(α∗(0)) ≤ Q.
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Now consider β∗(0) given in (??). If Cp ≤ θ(1−θ)
2(2−θ) then β∗(0) ≥ Q. Thus, β∗(0) ≥ β∗(α∗(0))

in this case. Furthermore, for θ(1−θ)
2(2−θ) ≤ Cp ≤

θ
2 , β∗(0) decreases in Cp from Q to 0. Thus, there

exists one value C∗p , in ( θ(1−θ)2(2−θ) ,
θ
2), such that β∗(0) > β∗(α∗(0)) iff Cp < C∗p .

In the rest of the proof, we provide a closed form characterization of ∆̄, α∗, and β∗ in the

different cases considered in the proposition. We first characterize the threshold ∆̄(θ, Cp) in

closed-form in the next lemma.

Lemma 1. Let f(θ) = (1−3θ+θ2)
(2−θ) .

If θ < (3−
√

5)/2, where f(θ) > 0, ∆̄(θ, Cp) =
θ

2

1 + f(θ)

2f(θ)
−

√(
1 + f(θ)

2f(θ)

)2

− 2Cp
θf(θ)

 ,
If θ = (3−

√
5)/2, where f(θ) = 0, ∆̄(θ, Cp) = Cp,

If θ > (3−
√

5)/2, where f(θ) < 0, ∆̄(θ, Cp) =
θ

2

1 + f(θ)

2f(θ)
+

√(
1 + f(θ)

2f(θ)

)2

− 2Cp
θf(θ)


or alternatively with h(θ) = −f(θ) > 0, ∆̄(θ, Cp) =

θ

2

√(1− h(θ)

2h(θ)

)2

+
2Cp
θh(θ)

− 1− h(θ)

2h(θ)


Moreover, if f(θ) < 0, ∆̄(θ, Cp) increases with θ:

If θ > (3−
√

5)/2,
∂∆̄

∂θ
> 0.

Proof of Lemma ??.

In equilibrium, when β∗ = α∗, we necessarily have β∗ ≤ Q because α∗ ≤ Q. We deduce

from the last part of Proposition ?? that:

π̄2(α∗(∆), α∗(∆)) =
θ

2

[
(1− α∗(∆)

Q
)(1− 1

2− θ
α∗(∆)

Q
) + (1− θ)α

∗(∆)

Q
(1− α∗(∆)

Q
)

]
. (37)

By definition, ∆̄ solves π̄2(α∗(∆), α∗(∆)) = Cp. As ∆ affects π̄2(α∗(∆), α∗(∆)) only through its

effect on α∗, we can solve for ∆̄ by first solving π̄2(α, α) = Cp for α ∈ [0, Q] and then use the

fact that α∗(∆̄) = Q(1 − 2∆̄/θ) (see eq. ??) to obtain ∆̄. To this end, let f(θ) = 1 − θ − 1
2−θ

and:

P (x) = 1− (1− f(θ))x− f(θ)x2 − 2Cp/θ. (38)

Using (??), we deduce that solving π̄2(α∗, α∗) = Cp is equivalent to find x∗ such that P (x∗) = 0
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for x∗ ∈ [0, 1]. Indeed, we have: α∗ = Qx∗. Observe that 1 − f(θ) = θ + 1/(2 − θ) > 0 and

1 + f(θ) = 2 − θ − 1/(2 − θ) > 0. Hence f(θ) ∈ [−1, 1]. As P (x) is quadratic, it has at most

two roots. Now, as P (0) = 1− 2Cp/θ > 0 (as Cp <
θ
2) and P (1) = −2Cp/θ < 0, we deduce that

it has a unique root x∗ ∈ [0, 1].

Case 1. If f(θ) > 0, P (x) is a concave quadratic function. Hence, x∗ is the unique positive

root of P (x). In this case the determinant of P (x) is

Det = (1− f(θ))2 + 4f(θ)(1− 2
Cp
θ

) > 0,

and

x∗ =

√
(1− f(θ))2 + 4f(θ)(1− 2

Cp
θ )

2f(θ)
− 1− f(θ)

2f(θ)
.

