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Abstract

Business surveys are an important element in the analysis of the short-term economic
situation because of the timeliness and nature of the information they convey. Especially,
surveys are often involved in econometric models in order to provide an early assessment
of the current state of the economy, which is of great interest for policy-makers. In this
paper, we focus on non-seasonally adjusted business surveys relative to the Euro area re-
leased by the European Commission. We introduce an innovative way for modelling those
series taking the persistence of the seasonal roots into account through seasonal-cyclical
long memory models. We empirically prove that such models produce more accurate fore-
casts than classical seasonal linear models.

Keywords:
Euro area, business surveys, seasonal, long memory.

JEL Classification:
C22, C53, E32.

Résumé

Les enquétes d’opinion constituent un élément primordial pour le suivi conjoncturel de
I’activité économique, grace a 'information qu’elles contiennent mais également grace a
la rapidité de leur diffusion. En particulier, ces enquétes sont souvent utilisées dans des
modeéles économétriques qui fournissent une estimation rapide du taux de croissance d’une
économie, ce qui est d’un grand intérét pour les décideurs économiques et politiques. Dans
ce papier, nous nous intéressons aux enquétes sur la zone euro publiées par la Commission
Européenne. Nous considérons en particulier les données brutes non corrigées des varia-
tions saisonniéres. Nous introduisons une approche innovante pour modéliser ce type de
séries en prenant en compte la persistance des racines unitaires saisonniéres a 1’aide d’un
modéle & mémoire longue de type saisonnier-cyclique. Nous montrons de maniére em-
pirique que I’application de ce type de modéle sur les données d’enquéte permet d’obtenir
des prévisions plus précises que les modéles linéaires classiques.

Mots-clés :
Zone euro, enquétes d’opinion, saisonnalité, longue mémoire.

Codes JEL :
C22, Ch3, E32.



Non-Technical Summary

Business surveys are an important element in the analysis of the short-term economic sit-
uation because of the timeliness and nature of the information they convey. Concerning
the Euro area, the European Commission releases each end of the month data on the cur-
rent month that deal with various sectors such as industry, services, retail trade, building
and consumers. Those data are very helpful to practitioners in their monthly outlook
of the economic climate, while figures of quarterly national accounts are released around
43 days after the end of the reference quarter. Especially, surveys are often involved in
econometric models in order to provide an early assessment of the current state of the
economy, which is of great interest for policy-makers.

In this paper, we focus on non-seasonally adjusted business surveys. Seasonal adjustment
methods generally involve a linear modelling of the seasonal time series through a classi-
cal SARIMA (Seasonal AutoRegressive Integrated Moving-Average) process. Here, we put
forward an innovative way for modelling those seasonal series through seasonal-cyclical
long memory (SCLM) models. Those models are flexible enough to take the persistence
of the seasonal roots into account without differentiation. The idea is to decompose the
series according to its seasonal unit roots and to allow a fractional degree of integration
for each seasonal frequencies. Parameter estimation is carried out by using the pseudo-
maximum likelihood method.

By using a rolling procedure on building and retail trade surveys, we empirically prove
that SCLM models produce more accurate forecasts than classical seasonal linear mod-
els. Consequently, this approach could lead to a better approximation in the seasonal
adjustment procedures when the series has to be predicted. SCLM models have to be
used at a larger scale in a forecasting competition with SARIMA models, but also with
other non-linear seasonal models like for instance the Periodic Auto-Regressive model.



Résumé non technique

Les enquétes d’opinion constituent un élément primordial pour le suivi périodique de
I’activité économique, grace a 'information conjoncturelle qu’elles contiennent mais égale-
ment grace a la rapidité de leur diffusion. En ce qui concerne la zone euro, la Commission
Européenne publie chaque fin de mois les données relatives au mois en cours pour différents
secteurs tels I'industrie, les services, la construction, le commerce de détail et les ménages.
Ces données sont extrément utiles aux économistes pour leurs analyses mensuelles sur le
climat conjoncturel de la zone euro, les données des comptes trimestriels étant seulement
disponibles environ 43 jours apres la fin du trimestre. En particulier, ces enquétes sont
souvent utilisées dans des modéles économétriques qui fournissent une estimation rapide
du taux de croissance d’une économie, ce qui est d'un grand intérét pour les décideurs
économiques et politiques.

