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1 Introduction

Several recent studies in empirical finance have used Gram-Charlier type expansions
as a semi-nonparametric device to overcome the restriction imposed by the usual
normality assumption. For instance Knight and Satchell (1997) develop an option
pricing model using a Gram-Charlier expansion for the underlying asset. In a similar
framework Abken, Madan, and Ramamurtie (1996) end up with a Gram-Charlier
expansion to approximate risk neutral densities (RND). Gallant and Tauchen (1989)
use Gram-Charlier expansions to describe deviations from normality of innovations
in a GARCH framework.

Gram-Charlier expansions allow for additional flexibility over a normal density
because they naturally introduce the skewness and kurtosis of the distribution as
parameters. However, being polynomial approximations, they have the drawback of
yielding negative values for certain parameters. Moreover, there does not seem to be
an easy and analytic characterization of those parameters for which the density will
take positive values. In a noticeable study by Barton and Dennis (1952) conditions
on the parameters guaranteeing positive definiteness of the underlying densities are
obtained through a numerical method. In this paper we build on their work and
indicate how it is numerically possible to restrict parameters. Once positivity for the
expansion gets imposed we may talk of Gram-Charlier densities (GCd).

In this paper we first specialize the method advocated by Barton and Dennis
(1992) to characterize the boundary delimiting the domain in the skewness-kurtosis
space over which the expansion is positive. We then present a mapping which trans-
forms the constrained estimation problem into an unconstrained one. Since the pos-
itivity boundary is only defined as an implicit function, we show how the mapping
can be numerically imposed.

In the empirical part of this paper we first show the relevance of our method to
estimate risk neutral densities, by extending the work of Abken, Madan, and Ra-
mamurtie (1996). Next, we examine the maximum-likelihood properties when GCds
are directly fitted to data. We consider the situation where GCds are fitted to GCd
distributed data as well as to a mixture of normals. The first simulation allows us
to validate our code and to examine estimation properties in situations known to be
delicate. Similarly to the estimation of mixtures of normals, for small deviations from
normality, we find that it is difficult in that situation to correctly capture the param-
eters. The second simulation shows possible biases of the estimation when the model
is misspecified. Lastly, we indicate how our method improves GARCH estimations
when innovations are assumed to be distributed as a Gram-Charlier density rather
than a normal one.

This paper is structured in the following manner: In the next section, we provide
some properties of Gram-Charlier expansions. In section 3, we describe our algorithm
to implement positivity of the density. In sections 4 and 5, we show with two examples
how it works. We estimate risk neutral densities and a GARCH model allowing for
a conditional density with skewness and kurtosis different from those of a normal
distribution.
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2 Properties of Gram-Charlier expansions

When the true probability distribution function (pdf) of a random variable z is un-
known, yet believed to be similar to a normal one, it is quite natural to approximate
it with a pdf of the form

g (z) = pn (z)φ (z) , (1)

where φ (z) is the standard zero mean and unit variance normal density and where
pn (z) is chosen so that g (z) has the same first moments as the pdf of z. Since
Hermite polynomials form an orthogonal basis with respect to the scalar product
generated by the expectation taken with the normal density φ the true density is
often approximated using

pn (z) =
n∑

i=0

ciHei (z) (2)

where Hei (z) are the Hermite polynomials.1 The Hermite polynomial of order i is

defined by Hei(z) = (−1)i ∂
iφ

∂zi
1

φ(z)
.2 When z is standardized, with zero mean and unit

variance, two representations are typically adopted in the literature:

p4 (z) = 1 +
γ1

6
He3 (z) +

γ2

24
He4 (z) (3)

and

p6 (z) = 1 +
γ1

6
He3 (z) +

γ2

24
He4 (z) +

γ21
72

He6 (z) . (4)

These cases correspond respectively to the Gram-Charlier type A and the Edge-
worth expansions. The Edgeworth expansion (4) involves one more Hermite poly-
nomial while keeping the number of parameters constant. As shown by Barton and
Dennis (1952), the range for γ1 and γ2 over which positivity of the approximation is
guaranteed is then smaller than for the Gram-Charlier one. For this reason, in this
paper we will focus on the first approximation.

Property 1 γ1 and γ2 correspond respectively to the skewness and the excess kurtosis

of g(z).

Proof: Because z is standardized, straightforward but tedious computations show
that:3

∫ +∞

−∞

zg(z)dz = 0,
∫ +∞

−∞

z2g(z)dz = 1,
∫ +∞

−∞

z3g(z)dz = γ1,

∫ +∞

−∞

z4g(z)dz = 3 + γ2.

In the following pages, we will, therefore, adopt the notations s = γ1 and k = γ2 to
denote the skewness and the excess kurtosis respectively. Property 1 partly explains

1For Hermite polynomials we follow the notation of Gradshteyn and Ryzhik (1994, p. xxxvii).
2Straightfoward computations yield the following expressions for the first six Hermite polyno-

mials: He0(z) = 1,He1(z) = z, He2(z) = z2 − 1, He3(z) = z3 − 3z, He4(z) = z4 − 6z2 + 3,
He5(z) = z5 − 10z3 + 15z, and He6(z) = z6 − 15z4 + 45z2 − 15.

3See also Johnson, Kotz, and Balakrishnan (1994).
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the success of Gram-Charlier expansions in the empirical literature, since the two
additional parameters γ1, γ2 are directly related to the third and fourth moments.
However, Gram-Charlier expansions also have some drawbacks. First, for some (s, k)
distant from the normal values (0, 3), g (z) can be negative for some z. For other
pairs the pdf g(z) may be multimodal.

In this work we focus on implementing numerical conditions so that Gram-Charlier
approximations are positive definite. To ensure positivity, Gallant and Tauchen
(1989) suggest to square the polynomial part, pn (z) , of equation (1). However,
by doing so one loses, the interpretation of the various parameters as moments of the
density.