Hence:

α∗(∆̄) = Q


√

(1− f(θ))2 + 4f(θ)(1− 2
Cp
θ )

2f(θ)
− 1− f(θ)

2f(θ)


= Q


√

(1 + f(θ))2 − 8f(θ)
Cp
θ

2f(θ)
− 1− f(θ)

2f(θ)


= Q

√(1 + f(θ)

2f(θ)

)2

− 2
Cp
θf(θ)

− 1− f(θ)

2f(θ)


Finally, using the fact that α∗(∆̄) = Q(1− 2∆̄/θ), we deduce that:

∆̄ =
θ

2

1 + f(θ)

2f(θ)
−

√(
1 + f(θ)

2f(θ)

)2

− 2
Cp
θf(θ)


Case 2. If f(θ) = 0, we have:

x∗ = 1− 2Cp
θ
,

and therefore, using α∗ = Qx∗ and α∗(∆̄) = Q(1− 2∆̄/θ), we deduce that:

∆̄ = Cp.

Case 3. If f(θ) < 0, P (x) is convex. Hence, it has two positive roots but its second root must

be larger than 1 since x∗ is the unique root in [0, 1]. Let h(θ) = −f(θ). The determinant of
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P (x) is

Det = (1 + h(θ))2 − 4h(θ)(1− 2
Cp
θ

) = (1− h(θ))2 + 8h(θ)
Cp
θ
> 0,

and its two roots are

1 + h(θ)

2h(θ)
±

√
(1− h(θ))2 + 8h(θ)

Cp
θ

2h(θ)
.

Choosing the smallest root and using the fact that α∗ = Qx∗, we deduce that:

α∗(∆̄) = Q

1 + h(θ)

2h(θ)
−

√
(1− h(θ))2 + 8h(θ)

Cp
θ

2h(θ)

 ,

= Q

1 + h(θ)

2h(θ)
−

√(
1− h(θ)

2h(θ)

)2

+ 2
Cp
θh(θ)

 .

Finally, using the fact that α∗(∆̄) = Q(1− 2∆̄/θ), we deduce that:

∆̄ =
θ

2

√(1− h(θ)

2h(θ)

)2

+ 2
Cp
θh(θ)

− 1− h(θ)

2h(θ)


=
θ

2

√(1 + f(θ)

2f(θ)

)2

− 2
Cp
θf(θ)

+

(
1 + f(θ)

2f(θ)

)
Derivative of ∆̄ with θ. As α∗(∆̄) = Q(1− 2∆̄/θ), using (??), we deduce that ∆̄ solves:

θ

2

[
1− (1− f(θ))

(
1− 2∆̄

θ

)
− f(θ)

(
1− 2∆̄

θ

)2
]

= ∆̄

[
1 + f(θ)− 2

f(θ)

θ
∆̄

]
= Cp.

The L.H.S of this equation increases with ∆. Furthermore, its derivative with respect to θ is:

∂

∂θ

[
1 + f(θ)− 2f(θ)

θ
∆̄

]
=
∂f

∂θ

(
1− 2∆̄

θ

)
+

2f(θ)

θ2
∆̄,

which is negative when f(θ) < 0 because ∂f
∂θ < 0. Hence when f(θ) < 0, ∆̄ increases with θ.

This is not necessarily the case when f(θ) > 0.�

Closed-form solutions for α∗ and β∗.

Case 1.When ∆ > θ
2 , α∗ = 0 and β∗ = β∗(0), where β∗(0) is given in (??).

Case 2. When θ
2 > ∆ > ∆̄, α∗ is given by (??) and, as explained in the text, β∗ solves

ΠS(α∗, β∗) = 0. To solve this equation, we must distinguish two cases. If θ(1−θ)
2(2−θ) ≤ Cp ≤

θ
2 then
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β∗(0) ≤ Q and therefore β∗ ≤ Q for α∗ > 0. Using (??), we deduce that β∗ solves:

θ

2

[
(1− α

Q
)(1− 1

2− θ
β∗

Q
) + (1− θ)α

Q
(1− β∗

Q
)

]
= Cp,

which yields:

β∗ = Q
θ − 2Cp − θ2 α∗

Q

θ
2−θ +

(
θ − θ2 − θ

2−θ

)
α∗
Q

, (39)

where α∗ is given by (??).

