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Abstract

In this paper, we take up the analysis of a principal/agent model with moral hazard

introduced in [15], with optimal contracting between a competitive investor and an

impatient bank monitoring a pool of long-term loans subject to Markovian contagion.

We provide here a comprehensive mathematical formulation of the model and show

using martingale arguments in the spirit of Sannikov [17] how the maximization problem

with implicit constraints faced by investors can be reduced to a classic stochastic control

problem. The approach has the advantage of avoiding the more general techniques

based on forward-backward stochastic differential equations described in [6] and leads

to a simple recursive system of Hamilton-Jacobi-Bellman equations. We provide a

solution to our problem by a verification argument and give an explicit description of

both the value function and the optimal contract. Finally, we study the limit case

where the bank is no longer impatient.the deal.

Keywords: Default Correlation, Dynamic Moral Hazard, Forward-Backward Stochastic

Differential Equations.

JEL Classification: G21, G28, G32.

Résumé

Dans ce papier, nous reprenons l’analyse du modèle principal/agent avec aléa moral

décrit dans [15], avec un contrat optimal entre un investisseur compétitif et une banque

impatiente, gestionnaire d’un lot de prêts à long terme sujets à contagion Markovienne.

Nous formulons le modèle dans sa dimension purement mathématique et montrons

par des arguments de martingale à la Sannikov [17] comment le problème de maximi-

sation avec contraintes implicites posé aux investisseurs peut se ramener à un prob-

lème classique de contrôle stochastique. L’approche a l’avantage d’éviter les techniques

plus générales fondées sur les équations différentielles stochastiques du type « forward-

backward » décrites en [6] et de déboucher sur un système récursif simple d’équations

d’Hamilton-Jacobi-Bellman. Nous apportons une solution au problème par un argu-

ment de vérification et donnons une description explicite tant de la fonction valeur que

du contrat optimal. Finalement, nous étudions le cas limite où la banque cesse d’être

impatiente.

Mots-clés : Aléa moral dynamique, corrélation des défauts, équations différentielles

stochastiques forward-backward.

Codes JEL : G21, G28, G32.
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1 Introduction

Following the seminal contributions of DeMarzo and Fishman [10], [11] and Sannikov [17],

there has been a renewed interest in the mathematical treatment of continuous-time moral

hazard models and their applications. In a typical moral hazard situation, a principal (who

takes the initiative of the contract) is imperfectly informed about the action of an agent

(who accepts or rejects the contract). The goal is to design a contract that maximizes the

utility of the principal while that of the agent is held to a given level.

In its whole generality, the mathematical treatment of the problem can be cast as follows.

Agency problems stemming from the agent’s hidden action a limit the utility this agent

can get from contracting with the principal. The optimal contract c specifies how these

limitations should be strenghtened or slackened over time as a result of the agent’s ongoing

performance. We first have to solve the agent’s problem for a given contract

VA(c) := sup
a
E [UA(c, a)] ,

where UA is the utility function of the agent. If we assume for simplicity that there exists

a unique optimal action a(c) for any c, a point on the set of constrained Pareto optima can

be found by solving the Principal’s stochastic control problem

VP := sup
c
{E [UP (c, a(c))] + λE [UA(c, a(c))]} ,

where UP is the utility function of the principal and λ is the Lagrange multiplier associated

to some reservation utility of the agent.

Because of the almost limitless choices for c, it is generally assumed that the agent does not

have complete control over the outcomes but instead continuously affects their distribution

by choosing specific actions. This actually means that the agent affects the probability

measure Pa under which the above expectations are taken. This setting, which will be

described more rigorously in the following section, corresponds to a weak formulation of

the stochastic control problem.

As shown in [6], a general theory can be used to solve these problems, by means of

forward-backward stochastic differential equations. We show here how recursive, martingale

representation-based techniques proposed by Sannikov [17] can be brought to bear on the

issue to yield explicit solutions that are easier to derive. The model we consider, introduced

by Pagès in [15], is a contribution to the optimal design of securitization in the presence of

banks’ impaired incentives to monitor. In contrast with the main thread of the literature,

which deals with Brownian motion risk, the focus is on large but infrequent risk, as in Biais

et al [3]. An important difference is that credit risk arises in a non-stationary context as the

result of imperfectly correlated defaults. Our aim is to provide a coherent mathematical

framework for this problem and provide the rigorous foundations for the formal derivations

adumbrated in [15].

The rest of the paper is organized as follows. In section 2, we recall the model laid out in

[15], describe the contracts and give our main assumptions. In Section 3, we formally derive
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a candidate optimal contract by solving the HJB equation associated to the control problem.

We then use a standard verification argument to show that the candidate solution is indeed

the optimal contract. The paper concludes with a short Section devoted to a simple special

case.

2 The model

2.1 Notations and preliminaries

We consider a model with universal risk neutrality in which time is continuous and indexed

by t ∈ [0,∞). Without loss of generality, the risk-free interest rate is taken to be 0. A bank

has a claim to a pool of I unit loans indexed by i = 1, . . . , I which are ex ante identical.

Each loan is a defaultable perpetuity yielding cash flow µ per unit time until it defaults.

Once a loan defaults it gives no further payments. The infinite maturity and no recovery

assumptions are made for tractability.

Denote by

Nt =
I∑

i=1

1{τ i≤t},

the sum of individual loan default indicators, where τ i denotes the default time of loan i.

The current size of the pool is I − Nt. Since all loans are a priori identical, they can be

reindexed in any order after defaults. The action of the bank consists in deciding at each

time t whether it monitors any of the outstanding loans. These actions are summarized by

the functions eit defined by

For 1 ≤ i ≤ I −Nt, eit = 1 if loan i is monitored at time t, and eit = 0 otherwise.