Some properties are useful to identify the region D in the (s, k)-plane for which
g (z) is positive definite. For g (z) to be positive definite, we require the polynomial
p4 (z) to be positive for every z, that is

1 +
s

6
He3 (z) +

k

24
He4 (z) ≥ 0, ∀z.

In order to characterize D two approaches can be followed. The first direct one
consists in establishing general properties of the frontier of D and then to take z
over a large grid and to check if for possible pairs of (s, k) the polynomial p4 (z) is
positive.4 The second one involves notions of analytical geometry. Consider a given
value of z. For each such value the equation

1 +
s

6
He3 (z) +

k

24
He4 (z) = 0 (5)

defines a straight line in the (s, k)-plane. A small deviation for z, while holding (s, k)
fixed, will then yield a p4(z) of either positive or negative sign. Thus, it is interesting
to determine the set of (s, k), as a function of z, such that p4(z) remains zero for
small variations of z since this set will define the requested boundary. This set is
determined by the derivative of (5) with respect to z

s

2
He2 (z) +

k

6
He3 (z) = 0. (6)

The set of (s, k) solving simultaneously (5) and (6), called the envelope of p4(z), yields
a parametric representation of the boundary where for a given z the term p4(z) is
zero. Once this boundary is determined it remains to find that subregion delimited
by p4(z) = 0 for all z.5

Solving the system given by (5) and (6) yields the expression for the skewness and
the excess kurtosis as functions of z:

s (z) = −24 He3 (z)

d (z)

k (z) = 72
He2 (z)

d (z)

4Such an approach was followed in an earlier version of this paper.
5This approach has been highlighted by Barton and Dennis (1952) in a slightly different context.
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with d (z) = 4He23 (z)− 3He2 (z)He4 (z).
Straightforward computations allow us to rewrite the denominator of both expres-

sions as d (z) = z6 − 3z4 + 9z2 + 9. Since its minimum is attained for z = 0 where
d (0) = 9 we obtain that d (z) is always positive.

Insert figure 1 somewhere here

The sign of k (z) changes with He2 (z) = z2 − 1. It is positive for z between −∞
and −1 and between 1 and +∞. It is negative for −1 ≤ z ≤ 1. Similarly, the sign
of s (k) changes with He3 (z) = z3 − 3z. It is positive for z between −∞ and −√3
and between 0 and

√
3. In figure 1 we present, the straight lines defined by (5) for

various values of z (satisfying |z| ≥ √
3). The thick line delimiting the oval domain

is the envelope. Within the envelope p4(z) will be positive. Similarly, in figure 2 we
present (5) and its envelope for values of z between −√3 and

√
3.

Insert figures 2 and 3 somewhere here

In figure 3 we present a summarizing graph: for z between −∞ and −√3 one
obtains the curve AM1B; the values −√3 ≤ z ≤ 0 lead to the curve BM4C; the
values 0 ≤ z ≤ √

3 lead to the curve CM3B; lastly when z varies from
√
3 to +∞

one obtains the curve BM2A. This envelope is clearly symmetric with respect to the
horizontal axis. Thus, the region where g (z) is positive for every z is formed by
the intersection of the domains delimited in figure 1 and figure 2; that is the curve
AM1BM2A.

If we concentrate on the envelope where g (z) is positive for all z, we note that
the excess kurtosis k is inside the interval [0, 4]. Indeed, we find that k (±∞) = 0

and k
(
±√3

)
= 4. The points where the skewness is at a maximum or a minimum

are obtained when s′ (z) = z4 − 6z3 + 6z2 − 18z + 9 = 0. The solutions can be

found numerically to be M1 = (
√
6,
√
6/
√
3 +

√
6) = (2.4508; 1.0493) and M2 =

(
√
6,−√6/

√
3 +

√
6) = (2.4508;−1.0493).

We notice that the frontier is a steady, continuous, and concave curve. A last
remark is that since k is bounded below by 0 the kurtosis of g (·) will always be larger
than for a normal density.

3 An algorithm to implement positivity

At this stage we have characterized the domain D over which the Gram-Charlier
approximation is positive. We now wish to indicate how positivity may be numerically
implemented in applications where we will have to solve programs such as

max
(s,k)∈D

F (s, k)

where F is an objective function involving s and k through the Gram-Charlier ex-
pansion. F may depend on some other parameters which are unrelated to s and k.6

In numerical applications F could be a log-likelihood function or a NLLS problem.7

6To keep notations simple we do not emphasize this possibility.
7In this latter case the maximization becomes a minimization.
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F is assumed to be differentiable with respect to all its parameters and we assume
that there is a unique optimum.

Since F is not defined for (s, k) outside D it is necessary to restrict parameters
to that region using an ad-hoc method. The idea is to transform the constrained
optimization into an unconstrained one. This turns out to yield a fast and numerically
accurate method.

In the previous section, we derived the parametric equation of the frontier of D.
Taking z over a very fine grid, a discretization of the frontier is possible. Alternatively,
and this is how we compute the boundary for our empirical work, it is possible to
take k over a fine grid. For each value on the grid we know from the previous section
that the associated s is bracketed in the interval [−1.0493, 1.0493]. Numerically,
one can then compute s with a bisection algorithm.8 Furthermore, for numerical
applications it is necessary to have a continuous representation of the boundary,
therefore, we substitute the continuous frontier with a piecewise linear one. For each
k the corresponding s can then be found with a linear interpolation.

Insert figure 4 somewhere here

Formally, we proceed in the following manner also illustrated in figure 4: we start
with a fine grid for kurtosis say ki, i = 1, . . . , Nk.

9 For each ki the corresponding si
is known. We compute and store

ai =
siki+1 − kisi+1

ki+1 − ki
,

bi =
si+1 − si
ki+1 − ki

for i = 1, · · · , Nk − 1. For a given k the maximal, (sU (k)), and minimal, (sL(k)),
allowed skewness in D will be approximated with a linear interpolation by first ob-
taining the i such that ki < k ≤ ki+1, and then computing sU = ai + bik as well as
sL = −sU .

Now it is possible to introduce an ad-hoc mapping transforming the constrained
optimization into an unconstrained one. We introduce the logistic map defined by

f (x; a, b) = a+ (b− a)
1

1 + exp(−x)
.