If Cp ≤ θ(1−θ)
2(2−θ) then Q ≤ β∗(0) ≤ 2Q. Thus, there is a range of values for ∆ such that

β∗ ≥ Q. Using (??), we obtain that for these values, it must be the case that:

β∗ = 2Q(1− (
2− θ
1− θ

)
Cp
2∆

).

It is then easily checked that β∗ ≥ Q for ∆ ≥ (2−θ
1−θ )Cp. When ∆ ≤ (2−θ

1−θ )Cp then β∗ ≤ Q and

is given by (??).

Case 3. When ∆ < ∆̄, α∗ = β∗. Then, as explained in the text, β∗ (or α∗) solves π̄1(β∗, β∗) +

π̄2(β∗, β∗) = CF . We deduce that in this case:

If θ < (3−
√

5)/2,
β∗

Q
=

√(
2 + f(θ)

2f(θ)

)2

− 2
CF
θf(θ)

− 2− f(θ)

2f(θ)
,

If θ = (3−
√

5)/2,
β∗

Q
= 1− CF

θ
,

If θ > (3−
√

5)/2,
β∗

Q
=

2 + h(θ)

2h(θ)
−

√(
2− h(θ)

2h(θ)

)2

+ 2
CF
θh(θ)

where f(θ) = 1− θ − 1
2−θ and h(θ) = −f(θ).

Proof of Corollary ??. The expected absolute price change in period 1 is:

E(|p1 −
1

2
|) =

θα∗

2Q
,

which increases in θ when α∗ increases with θ. This is the case for ∆ > ∆̄, because then

α∗ = Max{Q(1− 2∆
θ ), 0}.

For ∆ < ∆̄, α∗ solves:

π̄1(α) + π̄2(α, α) = CF
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However we need to extract, from this equation, the variations of θα∗ and not only α∗. Let’s

call X = θα/Q. We can rewrite the previous equation as

h(X) = (θ −X)

(
2− X

θ(2− θ)

)
+

1− θ
θ

X(θ −X) = 2CF .

Since π̄1(α) + π̄2(α, α) decreases with α, we already know that h decreases with X. Now we

want to study the variation of h with respect to θ. Then we compute the derivative of h with

respect to θ,

∂h

∂θ
= 2− X

θ(2− θ)
+

(2− 2θ)X(θ −X)

(θ(2− θ))2
+

(1− θ)X
θ

− X(θ −X)

θ2
.

Let’s notice that 0 < X < θ because α < Q, then 0 < X
θ < 1, 0 < 1− X

θ < 1, and also 2−θ > 1,

hence we can slightly rearrange the term of the previous expression to show that it is positive,

∂h

∂θ
= 1− 1

2− θ
X

θ︸ ︷︷ ︸
>0

+
2(1− θ)
(2− θ)2

X

θ

(
1− X

θ

)
︸ ︷︷ ︸

>0

+
(1− θ)X

θ︸ ︷︷ ︸
>0

+ 1− X

θ

(
1− X

θ

)
︸ ︷︷ ︸

>0

> 0.

Then it shows that X∗, defined as the solution of h(X) = 2CF , increases with θ.

Proof of Proposition ??.

If θ
2 < Cp < θ, then β∗(0) = 0 because π̄2(0, β) < Cp for all β ≥ 0. As π̄2(α, β) decreases

in both α and β, we deduce that π̄2(α, β) < Cp for all α and all β. Hence, there cannot be an

equilibrium in which β∗ > α∗ as this would imply π̄2(α∗, β∗) = Cp, which is impossible in this

case.

Thus, if α∗ > 0 in equilibrium, it must be the case that β∗ = α∗ and α∗ solves:

ΠF (α∗, α∗) = π1(α∗) + π2(α∗, α∗)− Cp + ∆ = 0.