Dans ce papier, nous nous intéressons aux données brutes des enquétes d’opinion, non cor-
rigées des variations saisonnieres. Les méthodes de désaisonnalisation des séries chronolo-
giques font souvent appel & une modélisation linéaire de type SARIMA (Seasonal AutoRe-
gressive Integrated Moving-Average) afin de prévoir les observations en fin d’échantillon.
Nous introduisons ici une maniére innovante de modéliser ces séries saisonniéres a 1’aide
d'un processus & mémoire longue de type saisonnier-cyclique (Seasonal-Cyclical Long
Memory, SCLM). Ces processus sont assez flexibles pour prendre en compte la persis-
tance des racines unitaires saisonniéres sans avoir besoin de différencier les séries. Le
principe est de décomposer la série selon les différentes racines unitaires et de permettre
un degré fractionnaire d’intégration pour chaque fréquence saisonniére. L’estimation des
parameétres est effectuée par pseudo-maximum de vraisemblance.

A T'aide d’une procédure itérative appliquée sur les séries de la construction et du com-
merce de détail, nous montrons de maniére empirique que les modéles SCLM fournissent
des prévisions plus précises que les modéles linéaires saisonniers classiques. Par con-
séquent, cette approche pourrait permettre d’améliorer les méthodes de désaisonnalisation
qui impliquent une prévision sur un horizon donné. Les modéles SCLM pourraient étre
utilisés dans une étude a plus large échelle afin de comparer leur capacité prévisionnelle
avec celles des modeéles SARIMA et d’autres modéles non linéaires saisonniers tels que le
modele autorégressif périodique (Periodic Auto-Regressive, PAR).



1 Introduction

Early assessment of the current state of the economy is important for policy-makers. Un-
fortunately, reference figures used to assess economic growth are those of the quarterly
national accounts which are released with a substantial delay. For example, euro area
GDP figures are released by Eurostat around 45 days after the end of the reference quar-
ter. The same delay applies for the industrial production index. Therefore, short-term
analysts have developed econometric tools that exploit the information content of timely
updated monthly indicators in order to provide with early estimates of GDP growth. This
exercise is often referred to as 'nowcasting’ in the recent litterature (see for example Fer-
rara, 2007, or Angelini et al., 2008).

In this respect, business surveys are an important element in the analysis of the short-term
economic situation because of the timeliness and nature of the information they convey.
Indeed, business surveys are available from the end of the reference month and are rarely
revised. In this paper, we focus on non-seasonally adjusted Euro-zone business surveys
released by the Furopean Commission. We show that those time series exhibit long-range
dependence in the seasonal roots and we introduce an innovative way of modelling those
series by taking this persistence into account through Seasonal-Cyclical Long Memory
[SCLM| models. The class of SCLM models is an extension of the Fractionally Integrated
model introduced by Granger and Joyeux (1980) and Hosking (1981) often used in macroe-
conomics (see for example Baillie, 1996, for a review). Such models possess the ability to
take simultaneously into account long range dependence and cyclical behaviour. SCLM
models have been introduced by Robinson (1994) and studied by Arteche and Robinson
(2000). It turns out that those models are flexible enough to nest a lot of seasonal or
cyclical fractionally integrated models that have been proposed in the literature.

In this paper, we describe the general class of SCLM models in section 1. Then, in sec-
tion 2, we propose an innovative application of SCLM models to business surveys in the
euro area. We compare this kind of model with classical seasonal linear models, based
on Seasonal Auto-Regressive Integrated Moving-Average (SARIMA) models, in terms of
predictive content. We empirically prove that SCLM models produce more accurate fore-
casts than SARIMA models.