Non-monitoring renders a private benefit B > 0 per loan and per unit time to the bank.

The opportunity cost of monitoring is thus proportional to the number of monitored loans.

The rate at which loan i defaults is controlled by the hazard rate αit specifying its instan-

taneous probability of default conditional on history up to time t. Individual hazard rates

are assumed to depend both on the monitoring choice of the bank and on the size of the

pool. Specifically, we choose to model the hazard rate of a non-defaulted loan i at time t

as

αit = αI−Nt
(
1 + (1− eit)ε

)
, (2.1)

where the parameters {αj}1≤j≤I represent individual “baseline” risk under monitoring when

the number of loans is j and ε is the proportional impact of shirking on default risk.

We define the shirking process k by

kt =
I−Nt∑

i=1

(
1− eit

)
,
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which represents the number of loans that the bank fails to monitor at time t. Then,

according to (2.1), aggregate default intensity is given by

λkt = αI−Nt (I −Nt + εkt) . (2.2)

The bank can fund the pool internally at a cost r ≥ 0. Positive internal funding costs reflect

bank’s limited access to capital or deposits and may include any regulatory or agency costs

associated with this source of financing. The bank can also raise funds from a competitive

investor who values income streams at the prevailing riskless interest rate of zero. We

assume that both the bank and investors observe the history of defaults and liquidations.

2.2 Description of the contracts

Contracts are offered on a take-it-or-leave-it basis by investors to the bank and agreed

upon at time 0. They determine how cash flows are shared and how loans are liquidated,

conditionally on past defaults and liquidations. Without loss of generality, they specify

that an investor receives cash flows from the pool and makes transfers to the bank. We

denote by D = {Dt}t≥0 the càdlàg, positive and increasing process describing cumulative

transfers from the investors to the bank, such that

E
P [Dτ ] < +∞, (2.3)

where τ is the liquidation time of the pool and where we assumed that D0 = 0.

Remark 1. In certain cases, it can be useful to let D have a jump at time 0. Indeed, for

instance in the so called first-best (that is to say when the bank and the investors cooperate),

it can be shown that the optimal solution to our problem is to make a lump transfer to the

bank at time 0− and nothing afterwards. See Remark 3.4 for more details.

Let then Ht := 1{t≥τ} be the liquidation indicator of the whole pool. The contract specifies

the probability θt with which the pool is maintained given default (dNt = 1), so that at

each point in time

dHt =

{
0 with probability θt,

dNt with probability 1− θt.

With our notations,the hazard rates associated with the default and liquidation processes

Nt and Ht are λ
k
t and (1− θt)λ

k
t , respectively.

The contract also specifies when liquidation occurs. We assume that liquidations can only

take the form of the stochastic liquidation of all loans following immediately default. The

above properties translate into

P
(
τ ∈

{
τ1, ..., τ I

})
= 1, and P(τ = τ i|Fτ i , τ > τ i−1) = 1− θτ i .

We summarize the above details of the contracts, which are completely specified by the

choice of (D, θ). Each infinitesimal time interval (t, t+ dt) unfolds as follows:
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• I −Nt loans are performing at time t.

• The bank chooses to leave kt ≤ I−Nt loans unmonitored and monitors the I−Nt−kt
others, enjoying private benefits ktB dt.

• The investor receives (I −Nt)µdt from the cash flows generated by the pool and pays

δtdt ≥ 0 as fees to the bank.

• With probability λkt dt defined by (2.2) there is a default (dNt = 1).

• Given default the pool is maintained (dHt = 0) with probability θt or liquidated

(dHt = 1) with probability 1− θt.

As recalled in the introduction, we assume that the bank’s monitoring decision is not

observable. This leads to a dynamic moral hazard problem, where the contract (δ, θ) uses

observations on defaults to give the bank incentives to monitor. We assume that both the

bank and investors can fully commit to such contracts.

2.3 Economic assumptions

In this section we give some Assumptions arising from economic considerations (see [15] for

details). They are in force throughout the paper. Let αj denote the harmonic mean of α1,

. . . , αj, i.e.,

1

αj
:=
1

j

j∑

i=1

1

αi
.

Assumption 2.1.

µ ≥ αI . (2.4)

The condition ensures that monitored loans are profitable viewed as of time 0.

Assumption 2.2. We have for all j ≤ I

r

αj
≤

µε−B

B

ε

1 + ε
,

The condition is related to the efficiency of monitoring and ensures that the benefits for a

non-monitoring bank are not so high that shirking is socially preferable.

Assumption 2.3. Individual default risk is non-decreasing with past default

αj ≤ αj−1, for all j ≤ I. (2.5)

The condition introduces the possibility of correlated defaults through a contagion effect,

as individual loans’ intensity of default may increase with the arrival of new defaults.
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3 Optimal contracting

Before going on, let us now describe the stochastic basis on which we are working. We

will always place ourselves on a probability space (Ω,F,P) on which N is a Poisson process

whith intensity λ0t (which is defined by (2.2)) and where P is the reference probability

measure. We denote (FNt )t≥0) the completed natural filtration of N and by (Gt)t≥0 the

minimal filtration containing (FNt )t≥0) and that makes the liquidation time of the pool τ a

G-stopping time. We note that this filtration satisfies the usual hypotheses, and therefore

we will always consider super or submartingales in their càdlàg version.

3.1 Incentive compatibility and limited liability

As recalled in the introduction, in order to make the problem tractable, we assume that the

monitoring choices of the bank affect the distribution of the size of the pool. To formalize

this, recall that, by definition, the shirking process k is G−predictable and bounded. Then,

by Girsanov Theorem, we can define a probability measure Pk equivalent to P such that

Nt −

∫ t

0
λkt ds,

is a Pk-martingale.