Let (s̃, k̃) ∈ R2 be unconstrained values for the skewness and kurtosis. It is easy to
see that the map

k = f(k̃; 0, 4) ≡ fk(k̃) (7)

s = f(s̃; sL(k̃), sU(k̃)) ≡ fs(s̃, k̃) (8)

8For more details see Press et al. (1988), p.259. The simultaneous computation of all s can be
easily vectorized yielding a very efficient code.

9In numerical applications Nk = 250 appears to provide a reasonable compromise between speed
and accuracy.
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transforms R2 into D. Given that this mapping involves the logistic function, which
is strictly increasing and differentiable, we notice that the first order conditions of

max
(s̃,k̃)∈R2

G(s̃, k̃) ≡ F (fs(s̃, k̃), fk(k̃))

that is

∂G

∂s̃
=

∂F

∂s

∂fs
∂s̃

= 0,

∂G

∂k̃
=

∂F

∂s

∂fs

∂k̃
+

∂F

∂k

∂fk

∂k̃
= 0

imply
∂F

∂s
= 0 and

∂F

∂k
= 0.

Thus, the unconstrained optimum, say (s̃∗, k̃∗), is uniquely related to the constrained
optimum

s∗ = fs(s̃
∗, k̃∗), k∗ = fk(k̃

∗).

Given unicity of the optimum and convexity of our map our restriction is therefore a
valid one.

We will henceforth denote by GC(µ, σ, s, k) the Gram-Charlier density with mean
µ and standard deviation σ obtained by imposing positivity constraints on the ex-
pansion.

4 The estimation of risk neutral densities

In this section we wish to illustrate the usefulness of our method on a first example
dealing with option pricing.

4.1 Theoretical considerations

Let St be the price of an asset at time t. We suppose that this asset underlies a
European call option with expiration date T and strike price K. Then, at maturity
the payoff is max (ST −K, 0). In an arbitrage-free economy (see Harrison and Pliska,
1981), it is known that there exists a risk-neutral density (RND), g (·) , such that the
price of a call option can be written as

Ct(K) = e−r(T−t)
∫ +∞

K
(ST −K) g (ST ) dST (9)

where Ct(K) is the price at time t of a call option, and r is the continuously-
compounded interest rate to maturity. The function Ct (·) depends on the parameters
r, T, t as well as others characterizing the process followed by St. As noticed by Bree-
den and Litzenberger (1978), Leibnitz’ rule for differentiating integrals gives:

d2Ct

dK2
(ST ) = e−r(T−t)g (ST ) (10)

7



which reveals the discounted RND. For the econometrician wishing to estimate g (ST ),
formula (10) suggests the use of numerical second derivatives. Numerical computation
of second derivatives is, however, a very unstable method. For this reason it is
sometimes advantageous to assume some additional structure on g (·) and to proceed
with (9). This is the way suggested by Abken, Madan, and Ramamurtie (1996) (AMR
for short) who assume that g (·) can be approximated with Hermite polynomials.
Inspired by the usual lognormality assumption of the underlying asset they assume
first that

ST = St exp
(
(µ− 1

2
σ2)(T − t) + σ(T − t)z

)
(11)

where z is a normal variate with zero mean and unit variance. The parameters µ
and σ represent the instantaneous drift and volatility respectively of ST . Last, in the
spirit of section 2 of this paper, they consider that g(z) is given by g(z) = λ(z)φ(z)
where λ(z) is a perturbation of the normal N (0, 1) density φ (·). By assuming that
λ(z) can be approximated by a Hermite expansion they obtain that option prices can
be written as

Ct(K) = e−r(T−t)
4∑

k=0

akbk, (12)

where the bk are parameters to be estimated and where the ak take the following
expressions, denoting σ̃ = σ

√
T − t:

a0 = FtΦ (d1)−KΦ (d2)

a1 = Ft (σ̃Φ(d1) + φ(d1))−Kφ(d2)

a2 =
1

2

[
Ft

(
σ̃2Φ(d1) + 2σ̃n1 − h1,1

)
+Kh1,2

]

a3 =
1

6

[
Ft

(
σ̃3Φ(d1) + 3σ̃2n1 − 3σ̃h1,1 + h2,1

)
−Kh2,2

]

a4 =
1

24

[
Ft

(
σ̃4Φ(d1) + 4σ̃3n1 − 6σ̃2h1,1 + 4σ̃h2,1 − h3,1

)
+Kh3,2

]

d1 =
ln(St/K) + (µ+ σ2/2)(T − t)

σ̃
d2 = d1 − σ̃

Ft = St exp (r (T − t))

n1 = 1/
√
2π exp

(
−d21/2

)
n2 = 1/

√
2π exp

(
−d22/2

)
hi,j = Hei(dj)nj.

In the expression a0 we recognize up to a discount factor the Black-Scholes-Merton
benchmark pricing formula. For the AMR model one can see that option prices are
obtained as a perturbation of the benchmark case. Ft is the forward price.

To obtain identifiability and a density for g further assumptions are imposed:
b0 = 1 (forcing g(z) to have unit probability mass), b1 = 0 forcing a zero expectation,
b2 = 0 imposing a unit variance on z. b3 and b4 will control skewness and excess
kurtosis.
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The risk neutral density eventually becomes

g(z) =

[
1 +

b3√
6

(
z3 − 3z

)
+

b4√
24

(
z4 − 6z2 + 3

)]
φ(z). (13)

The inversion of (11) allows one to express the RND with respect to ST .
To sum up: Given call option prices and their characteristics (such as time to

maturity, strike price, value of the underlying asset, interest rates), equation (12) can
be used to numerically estimate the b3 and b4 parameters. Since equation (12) also
involves in a nonlinear manner the volatility σ, it will be necessary to estimate all
parameters using a non-linear procedure. The parameter µ can be either estimated
(non-linearly) or obtained by imposing the non-arbitrage condition

St = e−r(T−t)
∫ +∞

0
STg (ST ) dST .

Once the non-linear estimation procedure has produced parameter estimates, equa-
tion (13) can be used to obtain the RND. It should be noticed that equation (13)
is basically the same one as equation (1), with n = 4, and with pn (z) defined by
equation (3). Between the AMR parametrization and the theory presented earlier we
obtain the following relations b3 = s/

√
6 and b4 = k/

√
24. Furthermore, all earlier

developments still bear. Whereas AMR show how parameters can be estimated they
do not address the issue that the corresponding (s, k) parameters may not belong to
D. As we will show in the next section, by using the algorithm proposed in section 2
and 3 this difficulty can be overcome.