As ΠF (α, β) decreases in α and β and ΠF (Q,Q) < Cp + ∆, a necessary and sufficient condition

for α∗ > 0 is ΠF (0, 0) > 0. As π̄1(0) = π̄2(0, 0) = θ
2 , we have ΠF (0, 0) = π̄1(0) + π̄2(0, 0)− (Cp +

∆) = θ − (Cp + ∆), we deduce that α∗ > 0 iff θ < Cp + ∆. Otherwise β∗ = α∗ = 0.

When α∗ > 0, it solves ΠF (α∗, α∗) = 0. This solution is given in Case 3 of the last part of

the proof of Proposition ??. Finally, the last part of Proposition ?? follows directly from the

fact that ΠF (α, α) decreases in ∆.
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Proof of Corollary ??. Using the first parts of Propositions ?? and ??, we deduce that:

x1 = IS1=1 − IS1=0, with S1 = U × V + (1− U)× ε, (40)

x2 = U × [IV=1 − IV=0] + (1− U)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2], (41)

where I denotes the indicator function, which is one when the statement in brackets holds. As

E[x1] = E[x2] = 0, we deduce from (??) and (??) that:

Cov(x1, x2) = E[x1x2] =
1

2
E[x2|S1 = 1]− 1

2
E[x2|S1 = 0],

=
θ

2
E [x2|V = 1, U = 1] +

1

2
(1− θ)α

∗

Q
E
[
x2|ε = 1, U = 0, p1 =

1 + θ

2

]
,

− θ

2
E [x2|V = 0, U = 1]− 1

2
(1− θ)α

∗

Q
E
[
x2|ε = 0, U = 0, p1 =

1− θ
2

]
,

= θ − (1− θ)α
∗

Q
.

As α∗ declines with ∆, we deduce that Cov(x1, x2) decreases with ∆. When ∆ > ∆̄, we have:

α∗(∆) = Q(1− 2∆/θ) (see eq. ??). Hence, the covariance between x1 and x2 is:

Cov(x1, x2) = θ − (1− θ)
(

1− 2∆

θ

)
= 2θ − (1 + 2∆) +

2∆

θ
.

After some algebra, we deduce that Cov(x1, x2) < 0 if and only if θ ∈ [θ1(∆), θ2(∆)] where

0 < θ1(∆) =
1 + 2∆−

√
(1 + 2∆)2 − 16∆

4
< θ2(∆) =

1 + 2∆ +
√

(1 + 2∆)2 − 16∆

4
< 1.

Proof of Corollary ??. Using the second part of Proposition ?? and the first part of Propo-

sition ??, we deduce that:

p1 =
1

2
+
θ

2
If1>Q−α∗ −

θ

2
If1<−Q+α∗ (42)

x2 = U × [IV=1 − IV=0] + (1− U)× [Ip1=(1−θ)/2 − Ip1=(1+θ)/2]. (43)
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As E[x2] = 0 and E[p1] = 1/2, we deduce from (??) and (??) that:

Cov(p1, x2) = E[(p1 − 1/2)x2] =
θ

2

{
1

2

α∗

Q
E
[
x2|S1 = 1, p1 =

1 + θ

2

]
− 1

2

α∗

Q
E
[
x2|S1 = 0, p1 =

1− θ
2

]}
=
θ2

4

α∗

Q
E
[
x2|V = 1, U = 1, p1 =

1 + θ

2

]
+
θ(1− θ)

4

α∗

Q
E
[
x2|ε = 1, U = 0, p1 =

1 + θ

2

]
− θ2

4

α∗

Q
E
[
x2|V = 0, U = 1, p1 =

1− θ
2

]
− θ(1− θ)

4

α∗

Q
E
[
x2|ε = 0, U = 0, p1 =

1− θ
2

]
= θ(2θ − 1)

α∗

2Q
.

Proof of Corollary ??. First, consider E1(∆, Cp) = E[(Ṽ − p1)2]. We have:

E1(∆, Cp) = E(E[(Ṽ − p1)2] = E[(Ṽ − p1)2 | f1]).