More precisely, we have from Brémaud [4] (Chapter VI, Theorem T3) that on Gt

dPk

dP
= Zkt ,

where Zk is the unique solution of the following SDE

Zkt = 1 +

∫ t

0
Zks−

(
λks
λ0s
− 1

)
(
dNs − λ0sds

)
, 0 ≤ t ≤ T, P− a.s.

Then, given a contract (D, θ) and a shirking process k, the bank’s expected utility at t = 0

is given by

uk0(D, θ) := EP
k

[∫ τ

0
e−rt(dDt +Bkt dt)

]
, (3.1)

while that of the investor is

vk0(D, θ) := EP
k

[∫ τ

0
(I −Nt)µdt− dDt

]
. (3.2)

Following Sannikov [17], we give now the definition of an incentive-compatible shirking

process.

Definition 1. A shirking decision k is incentive-compatible with respect to the contract

(D, θ) if it maximizes (3.1).
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Then, the problem faced by the investors is to design a contract (D, θ) and an incentive-

compatible advice on k that maximize their expected discounted payoff, subject to a given

reservation utility for the bank

vI(u) := sup
(D,θ,k)

E
P
k

[∫ τ

0
(I −Nt)µdt− dDt

]
(3.3)

subject to E
P
k

[∫ τ

0
e−rt(dDt +Bkt dt)

]
≥ u

k incentive-compatible with respect to (D, θ) .

This allows us to define a first set of admissible contracts for a given monitoring advice k

Ak(x) := {(D, θ), θ is a predictable process with values in [0, 1],

D is a positive càdlàg non-decreasing process which satisfies (2.3),

k is incentive-compatible with respect to (D, θ) and uk0(D, θ) ≥ x}. (3.4)

Notice that we will put more restrictions on this set at the end of the section.

Using martingale arguments, we now elicit an equivalent condition for the incentive com-

patibility of k. Consider the bank’s expected lifetime utility, conditional on Gt

Ukt (D, θ) := E
P
k

[∫ τ

0
e−rs (dDs +Bksds)

∣∣∣ Gt
]

(3.5)

=

∫ t∧τ

0
e−rs (dDs +Bksds) + e−rtukt (D, θ),

where ukt is the dynamic version of the bank’s continuation utility defined as

ukt (D, θ) := 1{t<τ}E
P
k

[∫ τ

t

e−r(s−t) (dDs +Bksds)
∣∣∣ Gt
]
. (3.6)

Since we are working with the completed natural filtration of a Poisson process, and since

Ukt is a Gt-martingale under P
k and in L1 because of the integrability assumptions we made,

the martingale representation theorem for point processes (see [4], Chapter III, Theorems

T9 and T17, and Chapter VI, Theorems T2 and T3) implies that there are predictable

processes h1 and h2 such that the bank’s continuation utility uk satisfies the following

“promise-keeping” equation until liquidation occurs

dukt + (dDt +Bktdt) = rukt dt− h1t

(
dNt − λkt dt

)
− h2t

(
dHt − (1− θt)λ

k
t dt
)
, (3.7)

where the dependence of h1 and h2 on k has been suppressed for notational convenience.

The introduction of the processes h1 and h2 provides a practical way of characterizing

contracts for which a given k is incentive-compatible, as shown in the following proposition,

inspired by Sannikov [17].
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Proposition 1. Given a contract (D, θ) and a shirking process k, the latter is incentive-

compatible if and only if for all t ∈ [0, τ ] and for all i = 1...I, the following holds almost-

surely, (
B

εαI−Nt
− h1t − (1− θt)h

2
t

)
(kt − i) ≥ 0. (3.8)

Proof. Consider an arbitrary strategy k̂ specifying the number of unmonitored loans at

any point in time until liquidation. Let ukt denote the continuation utility in (3.6) resulting

from the decision to forgo monitoring k loans at all times.

Ût =

∫ t∧τ

0
e−rs

(
dDs +Bk̂sds

)
+ e−rtukt (3.9)

the lifetime utility of the bank viewed as of time t if it follows the strategy k̂ before time t,

and plans to switch to k afterwards.

We have for all t ∈ [0, τ ]

dÛt = e−rt
(
dDt +Bk̂tdt

)
+ e−rt

(
dukt − rukt dt

)

= e−rtB(k̂t − kt)dt− e−rt
(
h1t (dNt − λkt dt) + h2t (dHt − (1− θt)λ

k
t dt)

)

= e−rt
(
B − αI−Ntε(h

1
t + (1− θt)h

2
t )
)
(k̂t − kt)dt

− e−rt
(
h1t (dNt − λk̂t dt) + h2t (dHt − (1− θt)λ

k̂
t dt)

)
,

where we have used the promise-keeping equation (3.7) for uk. Therefore, the first term

on the right-hand side

e−rt
(
B − αI−Ntε(h

1
t + (1− θt)h

2
t )
)
(k̂t − kt),

is the drift of Û under Pk̂. Note also that, by definition, h1 and h2 are integrable and

therefore the martingale part of Û is a true Pk̂-martingale.

(i) Now assume that (3.8) does not hold on a set of positive measure, and choose k̂ such

that it maximizes the quantity

(
B − αI−Ntε(h

1
t + (1− θt)h

2
t )
)
k̂t,

for all t.

Then, the drift of Û under Pk̂ is non-negative and strictly positive on a set of positive

measure. Therefore Û is a Pk̂-submartingale. This implies the existence of a time t∗ > 0

such that

E
P
k̂

[Ût∗ ] > Û0 = uk0.