4.2 Empirical results

We implement this method with European OTC French Franc to Deutsche Mark
options which have been provided to us by a large French bank. For foreign ex-
change options the Garman and Kohlhagen (1983) model imposes the non-arbitrage
condition µ = r − r∗, where r and r∗ are the French and German euro-rates respec-
tively. For illustrative purposes we use data for April 25th, 1997 that is a few days
after President Chirac announced the dissolution of the National Assembly leading
to snap elections. At this stage the markets were roiling.10 We obtained option prices
for several maturities and strikes as well as the value of the underlying exchange
rate. Using formula (12) relating skewness, kurtosis, and non-linearly volatility of
the underlying asset with actual option prices we estimate, using the conventional
NLLS method, the various parameters without imposing positivity restrictions. The
parameters are displayed in table 1. As shown by those parameters, they lie out of the
authorized domain represented in figure 4 implying that the RND must be negative.
Figure 5 where we represent the RND given by expression (13) shows that this is
indeed the case.

Insert tables1 and 2, as well as figure 5 somewhere here

10See also Jondeau and Rockinger (1998) for further details concerning this period.
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The estimation of the model with restricted parameters yields the estimates dis-
played in table 2. We notice a significant difference for skewness and kurtosis. It can
be checked that the parameters now belong to the authorized domain D. As shown
in figure 6 the densities are positive.

Insert figure 6 sowhere here

The observation that the unconstrained estimation yields parameters for which
the polynomial approximation is negative suggests that there is a misspecification in
the model. Theoretically one could overcome this difficulty by introducing further
terms in the expansion. In practice there are several reasons why this extension is
not fruitful. First, the introduction of additional parameters renders more difficult
the research for the domain where the approximation is positive. Second, we have
to estimate three parameters but we have only very few option prices (13) for a
given maturity. The introduction of further terms in the expansion would yield a
numerically unstable problem. Third, as already noticed by Corrado and Su (1996,
p. 624) who deal with Jarrow and Rudd’s (1982) approximation, if one increases the
number of terms in the expansion, one has to deal with multicollinear parameters.
The intuition for this comes from the observation that the parameter bj is related to
the j−th moment and as a consequence the parameters b5 and b6 would turn out to
be highly correlated with b3 and b4 respectively. Similarly all parameters where the
indices are of same parity are collinear. As Corrado and Su mention: ...adding the
terms, b5 and/or b6,

11 to skewness and kurtosis estimation procedures leads to highly
unstable parameter estimates.

As a consequence, adding more terms to the expansion, beyond the difficulty
to characterize the domain where the approximation is positive, raises problems of
stability due to a too small sample size and multicollinearity. For those reasons we
only focus on moments up to the fourth one.

5 Estimation of Gram-Charlier densities

In this section we wish to investigate the properties of maximum-likelihood estimates
when Gram-Charlier densities (GCd) are used in an attempt to directly obtain higher
moments that differ from the ones of the normal distribution. For this purpose we
investigate how well GCds can be fitted to simulated data. We consider the fit of
GCds to data generated with a Gram-Charlier distribution and to data generated
with a mixture of normals. Furthermore, in the latter type of simulation we dis-
tinguish the situation where parameters for the simulated data are in or out of the
restricted domain D. Once the statistical properties are well understood we turn to
the estimation of GARCH processes with Gram-Charlier distributed innovations.

11We have used our notation b5, b6 for the higher moments.
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5.1 Assessment of statistical properties

5.1.1 Sampling from a Gram-Charlier density

In our first simulation experiment we consider as true data generating process (DGP)
random variables distributed according to the Gram-Charlier density. To that data we
fit a GCd with maximum-likelihood. We simulate N = 100 series of length T = 2000
of data GC(0, 1, s, k).12 We will retain this type of size for all simulations reported in
this work. For excess kurtosis, k, we have arbitrarily chosen the values 1, 2, and 3.8.
The first value corresponds to a situation where the tails behave very much like for a
normal density, and the third value is close to the upper boundary of excess kurtosis
4. For each value of kurtosis we have chosen values of skewness that correspond to
the 75th, and 95th percentile of the [0, su(k)] segment. In columns 2 to 5 of table
3 we present the various selected parameters (µ, σ, s, k) and in figure 4 we represent
with dots the associated (s, k) pairs corresponding to the rows 1 to 6.13

Insert table 3 somewhere here

As the columns µ and σ for the maximum-likelihood (ML) estimation show, the
average of the estimates for the first and second moments are very good. The average
of the mean takes values between -0.0042 and 0.0017 which compares with the true
value of 0. Turning to skewness and kurtosis we still find that on average the estimates
come very close to the theoretical ones. However, we notice that the estimates for
kurtosis tend to differ by a larger percentage from the theoretical values than the
other moments. In particular, for a given level of theoretical kurtosis, the smaller the
skewness, the worse the average of the estimated kurtosis. This suggests that for the
situation where the tail-thickness of the density behave like the ones of a normal one,
it will be difficult to also allow for a non-zero skewness. In such cases estimation of
a GCd is difficult. A similar situation appears in the context of fitting a mixture of
densities. Bowman and Shenton (1973) mention that ...there is the paradox that, the

nearer to normality the theoretical distribution is, the less likely it is that a normal

mixture fit can be found. Our research suggests that this sentence can be transformed
into ..., the nearer kurtosis is to the one of the normal distribution, the less likely it

is that a parametric approximation can be found.
When turning to the dispersion of the parameter estimates, measured with their

standard deviation, our earlier observations are corroborated. The estimates of µ and
σ vary little. For skewness and kurtosis the dispersion increases. We explain this as
resulting from the multicollinearity of the parameters. We also notice that as kurtosis
increases the dispersion of the parameters improves. On the other hand, for a given
kurtosis, the larger the skewness the better the estimates. This result indicates that
the GCd estimation is better the more the tails differ from the normal one.