Using Proposition ?? and the fact that α∗ < Q, we deduce, after some algebra, that:

E[(Ṽ − P1)2] =
1

4

[
1− θ2 α

Q

]
=

1

4
− θ

2

(
θ

2
− π̄1(α∗)

)
. (44)

Second, consider E2(∆, Cp) = E[(Ṽ − p2)2]. We have:

E2(∆, Cp) = E(E[(Ṽ − p2)2] = E[(Ṽ − p1)2 | f1, f2]).

Using this observation, Proposition ??, and Proposition ??, we obtain, after straightfoward but

tedious, calculations, we obtain:18

E2(∆, Cp) = E[(Ṽ − P2)2] =
1

4
+

1

4

[
−θ2 α

Q
− θ

2− θ
β

Q
+ θ

(
1

2− θ
− 1 + θ

)
αβ

Q2

]
(45)

Now, for β ≤ Q, we have (from Proposition ??):

π̄2(α, β) =
θ

2
× [(1− α

Q
)× (1− 1

2− θ
β

Q
) + (1− θ)α

Q
(1− β

Q
)]

=
θ

2
×
[
1− θ α

Q
− 1

2− θ
β

Q
+

(
1

2− θ
− 1 + θ

)
αβ

Q2

]

Hence, we deduce that:

E2(∆, Cp) =
1

4
− 1

2

(
θ

2
− π̄2(α∗, β∗)

)
. (46)

18Detailed derivation of this equation is available upon request.
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Then

E[(Ṽ − P2)2] =
1

2

α(Q− β)

Q2
× 1− θ

2

1 + θ

2
+

1− θ
2

αβ

Q2
× 1

4

+
1− θ

2

αβ

Q2
× 1

4
+

1

2

α(Q− β)

Q2
× 1− θ

2

1 + θ

2

+
2− θ

4

(Q− α)β

Q2
× 1− θ

2− θ
1

2− θ

+
(Q− α)(Q− β)

Q2

1

4
+

2− θ
4

(Q− α)β

Q2
× 1− θ

2− θ
1

2− θ

=
1

4

α

Q

[
(1− θ)(1 + θ)

Q− β
Q

+ (1− θ) β
Q

]
+

1

4

Q− α
Q

[
2

1− θ
2− θ

β

Q
+
Q− β
Q

]

Proof of Corollary ??. When ∆ > ∆̄, we have α∗(∆) = Q
(
1− 2∆

θ

)
. Hence, using (??), the

likelihood of a price reversal is:

pReversal(∆, θ) = (1− θ)
(

1− 2∆

θ

)
.

Thus:

∂pReversal
∂θ

= −1 +
2∆

θ2
,

which is positive if and only if θ <
√

2∆.

Proof of Corollary ??. When ∆ < ∆̄, all speculators are fast: β∗ = α∗. Hence, the mass

of speculators increases when ∆ decreases both at dates 1 and 2 (2nd part of Proposition ??).

Then it follows from (??) that pquick Reversal(∆, θ) is larger when ∆ is smaller.

Appendix B

To compute the likelihood of a quick price reversal when θ is stochastic, we just need to

determine α∗ and β∗ in this case (see equation (??)). The analysis is identical to that in

Section ?? but the closed-form expressions for ∆̄, α∗, and β∗. We outline the derivation of

these expressions in this appendix.

When participants make their trading decisions at dates 1 and 2, they observe θ. Hence,

Propositions ?? and ?? are unchanged. In particular, for a given θ, speculators’ expected profit

before observing the realizations of their signals are unchanged. Thus,

E[π̄1(α)] =
θ̄

2
Max{Q− α

Q
, 0}.
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It follows that α∗ > 0 for ∆ < θ
2 and as long as β∗ > α∗, we have:

α∗(∆) = Q

(
1− 2

∆

θ̄

)
.