Therefore, if the agent follows this strategy k̂ until the time t∗ and then switches to the

strategy k, his utility is strictly greater than the utility obtained from following the strategy

k all the time. This contradicts the fact that the strategy k is incentive-compatible.
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(ii) With the same notations as above, assume that (3.8) holds for the strategy k. Then

this means that Û is a Pk̂-supermartingale, regardless of the choice of strategy k̂. Moreover,

since Û is positive (because D is non-decreasing), it has a last element (see Problem 3.16

in [12] for instance). Then, we have by the optional sampling Theorem

uk0 = Û0 ≥ E
P
k̂
[
Ûτ

]
= uk̂0,

where we used (3.9) and the fact that ukτ = 0 for the last inequality.

This means that the strategy k maximizes the expected utility of the agent and is therefore

incentive-compatible. �

Under the assumption that monitoring is efficient, we now focus on contracts that actually

deter the bank from shirking, i.e., contracts with respect to which k = 0 is incentive-

compatible. In that particular case, the above Proposition can be simplified as follows.

Corollary 2. Given a contract (D, θ), k = 0 is incentive-compatible if and only if

h1t + (1− θt)h
2
t ≥

B

εαI−Nt
, t ∈ [0, τ ], P− a.s. (3.10)

Remark 2. Corollary 2 states that, given that the pool has i loans outstanding, in order

to induce the bank to monitor all loans, the continuation payoff must drop in expectation

by at least the quantity

bi :=
B

εαi
,

following default.

In order to specify further our admissible strategies, we have to put some restrictions on h1

and h2. First, we assume that the bank has limited liability. This means that the bank’s

continuation utility is bounded from below by bI−Nt up to liquidation, since otherwise the

incentive-compatible (3.10) would be violated upon default.

The limited liability constraint must also holds after a default if the pool is maintained

in operation (dHt = 0), when the drop in utility is h1. This implies that the following

condition holds

For all 1 ≤ i ≤ I, u0t− − h1t ≥ bi−1, on {Nt = I − i}. (3.11)

For the second condition, we assume that the bank forfeits any rights to cash flows once

the pool is liquidated. The constraint u0τ = 0 implies in turn that at all times

u0t− = h1t + h2t , (3.12)

since the drop in utility is h1 + h2 in that case.
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The introduction of the processes h1 and h2 allows us to greatly simplify the set of admis-

sible contracts by formulating the incentive compatibility requirement in terms of explicit

conditions. Our set of admissible strategies is therefore

Ã0(x) := {(D, θ, h1, h2), θ is a predictable process with values in [0, 1],

D is a positive càdlàg non-decreasing process which satisfies (2.3),

h1 and h2 are predictable processes, integrable, and satisfy u0t− − h1t ≥ bI−Nt−1,

u0t− = h1t + h2t , x ≤ u00(D, θ).}. (3.13)

3.2 Reduction to a stochastic control problem and HJB equation

Under condition (3.10), k = 0 is incentive-compatible. That being taken care of, solving for

the optimal contract involves maximizing an investor’s expected utility and is therefore a

classical stochastic control problem. Let vj(u) denote the investor’s value function, i.e., the

maximum expected utility an investor can achieve given a pool of size j and a reservation

utility for the bank u. Assume for now that the processes D are absolutely continuous with

respect to the Lebesgue measure (we will verify later that the property is satisfied at the

optimum), that is to say

Dt =

∫ t

0
δsds.

Then, we expect the investor’s value function to solve the following system of Hamilton-

Jacobi-Bellman equations with initial condition v0(u) = 0

sup
(δ,θ,h1,h2)∈Cj

{(
ru+ λj

(
h1 + (1− θ)h2

)
− δ
)
v′j(u) + jµ− δ

−θλj
(
vj(u)− vj−1(u− h1)

)
− (1− θ)λjvj(u)

}
= 0, u ≥ bj, (3.14)

where the Cj are our admissible strategies sets defined by

Cj :=
{
(δ, θ, h1, h2), δ ≥ 0, θ ∈ [0, 1], h1 + (1− θ)h2 ≥ bj , u− h1 ≥ bj−1, u = h1 + h2

}
.

Remark 3.1. We will see in the next section that our control problem is singular. Therefore

the above HJB equation (3.14) is not exactly the correct one, and we will consider instead

a variational inequality.

Given the constraints in the definition of Cj, we reparametrize the problem in terms of the

variable z := θ(u− h1). This leads to the simpler system of HJB equations
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sup
(δ,θ,z)∈C̃j

{
(ru+ λj (u− z)− δ) v′j(u) + jµ− δ − λj

(
vj(u)− θvj−1

(z
θ

))}
= 0, u ≥ bj ,

(3.15)

where the constraints become

C̃j :=

{
(δ, θ, z), δ ≥ 0, θ ∈

[
0, 1 ∧

u− bj
bj−1

]
, and z ∈ [bj−1θ, u− bj ]

}
.

Our strategy now is to guess a candidate optimal contract by solving the above system of

HJB equations, and to prove that the conjectured contract is indeed optimal by means of

a verification argument. However, since j = 1 is a degenerate special case, it is convenient

to treat monitoring with a single loan first before turning to the general case.

3.3 Single loan: Constant utility

We provide below a solution of the HJB equation which is compatible with our problem,

in the sense that the initial conditions for v1 are obtained from our formulation of the

Principal/Agent problem.