2 SCLM models

In this section we present models referred to as Seasonal-Cyclical Long Memory models,
that include generalized long memory processes and seasonal long memory processes. Such
kinds of models are well appropriate for data exhibiting short term-dependent (seasonal or
non-seasonal) ARMA components and slowly decaying auto-correlation at periodic lags.
The use of fractional seasonal degrees allows us to take seasonal fluctuations into account
while avoiding over-differentiation. The autocorrelation function |[ACF| of a seasonal frac-
tionally integrated model displays an hyperbolic decay at seasonal lags, rather than the
slow linear decay characterizing the conventional seasonally integrated model. Indeed, we



generally observe on the ACF of real data set a superposition of hyperbolically damped
sin waves.

In the spectral domain, a peak in the spectral density at a given frequency A indicates a
cycle of period 27” in the process. More generally, a seasonal process (X;); presents several
peaks in the spectral density located at the seasonal frequencies A\, = @, h=1,...,[s/2],
where s is the number of observations per year (s = 1 for annual data, s = 4 for quarterly
data, s = 12 for monthly data and s = 52 for weekly data), and [s/2] denotes the integer
part of s/2. Seasonal long memory models allow a representation of the spectral density

showing a singularity at zero or at any frequency w, 0 < w < 7, such that:
@A) ~ CIA2, as, A= 0,]d] < 1/2, (1)

where C' is a positive constant and d is any real lying on the interval [—0.5,0.5]. When
f(X) satisfies the equation (1) for every seasonal frequency w = wp,h = 1,2,---,[s/2],
possibly with the memory parameter, d, varying across h, we say that the process has a
seasonal long memory behavior. However, for non-seasonal time series, like annual data,
equation (1) holds for a single frequency w € [0, 7].

Without loss of generality, we assume that the process (X;); is a zero-mean stationary
process with finite variance. The SCLM model for X; is defined as follows:

k—1
(I —B)* | [(I -2Bcos\; + B))%(I + B)"*X, = ¢, (2)
1

.
I

where B is the backshift operator, where for : = 1,--- ,k — 1, d; € R and \; can be
any frequency between 0 and 7. The innovations (g;); have continuous and positive spec-
trum. We say that the process (X;); is integrated of order d; at frequency \;, I,(d;), for
i=0,1,2,--+,k, \g = 0 and Ay = w. Generally, in applications, the innovations (&), are
supposed to follow a short-memory stationary ARMA process.

The general representation (2) nests a lot of seasonal or cyclical fractional models intro-
duced in the literature that are competitive to take those specific behaviors into account.
Among the papers dealing with theoretical and empirical aspects of those models we refer
to Gray, Zhang and Woodward (1989), Porter-Hudak (1990), Ray (1993), Hassler (1994),
Giraitis and Leipus (1995), Woodward, Cheng and Gray (1998) Arteche and Robinson
(2000), Ferrara and Guégan, (2000, 2001a, 2001b, 2006), Gil-Alana (2001, 2006), Gué-
gan (2000, 2003), Arteche (2003), Olhede, McCoy and Stephens (2004), Chan and Palma
(2005), Reisen, Rodriguez and Palma (2006) or Ferrara, Guégan and Lu (2008) for in-
stance.

Parameter estimation of the model described by equation (2) can be carried out by a
pseudo-maximum likelihood method, based on the Whittle (1951) likelihood under the
Gaussian assumption for (g;);. The Whittle log-likelihood Ly (X, ) that we aim to
minimize is given by:

+m IT()\>

I (X0) = 5- [ {log(fx( ) +

: Ty )



where ¢ = (02, dy, . ..,d;), where I7(\) is the estimated periodogram based on the tra-
jectory (Xi,...,Xr) and where fx is the spectral density of the process described in
equation (2). As the frequencies \;, for i = 0,1,..., k are known, the spectral density is
fully determined. If we assume that the innovations (g;); follow a short-memory stationary
ARMA process, AR and MA parameters can be easily included in the spectral density to
be estimated.

Results on the asymptotic behaviour of parameter estimates can be found in Giraitis and
Leipus (1995) or Hosoya (1997). Note also that parameter estimation can de done by
using semi-parametric methods based on the seminal approach of Geweke and Porter-
Hudak (1983). An empirical comparison of parameter estimation for SCLM model can be
found for example in Ferrara and Guégan (2001b).