As ∆ decreases, β∗ decreases as in the analysis of Section ?? and there exists one threshold ∆̄r

such that: β∗ = α∗. At this threshold, we necessarily have β∗ ≤ Q. In this case, speculators’

ex-ante (at date 0) expected profit at date 2 is:

E[π2(α, β)] =
1

2

[(
1− α

Q

)(
E[θ]− E

[
θ

2− θ

]
β

Q

)
+ E[θ(1− θ)]α

Q

(
1− β

Q

)]
.

Observe that (i) E[π2(α, β)] decreases in α and β, (ii) E[π2(0, 0)] = θ̄
2 , (iii) E[π2(Q,Q)] = 0,

and (iv) E[π2(α, α)] ≥ 0. Thus, there is a unique ∆̄ such that E[π2(α∗(∆̄), α∗(∆̄))] = Cp.

Proceeding exactly as in the proof of Lemma ?? in the proof of Proposition ??, we deduce that

the threshold ∆̄r is:

If F (θ) > 0, ∆̄r =
E[θ]

2

1 + F (θ)

2F (θ)
−

√(
1 + F (θ)

2F (θ)

)2

− 2Cp
E[θ]F (θ)

 ,
If F (θ) = 0, ∆̄r = Cp,

If F (θ) < 0, ∆̄r =
E[θ]

2

√(1−H(θ)

2H(θ)

)2

+
2Cp

E[θ]H(θ)
− 1−H(θ)

2H(θ)

 .

where:

F (θ) =
E[θf(θ)]

E[θ]
=
E[θ]− E[θ2]− E

[
θ

2−θ

]
E[θ]

, (47)

and H(θ) = −F (θ) > 0. The closed-form expressions for α∗ and β∗ are then as follows. When

∆ > θ̄
2 :

α∗ = 0, β∗ = Q

E[θ]− 2Cp

E
[

θ
2−θ

]
 . (48)

When θ̄
2 > ∆ > ∆̄, we have:

α∗ = Q

(
1− 2∆

E[θ]

)
, β∗ = Q

E[θ]− 2Cp − E[θ2]α
∗
Q

E[ θ
2−θ ] +

(
E[θ]− E[θ2]− E[ θ

2−θ

)
]α
∗
Q

. (49)
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When ∆ < ∆̄, α∗ = β∗ and β∗ solves E[π1(β∗, β∗) + π2(β∗, β∗)] = CF , which gives

If F (θ) > 0, β∗ = Q

√(2 + F (θ)

2F (θ)

)2

− 2
CF

E[θ]F (θ)
− 2− F (θ)

2F (θ)

 ,

If F (θ) = 0, β∗ = Q

(
1− CF

E[θ]

)
,

If F (θ) < 0, β∗ = Q

2 +H(θ)

2H(θ)
−

√(
2−H(θ)

2H(θ)

)2

+ 2
CF

E[θ]H(θ)

 ,

where F (θ) is given in (??) and H(θ) = −F (θ) > 0.

Numerical Simulation. To compute numerically the likelihood of a quick reversal when θ

has cumulative distribution G(.), we must compute F (θ), which depends on different moments

of the distribution for θ. Let denote the nth moment of θ by:

Mn = E[θn]

Hence E[θ1] = M1, E[θ2] = M2, and:

E[
θ

2− θ
] = E[

θ

2

1

1− θ
2

] = E[
θ

2

∞∑
i=0

θi

2i
] = E[

∞∑
i=1

θi

2i
] =

∞∑
i=1

Mi

2i
= Σ

Then we deduce that:

F (θ) =
M1 −M2 − Σ

M1

For numerical simulations, we approximate the infinite sum Σ by a truncation at rank N:

ΣN =
N∑
i=1

Mi

2i
.

When θ = Xλ and X is a random variable drawn from the uniform distribution on [0, 1], we

have:

θ̄ = M1 = E[θ] =
1

λ+ 1

Mn = E[θn] = E[Xαn] =
1

nλ+ 1
=

1

n
(

1
θ̄
− 1
)

+ 1
=

θ̄

n− (n− 1)θ̄
.
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Hence, all moments are only dependent on θ̄ and we can easily compute numerically the likeli-

hood of a quick reversal using ΣN as an approximation for Σ.
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