Since there is only one loan, when it defaults the pool is automatically liquidated, which

means that θ is always equal to 1. Since v0 = 0 and b0 = 0, optimizing first with respect

to δ yields the following variational inequality for u > b1

min

{
− sup
b1≤h1≤u

{(
ru+ λ1h

1
)
v′1(u) + µ− λ1v1(u)

}
, v′1(u) + 1

}
= 0. (3.16)

Moreover, it appears that δ = 0 as long as v′1(u) + 1 > 0. Starting from this, finding the

solution is an easy but lengthy exercise so we postpone the corresponding discussion to the

Appendix. It nonetheless leads to the following Proposition

Proposition 3.1. The function v1 defined by

v1(u) := b1 − u+
µ− b1(r + λ1)

λ1
, u > b1,

is a solution of (3.15).

Moreover if we extend linearly this function by continuity on [0, b1], v1 is concave.

Remark 3.2. In the case j = 1 the utility of the bank is always b1 and the bank receives

constant payments δt = rb1 + λ1b1 until the loan defaults. We refer to Section 3.6 for the

proof that the contract described above is indeed the optimal one when there is only one

loan in the pool. We also refer the reader to the next section to understand the utility of

extending the function on [0, b1].
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3.4 Formal derivation of a candidate optimal contract

In this section, we show how to formally obtain a recursive system of ODEs which should

be satisfied by our value function.

Step (i) Optimizing first with respect to δ yields the following variational inequality for

u > bj

min

{
− sup
(θ,z)∈B̃j

{
(ru+ λj (u− z)) v′j(u) + jµ− λj

(
vj(u)− θvj−1

(z
θ

))}
, v′j(u) + 1

}
= 0.

(3.17)

where

B̃j :=

{
(θ, z), θ ∈

[
0, 1 ∧

u− bj
bj−1

]
, and z ∈ [bj−1θ, u− bj]

}
.

We continue our guess of the value function assuming that all the functions vj are concave

(a property which needs to be verified by our candidate). Then the first derivative of vj is

decreasing. Let us also assume that there exists a level γj > bj (a free boundary) such that

v′j(γj) = −1, v′j(u) > −1, for u < γj,

Then as long as u < γj, vj satisfies the first equation in (3.17). Therefore, equation (3.17)

tells us that the bank receives cash from the investors only when its utility attains the

level γj (since δ = 0 is optimal before that). We also assume (and we will verify) that our

candidate satisfy

− sup
(θ,z)∈B̃j

{
(ru+ λj (u− z)) v′j(u) + jµ− λj

(
vj(u)− θvj−1

(z
θ

))}
≥ 0, u ≥ γj.

This means that vj becomes linear above γj, and that the variational inequality (3.17) takes

the simpler form

− sup
(θ,z)∈B̃j

{
(ru+ λj (u− z)) v′j(u) + jµ− λj

(
vj(u)− θvj−1

(z
θ

))}
= 0, bj < u ≤ γj

v′j(u) + 1 = 0, u > γj .

Now in order to know which level γj should be chosen, it is natural to require our solution

to be maximal in the sense that for each u > bj

γj −→ vj(u),

is maximal at the chosen value of γj . Of course, it is not clear at all whether such a value

exists. Nonetheless, we will prove that this heuristic approach can be proven rigorously,

and that our maximality assumption has a clear economic meaning.
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Step (ii) We next turn to the liquidation decision, one finds as first-order condition with

respect to θ

vj−1
(z
θ

)
−

z

θ
v′j−1

(z
θ

)
≥ 0. (3.18)

Once again, if vj−1 is concave, the above inequality (3.18) is always verified. This means

that the function

θ −→ θvj−1
(z
θ

)
,

is non-decreasing, which implies that the optimal θ corresponds to its upper bound.

There are then two cases

(i) u ∈ [bj , bj + bj−1) and θ =
u−bj
bj−1

.

(ii) u ∈
[
bj + bj−1, γj

]
and θ = 1.

Step (iii) Finally consider the decision regarding z. First, if u ∈ [bj , bj + bj−1), then z has

to be equal to u − bj . Then, in the probation interval θ = 1 and z is constrained in the

range [bj−1, u− bj]. We continue our guess of a candidate solution assuming that

v′j−1(u− bj)− v′j(u) ≥ 0, (3.19)

a condition which needs to be verified by the resulting candidate.

Then, since vj−1 is supposed to be concave, we have for all z ∈ [bj−1, u− bj]

v′j−1(z)− v′j(u) ≥ 0.

From this, we obtain that the function z −→ −zv′j + vj−1(z) is non-decreasing, which in

turn implies that the supremum over z is also attained at u− bj in the probation interval.

Summarizing all the above formal calculations, we end up with the following system of

ODEs, which should lead us to a solution of the HJB equation on the interval [bj, γj]

(ru+ λjbj) v
′
j(u) + jµ− λj (vj(u)− vj−1(u− bj)) = 0, u ∈

(
bj + bj−1, γj

]

(ru+ λjbj) v
′
j(u) + jµ− λj

(
vj(u)−

u− bj
bj−1

vj−1(bj−1)

)
= 0, u ∈ (bj, bj + bj−1] .

We next extend the value function vj to the interval [0, bj ] by setting

vj(u) :=
u

bj
vj(bj), u ∈ [0, bj ] , (3.20)

and to the interval (γj,+∞) by

vj(u) := vj(γj)− u+ γj.
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Then the above system of ODEs simplifies to

(ru+ λjbj) v
′
j(u) + jµ− λj (vj(u)− vj−1(u− bj)) = 0, u ∈

(
bj , γj

]

v′j(u) = −1, u ≥ γj. (3.21)

Recall that we need to verify that the solution obtained from (3.21) satisfies all the prop-

erties assumed in the derivation of our candidate.

3.5 Solving the HJB equation

We now provide conditions under which the heuristic derivation of the previous section

indeed corresponds to a solution of the original system of HJB equations (3.15). Since we

already solved the problem for j = 1, we assume here that j ≥ 2.