12To simulate this density we numerically construct its cumulative distribution function. The
inverse of uniformly generated numbers is then distributed as the GCd. For more details see Ripley
(1987, p59).

13We verified that the moments of the simulated data came on average close to the theoretical
ones.
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5.1.2 Sampling from a mixture of normals density

To further assess the ability of the ML estimation of the GCd to correctly capture the
moments of the data, we simulate data distributed as a mixture of normals. Formally
we assume that the true DGP is given by

pn1(r;µ1
, σ1) + (1− p) n2(r;µ2

, σ2)

where n1 and n2 are normal densities of given mean and standard deviation. The
parameter p ∈ [0, 1] indicates the probability of sampling from one or the other
distribution. For given moments (up to the fifth moment and belonging to a domain
of complex nature), Karl Pearson (1894) showed that the parameters p, µ1, µ2, σ1, σ2

can be obtained as a solution to a fundamental nonic, that is a polynomial of the
ninth degree.14 For five given moments (located in a complicated domain) it is,
therefore, possible to infer parameters for the mixture of normals (p, µ

1
, σ1, µ2

, σ2)
yielding precisely those moments.

Insert table 4 somewhere here

In table 4 we present the results for this simulation. Columns 2 to 6 present the
parameters necessary for the mixture to yield the theoretical moments displayed in
columns 7 to 9. In the table d1 and d2 correspond to µ1 and µ2, s12 and s22 correspond
to σ2

1
and σ2

2
. In addition to the skewness-kurtosis pairs considered previously (1 to

6 in figure 4), we consider several additional observations, 7-12, laying outside of D
corresponding to a 25% and 50% excess of the segment [0, su(k)].

15 In figure 7 we
represent the graph of the mixture for point 1, that is a mixture of two normals
yielding a skewness of 0.562 and an excess kurtosis of 4. The retained fifth moment
is then 4.1. We notice the strong deviation from the normal density.

Insert figure 7 somewhere here

Turning to simulations, we noticed that first and second moments of the simulated
data were on average, up to the third decimal, identical with the theoretical ones.16

Back to table 4, we notice that the average skewness and excess kurtosis displayed
in columns 10 and 11 come very close to the theoretical moments. Our simulation
procedure appears to work very well.

On average our ML estimates for the first and second moment come close to the
theoretical ones. For the case where our simulated point lies outside D we notice that
the first and second moments are not well estimated. The bias tends, however, to
diminish the greater the kurtosis. To summarize our simulation results, for deviations

14See also Cohen (1967) or Holgersson and Jorner (1979) for a more modern derivation of the
formulas. Bowman and Shenton (1973) discuss the space of moments for which moment estimators
exist.

15Since Pearson’s method involves a fifth moment, we first tried to seek a solution for a wide range
of this fifth moment. Eventually we chose that 5th moment where p turned out to be closest to 0.25.
This ensures that we simulate sufficiently often from both distributions. As table 4 shows, we often
have a boundary solution.

16Results not reported here.
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from the true Gram-Charlier DGP, as long as the parameters are within the autho-
rized domain, we have some difficulties to correctly capture skewness and kurtosis.
For parameters outside the authorized domain, even the first and second moments
are badly estimated. Because of the restrictive shape of the density our parameter
estimates will have difficulties to capture the moments. This observation highlights
the importance to test if the GC specification is a correct one for the data at hand.
Such a test can for instance be performed with a Kolmogorov-Smirnov test. Devia-
tions from the non-conditional moments and the ones obtained with a Gram-Charlier
density are suggestive of a model misspecification.

5.2 GARCH models with Gram-Charlier distributed inno-

vations

Let us now turn to a second empirical illustration where our positivity restriction
comes handy namely in situations where a Gram-Charlier distribution is used to
model innovations in a GARCH model while maintaining the interpretation of the
parameters s and k as the skewness and excess kurtosis of the density.

Models based on GARCH-type technology have recognized the possibility of time
changing volatility. First, Engle (1982) proposed his ARCH model. Bollerslev (1986)
extended it to GARCH. Time-varying volatility has lead to a significant amount of
literature summarized in Bollerslev, Chou and Kroner (1992), as well as in Bera and
Higgins (1993). One difficulty with those models is that residuals often remain heavy
tailed. Solutions have been proposed to account for this heavy-tailedness such as in
Engle and Gonzales-Rivera’s (1989) semi-parametric model, or using t-distributions
(as in Bollerslev, 1986), or GED distributions (as in Nelson, 1991). In none of those
models it is possible to access directly to the skewness and kurtosis parameters.

In the following model we keep the usual GARCH-type parameterization of volatil-
ity and for the innovations allow a skewness and kurtosis different from the ones of the
normal density. Formally, we assume that St is the value of some asset at time t. We
assume that the continuously compounded return, defined by rt = 100 · ln(St/St−1)
may be described by

rt = µ
t
+ yt, (14)

yt = σtzt, (15)

σ2

t
= w + ay2

t−1
+ bσ2

t−1
. (16)

The term µ
t
in (14) corresponds to the conditional mean and yt to the unexpected

part of returns. The variable σt is the conditional volatility. In equation (16) we allow
a GARCH(1, 1) representation for the conditional volatility. More complicated pro-
cesses could be trivially accommodated. In standard GARCH models, it is assumed
that the innovation zt follows a given distribution such as a N (0, 1) or a student
t-distribution with ν degrees of freedom. Here, we assume that innovations are dis-
tributed as a Gram-Charlier density with skewness and excess kurtosis parameters s
and k respectively. Formally, this allows us to complete model (14)-(16) with

zt ∼ GC (0, 1, s, k) , (17)

13



(s, k) = f
(
s̃, k̃

)
, (18)

where f is the mapping from R2 into D described in section 3. The positiveness
of g (z) is not only a theoretical problem. Indeed, from a practical point of view, if
expression (2) were negative, the log-likelihood is no longer defined and parameters
could not be estimated. Therefore, when (s, k) is not in the domain D, the log-
likelihood can be actually undefined for some values of z.