3 A SCLM modelling for business surveys

We focus on non-seasonal business surveys for the euro area released each end of month
by the European Commission. Several economic sectors are covered by those surveys:
Industry, building, retail trade, services and consumers. All the countries of the Euro-
pean Union are considered, as well as the euro area and the EU27 as a whole. It turns
out that not all the opinion surveys present a seasonal pattern. Based on the shape of
the periodogram of the differenced series, we retain two sectors with marked seasonality,
namely the building and retail trade sectors at the euro area aggregated level (see Figure

1).

Let us note (X}'); the first item of the construction survey (trend activity over recent
months) and (X?); the fifth item of the retail survey (employment expectations), at the
euro area level from January 1985 to December 2006. The main interest of economic
analysts concerns the variations of the surveys from one month to the other. Therefore,
in this paper, we consider the first order differencing of the raw series, denoted (Y;!); and
(Y;?); defined by Ytj = th — th_l, for 7 = 1,2. Moreover, by cancelling the signal in the
low frequencies, this differencing filter allows us to focus only on the seasonal variations
of the series, which is of main interest in this study. Both first order differenced surveys
are presented in Figure 1. We observe that these series are centered around zero and
dominated by a seasonal component.

As regards the building survey, the excess kurtosis of the series is insignificantly different
from zero, but the series is asymmetric, the skewness being significantly positive. The
ACF of the series (Figure 2) shows evidence of a strong seasonal pattern with a cycle of
period 12 months, but also a shorter cycle with negative auto-correlations seems to be
present. The ACF decreases very slowly as the lags increase, indicating the presence of
strong persistence inside the data. The raw periodogram in Figure 3 exhibits two marked
peaks at the seasonal frequencies 7/6 and 7/3, corresponding respectively to cycles of
period 12 months and 6 months. The peaks located at the other seasonal frequencies
/2, 2m/3, b7 /6 and 7 present a weaker amplitude but are marked anyway. This picture
suggests a higher degree of persistence for the two first seasonal frequencies.



As regards the retail trade surveys, the excess kurtosis is non-null at the classical con-
fidence level 1 — a = 0.95, implying thus non-Normality through a Jarque-Bera test.
Moreover, this property of non-Normality is reinforced by a significantly negative skew-
ness at the usual confidence level. Those statistics indicate that negative large shocks are
more frequent than positive ones. The ACF (Figure 4) is quite different from the previous
one, in the sense that we do not observe a slow decay, but we have rather a persistence in a
cycle of period around 12 months. Moreover, other cycles seem to be present, but the ACF
is too noisy to be interpreted clearly, so we turn to the spectral domain. The spectral den-
sity of the series estimated by the raw periodogram is presented in Figure 5. Three main
peaks emerge from this picture, located at the three first seasonal frequencies, namely 7 /6,
7/3 and 7/2. This indicates the presence of three cycles of period, respectively, 12, 6 and
4 months. It is noteworthy that the 4-month period cycle seems to be the most persistent.

The previous described stylized facts suggest that the use of a SCLM model described
in equation (2) seems adequate to explain the dynamics of these two series. We use a
purely seasonal model with six frequencies, but without short-term component. Thus, for
j = 1,2, we use the following modelling:

I1°_, (I — 2cos(iw/6)B + B4 (I + B)% X/ = &, (4)

where (g;); is a stationary process. Pseudo-maximum likelihood estimates of the param-
eters of model (4), over the whole period (Feb. 1985 - Dec. 2006), are provided in Table 1.
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Figure 1: First order difference opinion surveys: Trend of activity over recent months in the construction
(top) and Employment expectations in the retail sector (bottom)



Building (X}) | Retail (X?)