Let us define

vj := vj(bj),

and for x > 0 and 0 < β ≤ 1the functions

φβ(x) :=

(
1 + x

1 + (1 + β)x

) 1

x
−1

, ψβ(x) :=
φβ(x)− x

(1− x)φβ(x)
.

Remark 3.3. Then, it is easy to prove that the functions ψβ can be extended to continuous

functions on R+ which decrease from 1 to 1
2 and that for all x ≥ 0

ψ1(x) = inf
0<β≤1

ψβ(x).

We have the following results.

Proposition 3.2. Assume that
r

λj
− 1 ≤

vj−1
bj−1

. (3.22)

(i) The ordinary differential equations (3.21), along with (3.20), have unique maximal

solutions vj for j ≥ 2. The functions vj are globally concave, differentiable everywhere

except at bj and twice differentiable everywhere except at bj and bj + bj−1. The

endogenous thresholds γj ≥ bj + bj−1 are uniquely determined by

r

λj
− 1 ∈ ∂vj−1(γj − bj), (3.23)

where ∂vj(u) is the subdifferential of vj at u and verify

γj ≤ bj + γj−1. (3.24)
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(ii) The λj can be chosen recursively so that

(
v′j−1(b

+
j−1)

)+ bj−1
vj−1

≤ ψ1

(
r

λj

)
, (3.25)

In that case, the functions vj also verify

v′j(u)− v′j−1(u− bj) ≤ 0, for all u ≥ bj . (3.26)

The proof is rather tedious and is relegated to the Appendix.

Now since the functions vj constructed in Proposition 3.2 are globally concave, have a

derivative which is greater than −1 for u < γj and equal to −1 for u ≥ γj and satisfy (3.26),

we can apply the heuristic arguments of Section 3.4 to obtain the following corollary.

Corollary 3.1. Under the assumptions of Proposition 3.2, the functions vj constructed in

the same Proposition solve the HJB equation (3.14).

Proof. The only remaining property to prove is that for u ≥ γj , we have

− (ru+ λjbj) v
′
j(u)− jµ+ λj (vj(u)− vj−1(u− bj)) ≥ 0.

We compute

− (ru+ λjbj) v
′
j(u)− jµ+ λj (vj(u)− vj−1(u− bj))

= ru+ λjbj − jµ+ λj
(
vj(γj)− u+ γj − vj−1(u− bj)

)

= r(u− γj) + λj
(
vj−1(γj − bj) + γj − bj − vj−1(u− bj)− u+ bj

)

≥ r(u− γj)− λj(u− γj)

(
1 + sup

γj−bj≤x≤u−bj

v′j−1(x)

)

≥ r(u− γj)− λj(u− γj)
r

λj

= 0,

where we used the fact that vj−1 is concave, that u → vj−1(u) + u is increasing and that

v′j−1(γj − bj) ≤
r
λj
− 1.

In particular, this shows that

− sup
(θ,h1,h2)∈Bj

{(
ru+ λj

(
h1 + (1− θ)h2

))
v′j(u) + jµ

−λj
(
vj(u)− θvj−1(u− h1)

)}
≥ 0, u ≥ γj . (3.27)

�

Let us finally describe the contract (D, θ), first obtained in [15], which can be deduced from

the above results. Starting from a reservation utility x ≤ γI for the bank, the following

contract unfolds.
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Contract 3.1. (i) Given size j, the pool remains in operation (i.e. there is no liquida-

tion) with one less unit at any time there is a default in the range
[
bj + bj−1, γj

]
.

(ii) The flow of fees paid to the bank given j is δjt = λjbj + rγj as long as ut = γj and

no default occurs, where δj is the density of D with respect to the Lebesgue measure.

Otherwise δt = 0.

(iii) Liquidation of the whole pool occurs with probability θjt = (ut − bj) /bj−1 in the range

[bj, bj + bj−1).

To summarize, we have for j given and with the original notations of (3.14)

δj(u) := 1u=γj (λjbj + rγj)

θj(u) := 1bj≤u<bj+bj−1
u− bj
bj−1

+ 1bj+bj−1≤u≤γj

h1,j(u) := (u− bj−1)1bj≤u<bj+bj−1 + bj1bj+bj−1≤u≤γj

h2,j(u) := u− h1,j(u). (3.28)

Remark 3.4. If the reservation utility for the bank x is greater than γI then the contract

should specify in addition that a transfer is immediately made to the bank so that its utility

returns to the level γI . This means that instead of considering transfers (Dt)t≥0 which are

only absolutely continuous with respect to the Lebesgue measure, we have to add a Dirac

mass at 0. Our proofs can then be easily adjusted to that case, therefore we will not treat

it. Moreover, notice that the contract 3.1 is clearly in Ã0(x).

3.6 The verification theorem

In this subsection, we prove our main result.

Theorem 3.1. Let u0 ≤ γI be the reservation utility for the bank. Then, the optimal

contract in Ã0(x) for the problem (3.3) is the contract 3.1.

We decompose the proof in two parts. First, we show that the bank can obtain a level of

utility u0 and the investors vI(u0), for any u0 ≥ bI , with this contract. The second part,

reported in Proposition 3.3, shows that for any contract (D, θ) which makes the shirking

decision k = 0 incentive-compatible, the utility the investors can obtain is bounded from

above by vI(u0), where u0 is the utility obtained by the bank.

Proposition 3. Let the assumptions of Proposition 3.2 hold true. For any starting condi-

tion u0 > bI , we define the process ut as the solution of the following SDE for j = 0, . . . ,

I − 1

dut = (rut − δI−Nt(ut))dt− h1,I−Nt(ut)(dNt − λI−Nt dt)

− h2,I−Nt(ut)(dHt − λI−Nt(1− θI−Nt(ut)) dt), t < τ. (3.29)
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Then, the contract defined by
(
δI−Nt(ut), θ

I−Nt(ut)
)
is incentive-compatible, has value u0

for the bank and value vI(u0) for the investors.