5.2.1 The data used

In this study we focus on six foreign exchange rate series with respect to the US dollar:
the British Pound (GBP), the Japanese Yen (JPY), the Deutsche Mark (DEM), the
French Franc (FRF), and eventually the Canadian dollar (CAD). Our data covers the
period from 03/01/1977 to 03/05/1999. We consider weekly data computed with the
Friday closing price. The data got extracted from the Datastream service.

Insert table 5 somewhere here

In table 5 we present various descriptive statistics of the data at a daily frequency.
For all series we dispose of 5826 observations. We compute, in the spirit of Richardson
and Smith (1994), all four moments and associated standard errors with GMM, thus,
allowing for possible heteroscedasticity in the data. This also yields a Wald-type
test for normality, W , distributed as a χ2

2
. In the table we also present the more

traditional Jarque-Bera, JB, test for normality. We notice that the mean return is
small in absolute value. The standard deviation of returns is lowest for CAD. The
JPY exchange rate had the highest volatility. The DEM and FRF exchange rates have
very similar patterns for moments as could be expected. Turning to the skewness and
kurtosis we notice for all series that there is a strong non-normality as one can check
by looking at the high values for the Jarque-Bera statistics. Excess kurtosis is in all
cases significantly larger than 3 implying that the unconditional density of all series
has fatter tails than the normal distribution. The Engle statistic computed with 5
lags indicates strong heteroscedasticity in all the series. The Box-Ljung Q-statistics
indicates that weekly returns generally appear to be uncorrelated.

5.2.2 Estimation results

Tables 6 and 7 present estimates of GARCH models with a normal density and a
Gram-Charlier density respectively for the innovations.

Insert tables 6 and 7 somewhere here

The conditional mean has been estimated separately and is not reported here.
Starting with table 6, the parameter a indicates that subsequent to a large return
volatility of the next period remains high. The parameter b indicates that a high
volatility is followed by high volatility: As expected volatility is persistent. Further-
more, we estimate the skewness and excess kurtosis for the innovations. We notice for
all situations that the kurtosis is significantly different from 0 and incompatible with
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a normal distribution. Our Kolmogorov-Smirnov statistic, KS, indicates a rejection
of the assumption of normality for all series. Those results are well established and in-
dicate that GARCH models should be modeled with distributions for the innovations
allowing for unconditional fat-tailedness.

We now turn to the results reported in table 7 where we have performed the esti-
mations with the Gram-Charlier density. The parameters for w, a, and b are similar
to the ones of table 6. We also report the estimates of skewness and kurtosis. We
notice that all the estimated skewness and kurtosis lay in the authorized domain D.
Nonetheless, when trying to estimate the likelihood function without the restrictions
on skewness and kurtosis, in many situations the algorithm crashed because the like-
lihood became negative. Residuals are still found to be non-normal. When turning
to the Kolmogorov-Smirnov statistics which tests if the residuals have a behavior
compatible with the Gram-Charlier density we cannot reject this hypothesis.

Insert figure 8 somewhere here

For the Deutsche Mark exchange rate series we present in figure 8 a plot with a
normal density whose moments are matched to the ones of the innovations, a Kernel
estimation of the density of the innovations, and the fitted Gram-Charlier density.
This figure corroborates our statistical finding that the Gram-Charlier density is an
improvement over the normal one.

In all situations we reject with a likelihood-ratio test the restriction of a normal
density. As a first conclusion we, therefore, notice that the use of the Gram-Charlier
density is a success from a statistical point of view. As can be expected, we obtain
in general a decrease of the parameters’ standard errors. Our estimation is therefore
slightly more efficient. On the negative side we notice that the estimates of the
skewness and kurtosis parameters for the residuals differ from the ML ones of the
GCd. This result, in light of our earlier simulations, suggests that even though the
KS statistics does not reject the GCd, our model remains misspecified. In particular
it is possible that there remains heteroscedasticity of higher order in the data. It
is therefore possible that also skewness and kurtosis need to be made time varying.
Within our framework this can be done in a natural way by following Hansen (1994),
but is left for further research.

6 Conclusion

Gram-Charlier expansions are useful to model densities which are deviations from
the normal one. In addition to the mean and standard deviation that characterize
the normal density, for Gram-Charlier expansions, the third and fourth moments
(skewness and kurtosis) are also characterizing elements. In this paper we determine
the domain of skewness and kurtosis over which the expansion is positive. Imposing
this positivity constraint allows us to talk of Gram-Charlier densities (GCd). We
indicated how this constraint can be imposed numerically with a simple mapping and
that the unconstrained optimum will be uniquely related to the constrained one.

We apply our method to the estimation of Risk-Neutral densities that arise in an
option pricing context and to the estimation of GCds within a GARCH model. In
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both estimations an unconstrained optimization would have been problematic. Risk-
Neutral densities might have been negative and Gram-Charlier densities impossible
to fit to GARCH innovations because of the impossibility to compute log-likelihoods.
Both types of estimations are very fast and numerically stable once the positivity
constraint got imposed.

In the section dealing with the maximum-likelihood estimation of GCds we vali-
date our procedure and notice the following two observations: First, a fit of a GCd
to Gram-Charlier distributed data yields unbiased estimates as long as kurtosis is
not too small. Thus, as in other statistical estimations, the fit of a generalization of
the normal density becomes more difficult for small deviations from a normal den-
sity. Second, when fitting a GCd to data generated with a mixture of moments we
notice difficulties in capturing the correct moments. This highlights the importance
of testing if the data is compatible with a GCd.