) Y d; d;

1| ©/6 0.5160 0.2237
2| /3 0.5081 0.1929
3| w/2 0.4006 0.4379
4| 27/3 0.4731 0.1912
51| 57/6 0.4022 0.1986
6 us 0.1654 0.1764

Table 1: Parameter estimates of the SCLM models fitted to the building survey in differences

As regards the building survey (second column of Table 1), the first two memory param-
eters are slightly greater than 0.5 (indicating thus a non-stationary behavior), while the
other components are not. Especially, we observe on both series that movements associ-
ated with the frequency 7 are not strongly persistent. Concerning the retail survey (third
column of Table 1), the memory parameter associated to the cycle of period four months
(A\; = m/2) is the highest but it is still stationary. Other parameters are lower but non-null.

As a benchmark we fit also a classical linear SARIMA model to both series, over the
whole sample (Feb. 1985 - Dec. 2006). As regards the building survey (X});, the more
parsimonious model that allows us to whiten the residuals is the SARIMA(3,0,0)(2, 1,0)12,
without constant in the equation. The estimated model is the following;:

(I — B)(I —0.2249B — 0.2974B% — 0.1325B%)(I — 0.5421 B — 0.1888 B*") X} = ¢;. (5)

All the estimates are non-null using a Student test with a = 0.05 and the estimated
residual standard error is equal to 5.36.

Concerning the retail trade survey (X?);, the more parsimonious model that allows us to
whiten the residuals is the SARIMA(3,0,0)(3,1,0);2, without constant in the equation.
The estimated model is the following:

(I-B")(I-0.4602B—0.3824B*—0.2204B%)(1—0.6720 B2 —0.4687B**—0.2842B*) X}? = ¢,.

(6)
All the estimates are non-null using a Student test with a = 0.05 and the estimated
residual standard error is equal to 3.22.

We describe now the forecasting experience. We use a rolling procedure by using first the
learning set from the beginning of the series, in January 1985, to December 1999 and we
forecast over three years (h = 36) using both models. Then we extend progressively the
learning set, one year by one year, untill December 2003, in order to provide forecasts
to December 2006, the last point of our analysis. That is, we can assess the forecast-
ing performances over 5 various forecasting horizons (2000-2002, 2001-2003, 2002-2004,
2003-2005 and 2004-2006). Therefore, for each forecasting horizon we can compute the
root-mean-squared error (RMSE hereafter) of each model. To have a quick summary of
the results, we compute the ratios of the RMSE, by dividing the RMSE from the SCLM
model by the one from the SARIMA model. Thus, a ratio lower than one indicates a



better forecasting performance of the SCLM model. Results are presented in the Table 2.

| | Building (X}) | Retail (X7) |

2000-2002 0.80 0.85
2001-2003 0.69 0.83
2002-2004 0.87 0.87
2003-2005 0.96 0.86
2004-2006 1.02 0.88

Table 2: Ratios of the RMSE for the SCLM model over the RMSE the SARIMA model

From these results, we note that the SCLM model provides systematically better fore-
casting results for all horizons (except over 2004-2006 for the building survey). The gain
is more significant for the retail survey, while the gain depends strongly on the forecast
horizon for the building survey. Those results are interesting and point out the interest
of such fractional models. However, this study should be generalized to a greater number
of opinion surveys, especially in the presence of a low frequency component.

4 Conclusion

In this paper we have put forward an innovative approach for modelling non-seasonal
adjusted business surveys through Seasonal-Cyclical Long Memory models. Those models
allow us to take the persistence of seasonal roots into account. We prove empirically that
SCLM models can be very competitive in terms of forecasting by comparison with classical
linear models. Consequently, this approach could lead to a better approximation in the
seasonal adjustment procedures when the series has to be predicted, implying thus a more
accurate economic assessment for policy-makers. SCLM models have to be used at a larger
scale in a forecasting competition with SARIMA models, but also with other non-linear
seasonal models like for instance the Periodic Auto-Regressive model (Franses and Ooms,
1997).
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Figure 2: ACF of the building survey (trend activity over the recent months) in difference
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Figure 3: Raw periodogram of the building survey (trend activity over the recent months) in difference
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Figure 4: ACF of the retail survey (employment expectations) in difference
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Figure 5: Raw periodogram of the retail survey (employment expectations) in difference
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