Proof. First, the drift and volatility in the SDE (3.29) are clearly Lipschitz. This guaran-

tees the existence and uniqueness of the solution for all t. Moreover, it is also clear from

the definitions of δI−Nt , θI−Nt , h1,I−Nt and h2,I−Nt that

rut − δI−Nt + λI−Nt
(
h1,I−j(ut) + (1− θI−Nt(ut))h

2,I−Nt(ut)
)
≥ 0.

Hence ut remains below γI−Nt . Moreover, when N jumps, we have at the time of the jump

ut = ut− − h
1,I−N

t−

t

= bI−Nt1bI−N
t−
≤u

t−
<bI−Nt+bI−Nt−

+ (ut− − bN
t−
)1bI−Nt+bI−Nt−≤ut−≤γI−Nt−

≥ bI−Nt .

Therefore, we always have ut ≥ bI−Nt for t < τ . Hence, the process u is bounded.

Moreover, it is clear by construction that this contract makes the shirking decision k = 0

incentive-compatible. Indeed, we have after some calculations for all j

h1,I−Nt(ut) + (1− θI−Nt(ut))h
2,I−Nt(ut) = bI−Nt , t < τ,

which is exactly (3.10).

Then, using the equation (3.7) for the continuation utility of the bank obtained with the

contract (δI−Nt(ut), θ
I−Nt(ut)), we obtain

d
(
e−rt(u0t − ut)

)
= e−rt

(
(h1t − h1,I−Nt(ut))(dNt − λI−Ntdt)

)

+ e−rt
(
(h2t − h2,I−Nt(ut))(dHt − λI−Nt(1− θI−Nt(ut))dt)

)
.

Since h1,Nt(ut) and h2,I−Nt(ut) are bounded because ut is bounded and since h1t and h2t
are in the space L1(P) by construction, we can take the conditionnal expectation above to

obtain

Et

[
u0t+s − ut+s

]
= ers(u0t − ut).

u0 remains bounded, because the δj are bounded for all j (recall (3.6)) and u is bounded,

thus the left-hand side above must remain bounded. Since r > 0, letting s go to +∞ implies

that ut = u0t , P− a.s. and in particular that the bank overall utility is

u00 = u0.
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Let us now turn our attention to the investors. Define

Gt :=

∫ t

0
((I −Ns)µ− δ(us))ds+ vI−Nt(ut), (3.30)

where the vj are those defined in Proposition 3.2.

Let us place ourselves on the interval [τ j ∧ τ, τ j+1 ∧ τ). We have shown before that ut
remains above bI−j. But we know by construction that vI−j is continuous on [bI−j ,+∞)

and has a derivative which can be continuously extended on [bI−j ,+∞). Hence we can

apply the change of variable formula for locally bounded processes (see [8], Chapter VI,

Section 92) to obtain for all t ≥ 0

Gt = vI(u0) +
I−1∑

j=0

∫ τj+1∧t

τj∧t
(I − j)µ− δI−j(us) + v′I−j(us)

(
rus − δI−j(us)

)
ds

+
I−1∑

j=0

∫ τj+1∧t

τj∧t
λI−jv

′
I−j(us)

(
h1,I−j(us) + (1− θI−j(us))h

2,I−j(us)
)
ds

+
I−1∑

j=0

∑

τj∧t≤s≤τj+1∧t

vI−j(us)− vI−j(us−). (3.31)

Let us decompose the jumps of vj . We have

vj(us)− vj(us−) = ∆Ns
(
(1−∆Hs) vj−1

(
us− − h1,j(us−)

)
− vj (us−)

)

= ∆Ns
(
vj−1

(
us− − h1,j(us−)

)
− vj (us−)

)
−∆Hsvj−1

(
us− − h1,j(us−)

)
,

which implies that

∑

τj∧t≤s≤τj+1∧t

vI−j(us)−vI−j(us− ) =

∫ τj+1∧t

τj∧t

(
vI−j−1

(
us− − h1,I−j(us−)

)
− vI−j (us−)

)
dNs

−

∫ τj+1∧t

τj∧t
vI−j−1

(
us− − h1,I−j(us−)

)
dHs.
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From this, we obtain

Gt = vI(u0) +
I−1∑

j=0

∫ τj+1∧t

τj∧t
(I − j)µ− δI−j(us) + v′I−j(us)

(
rus − δI−j(us)

)
ds

+
I−1∑

j=0

∫ τj+1∧t

τj∧t
λI−jv

′
I−j(us)

(
h1,I−j(us) + (1− θI−j(us))h

2,I−j(us)
)
ds

+
I−1∑

j=0

∫ τj+1∧t

τj∧t
λI−j

(
vI−j−1

(
us − h1,I−j(us)

)
− vI−j (us)

)
ds

−
I−1∑

j=0

∫ τj+1∧t

τj∧t
λI−j(1− θI−j)vI−j−1

(
us − h1,I−j(us)

)
ds

+
I−1∑

j=0

∫ τj+1∧t

τj∧t

(
vI−j−1

(
us− − h1,I−j(us−)

)
− vI−j (us−)

)
(dNs − λI−jds)

−
I−1∑

j=0

∫ τj+1∧t

τj∧t
vI−j−1

(
us− − h1,I−j(us−)

) (
dHs − λI−j(1− θI−j(us−))ds

)
.