Our GARCH estimation reveals a large improvement in terms of likelihood-ratio
tests. Further improvements left for future research could involve a time varying
specification of skewness and kurtosis where those moments would be linked in a
GARCH-type specification to the third and fourth moment of innovations.
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Captions
Table 1. Estimates of the Gram-Charlier expansion without positivity

constraints

Table 2. Estimates of the Gram-Charlier expansion with positivity

constraints

Table 3. ML estimation of Gram-Charlier parameters when the true

DGP is Gram-Charlier

This table presents the results of simulations where a GCd is fitted to GCd dis-
tributed data. We simulate for each set of parameters 100 samples of length 2000.
Columns 2 to 5 present the theoretical moments chosen. Columns 6 to 9 present the
averages of the ML estimates. This estimation can only be done when positivity is
imposed. Columns 10 to 13 present the standard deviations of the ML estimates.

Table 4. ML estimation of Gram-Charlier parameters when the true

DGP is a mixture of normals

This table presents the results of simulations where a GCd is fitted to data simu-
lated as a mixture of normals. We simulated for each set of parameters 100 samples
of length 2000. In columns 2 to 6 we present those parameters for the mixtures of
normals yielding an expectation of 0 and a standard deviation of 1 and further higher
moments displayed in columns 7 to 9. In column 10 and 11 we present averages of
the third and fourth moments for the simulated data. (The average for the first two
moments are virtually equal to the theoretical ones). Columns 12 to 19 are similar to
columns 6 to 13 of table 3. Rows 1 to 6 correspond to the same theoretical moments
as in table 3. Rows 7 to 12 correspond to those moments situated out of the positivity
domain.

Table 5. Descriptive statistics for the weekly Foreign Exchange data

The first four moments and their associated standard deviation get estimated with
GMM allowing for possible heteroscedasticity. sk and xku correspond to skewness and
excess kurtosis. W is a test for normality presented with its p-value. JB and KS are
the Jarque-Bera test respectively a Kolmogorov-Smirnov test for normality. Engle 5
is the Lagrange multiplier test for heteroscedasticity. AR and Q are the coefficients
of autocorrelation and of the Box-Ljiung test for autocorrelation, respectively.

Table 6. Garch estimates under normality assumption

Sk* and xku* represent the t-ratios for sk and xku. KS represents the Kolmogorov-
Smirnov test for normality. Log-lik is the sum of all log-likelihoods.

Table 7. Garch estimates with Gram-Charlier

In addition to the parameters already appearing in table 6, KS(normal), KS(GC),
and Log-Lik represent the Kolmogorov-Smirnov tests for normality, for data to be
generated as a Gram-Charlier density, and the log-likelihood value. LRT represents
the likelihood-ratio test statistics that the conditional density of residuals is a Gram-
Charlier density versus a normal one.

Figure 1 represents equations (5) of the text for various values of z with |z| ≥ √3.
We also present the envelope given as a solution to (5) and (6).

Figure 2 represents the same as figure 1 but with |z| < √3. The scale differs in
both figures.

Figure 3 presents the plot of the envelope as z varies from −∞ to +∞. For skew-
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ness and kurtosis located in the interior of the domain D, delimited by AM1BM2A,

the Gram-Charlier expansion is actually a density.
Figure 4 indicates how we replace the discrete envelope AM1BM2A with seg-

ments (not to scale) allowing for a continuous representation of the boundary. The
parameters of points 1 to 6 correspond to rows 1 to 6 of tables 2 and 3. Points 7 to
12, out of the domain, correspond to rows 7 to 12 of table 3. For given kurtosis the
points correspond to 75, 95, 125 and 150% of the segment [0, su].

Figure 5 represents risk-neutral densities estimated without positivity constraints.
The data is FRF/DEM options on April 25th 1997.

Figure 6 represents risk-neutral densities estimated with positivity constraints.
The data is FRF/DEM options on April 25th 1997.

Figure 7 displays the density of a mixture of normals corresponding to the pa-
rameters of point 1 that is µ = 0, σ = 1, s = 0.56, k = 1.

Figure 8 displays for the Deutsche Mark to $U.S. series a GARCH regression with
a Gram-Charlier density for the innovations. We also present a Kernel estimation of
the density of the estimated innovations as well as a normal density with parameters
equal to the ones of the innovations.
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1 month 3 month 6 month 12 month
σ 0,0280 0,0275 0,0291 0,0296
s 1,5875 1,7769 1,5724 1,5121
k 0,8836 1,1790 4,7630 4,8310

Table 1. Estimates of the Gram-Charlier expansion without positivity constraints

Without positivity constraints



1 month 3 month 6 month 12 month
σ 0,0295 0,0291 0,0276 0,0281
s 0,3781 0,9563 0,9808 0,9772
k 2,9920 3,1428 3,0583 3,0720

Table 2. Estimates of the Gram-Charlier expansion with positivity constraints

After imposing positivity constraints



µ σ s k µ σ s k µ σ s k
1 0,00 1,00 0,56 1,00 -0,0015 0,9906 0,5451 0,8666 0,0240 0,0164 0,1277 0,2384
2 0,00 1,00 0,71 1,00 0,0011 0,9895 0,6940 0,9254 0,0225 0,0200 0,1115 0,1812
3 0,00 1,00 0,76 2,00 0,0015 0,9946 0,7723 1,9814 0,0233 0,0174 0,0621 0,1681
4 0,00 1,00 0,97 2,00 -0,0042 0,9940 0,9616 1,9850 0,0214 0,0167 0,0459 0,1222
5 0,00 1,00 0,42 3,80 0,0017 0,9976 0,4364 3,7930 0,0210 0,0105 0,0922 0,0904
6 0,00 1,00 0,54 3,80 0,0009 0,9967 0,5414 3,7776 0,0209 0,0128 0,0930 0,0769

Table 3. ML estimation of Gram-Charlier parameters when the true DGP is Gram-Charlier

Theoretical parameters ML estimates STD of ML estimates



p d1 d2 s12 s22 s k M5 s k µ σ s k µ σ s k
1 0,340 -0,418 0,215 0,012 1,373 0,56 1,0 4,1 0,572 1,003 -0,038 0,945 0,397 0,853 0,028 0,030 0,247 0,533
2 0,375 -0,479 0,288 0,008 1,375 0,71 1,0 5,3 0,716 1,029 -0,064 0,919 0,566 1,088 0,031 0,033 0,224 0,440
3 0,248 0,601 -0,199 2,083 0,483 0,76 2,0 10,3 0,760 1,986 -0,005 0,985 0,581 1,299 0,020 0,024 0,105 0,251
4 0,321 0,632 -0,299 1,822 0,334 0,97 2,0 11,2 0,975 1,950 -0,030 0,955 0,781 1,548 0,022 0,021 0,057 0,127
5 0,250 0,219 -0,073 2,900 0,344 0,42 3,8 6,9 0,416 3,707 -0,010 0,944 0,251 2,229 0,020 0,027 0,083 0,174
6 0,249 0,280 -0,093 2,875 0,342 0,54 3,8 8,7 0,561 3,816 -0,009 0,941 0,326 2,216 0,023 0,027 0,087 0,164
7 0,441 -0,544 0,429 0,017 1,357 0,94 1,0 7,2 0,931 0,995 -0,111 0,874 0,786 1,338 0,024 0,026 0,088 0,194
8 0,148 1,958 -0,341 0,376 0,325 1,12 1,0 8,5 1,127 1,009 -0,120 0,894 1,027 2,078 0,015 0,013 0,010 0,084
9 0,440 0,596 -0,468 1,604 0,028 1,27 2,0 11,6 1,278 1,977 -0,171 0,775 0,928 2,148 0,023 0,034 0,026 0,120

10 0,178 1,815 -0,394 0,718 0,191 1,53 2,0 13,4 1,526 1,974 -0,159 0,837 1,045 2,593 0,014 0,016 0,004 0,075
11 0,249 0,374 -0,124 2,819 0,336 0,70 3,8 11,3 0,710 3,712 -0,013 0,947 0,426 2,269 0,023 0,026 0,079 0,142
12 0,251 0,453 -0,152 2,746 0,324 0,85 3,8 13,3 0,849 3,820 -0,018 0,941 0,514 2,251 0,020 0,023 0,080 0,150

Table 4. Estimation of Gram-Charlier parameters when the true DGP is a mixture of normals

STD of ML estimatesParameters of mixture distribution Theoretical moments Simulated moments Average ML estimates



GBP YEN DEM FRF CAD
mean 0,0047 -0,0773 -0,0212 0,0187 0,0324

STD(mean) 0,0427 0,0445 0,0436 0,0425 0,0184
std 1,4573 1,5189 1,4886 1,4492 0,6273

STD(std) 0,0498 0,0477 0,0429 0,0447 0,0189
sk 0,2254 -0,5962 -0,1285 0,0063 -0,0723

STD(sk) 0,2557 0,2115 0,1884 0,2145 0,2173
xku 3,4524 2,6008 1,8638 2,4241 2,2484

STD(xku) 0,8669 1,0382 0,6340 0,6825 0,7970

W 15,86 8,13 8,79 12,85 8,46
p-value 0,0004 0,0172 0,0123 0,0016 0,0146

JB 588,43 397,35 171,84 285,25 246,40
KS 2,12 2,18 1,43 1,40 1,34

Engle 5 88,25 44,13 47,53 40,81 64,59

AR(1) 0,030 0,066 0,040 0,040 -0,015
AR(2) 0,005 0,112 0,045 0,047 0,025

Q(5) 1,30 4,83 1,33 1,50 1,29

Table 5. Descriptive statistics for the weekly Foreign Exchange data



GBP YEN DEM FRF CAD
w 0,0526 0,2824 0,1637 0,0934 0,0358
STE(w) 0,0274 0,1315 0,0849 0,0533 0,0137
a 0,0990 0,0982 0,1186 0,1308 0,1079
STE(a) 0,0258 0,0326 0,0371 0,0408 0,0252
b 0,8814 0,7832 0,8125 0,8354 0,8048
STE(b) 0,0241 0,0729 0,0634 0,0463 0,0424

sk 0,32 -0,66 -0,02 0,12 0,13
sk* 4,50 -9,18 -0,29 1,60 1,85
xku 2,38 2,58 1,21 1,53 1,88
xku* 16,56 17,98 8,41 10,67 13,12

KS 1,53 2,02 1,20 1,22 1,08
Log-Lik -2007,50 -2116,32 -2079,19 -2042,77 -1079,54

Table 6: GARCH estimates under normality assumption



GBP YEN DEM FRF CAD
w 0,0529 0,2034 0,1305 0,0620 0,0326
STE(w) 0,0298 0,1083 0,0775 0,0353 0,0118
a 0,1098 0,0832 0,1170 0,1284 0,1143
STE(a) 0,0351 0,0295 0,0385 0,0437 0,0256
b 0,8756 0,8354 0,8321 0,8579 0,8113
STE(b) 0,0303 0,0612 0,0611 0,0406 0,0363
s 0,1885 -0,3724 -0,1483 -0,0410 -0,0142
STE(s) 0,0880 0,1003 0,0968 0,0994 0,0621
k 0,9811 1,1231 0,7015 0,9639 0,8152
STE(k) 0,2258 0,2201 0,2034 0,2320 0,2183

sk 0,32 -0,67 -0,02 0,11 0,14
sk* 4,41 -9,33 -0,31 1,58 1,92
xku 2,38 2,60 1,21 1,55 1,89
xku* 16,56 18,09 8,44 10,76 13,15

KS(Norm) 1,52 2,02 1,23 1,21 1,08
KS(GC) 0,70 1,05 0,63 0,54 0,61
Log-Lik -1986,77 -2081,40 -2066,73 -2023,46 -1064,50
LRT 41,45 69,84 24,92 38,63 30,08

Table 7: GARCH estimates with Gram-Charlier density
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