Using the fact that the vj solve the HJB equation 3.21, we deduce that

Gt = vI(u0) +
I−1∑

j=0

∫ τj+1∧t

τj∧t

(
vI−j−1

(
us− − h1,I−j(us−)

)
− vI−j (us−)

)
(dNs − λI−jds)

−
I−1∑

j=0

∫ τj+1∧t

τj∧t
vI−j−1

(
us− − h1,I−j(us−)

) (
dHs − λI−j(1− θI−j(us−))ds

)
. (3.32)

Hence, G is a bounded martingale until time τ (since δ is bounded by definition and ut and

thus the vj(ut) are also bounded) and we have, since uτ = 0

E

[∫ τ

0
((I −Nt)µ− δt) dt

]
= E[Gτ ] = G0 = vI(u0),

which is the desired result. �

We now show that vI(u0) is an upper bound for the utility the investor can obtain from

any contract which makes the shirking decision k = 0 incentive-compatible.

Proposition 3.3. For any contract (D, θ) ∈ Ã0(u0), the utility the investors can obtain is

bounded from above by vI(u0), where u0 is the utility obtained by the bank.

Proof. We define as in the previous proof the quantity Gt for an arbitrary contract (δ, θ).

By applying the change of variable formula and arguing exactly as before we can obtain

that the drift of G is actually negative, using again (3.14). Indeed, we know that for any

(D, θ, h1, h2) ∈ Ã0(u0), we have from Corollary 3.1 and its proof that for all j

(
rut + λj

(
h1t + (1− θt)h

2
t

))
v′j(ut) + jµ− λj

(
vj(ut)− θtvj−1(ut − h1t )

)
≤ 0,
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and we know that

−(v′j(ut) + 1)dDt ≤ 0,

since D is non-decreasing.

Hence, using again (3.32), we have

Gt∧τ ≤ vI(u) +

∫ τ∧t

0

(
vI−Ns−1

(
us− − h1,I−Nss

)
− vI−Ns (us−)

)
(dNs − λI−Nsds)

−

∫ τ∧t

0
vI−Ns−1

(
us− − h1,I−Nss

) (
dHs − λI−Ns(1− θI−Nss )ds

)
. (3.33)

Now we have

E

[∫ τ∧t

0

∣∣vI−Ns−1
(
us − h1,I−Nss

)
− vI−Ns (us)

∣∣ ds
]

≤ E

[∫ τ∧t

0

∣∣vI−Ns−1
(
us − h1,I−Nss

)
− vI−Ns−1 (us − bI−Ns)

∣∣ ds
]

+ E

[∫ τ∧t

0
|vI−Ns−1 (us − bI−Ns)− vI−Ns (us)| ds

]

Then, from (3.26), we know that for all j the function u −→ vj(u)−vj−1(u−bj) is decreasing.

Moreover, for u large enough (namely u ≥ γj ∨ (γj−1 + bj)) we have

vj(u)− vj−1(u− bj) = vj(γj) + γj − vj−1(γj−1) + γj−1 − bj ,

which implies that for all j the function u −→ vj(u)− vj−1(u− bj) is bounded.

Moreover, we have

E

[∫ τ∧t

0

∣∣vI−Ns−1
(
us − h1,I−Ns

)
− vI−Ns−1 (us − bI−Ns)

∣∣ ds
]

≤ E

[∫ τ∧t

0

∣∣h1,I−Nss − bI−Ns
∣∣ sup
bI−Ns<u≤γI−Ns

∣∣v′I−Ns(u)
∣∣ ds
]

≤ C

(
1 + E

[∫ τ∧t

0
|us| ds

])

≤ C

(
1 + E

[∫ τ∧t

0
ue(r+2λ)sds

])
< +∞,

where λ := sup
1≤j≤I

λj, and where we used successively the fact that the derivative of the vj

can be extended to a continuous function on [bj , γj ] which is therefore bounded on that

compact, then the fact that by the limited liability condition (3.11) we have h1t ≤ ut and

finally that conditionally on the fact that there are j loans left in the pool, the drift of ut
as given by (3.7) is

rut + λj
(
h1t + (1− θt)h

2
t

)
− δt ≤ rut + λj

(
h1t + (1− θt)(ut − h1t )

)

≤ rut + λj (ut − bj−1 + (1− θt)ut))

≤ ut(r + 2λj),

21



where we used the fact that h1, bj and λj are positive. Hence, ut increases at a rate lower

than r + 2λ.

Similarly, we have

E

[∫ τ∧t

0

∣∣vI−Ns−1
(
us− − h1,I−Nss

)∣∣ ds
]

= E

[∫ τ∧t

0

∣∣vI−Ns−1
(
us− − h1,I−Nss

)
− vI−Ns−1

(
us− − h1,I−Nss − h2,I−Nss

)∣∣ ds
]

≤ E

[∫ τ∧t

0

∣∣h2,I−Nss

∣∣ sup
bI−Ns<u≤γI−Ns

∣∣v′I−Ns−1(u)
∣∣ ds
]

≤ E

[∫ τ∧t

0
|us| sup

bI−Ns<u≤γI−Ns

∣∣v′I−Ns−1(u)
∣∣ ds
]
< +∞.

Taking expectations in (3.33), we therefore obtain

vI(u0) ≥ E

[∫ τ

0
((I −Ns)µ− δs) ds

]
+ E

[
1t<τ

(∫ τ

t

(δs − (I −Ns)µ)ds+ vI−Nt(ut)

)]

= E

[∫ τ

0
((I −Ns)µ− δs) ds

]
+ E

[
1t<τEt

[∫ τ

t

(δs − (I −Ns)µ)ds+ vI−Nt(ut)

]]

= E

[∫ τ

0
((I −Ns)µ− δs) ds

]
+ E

[
1t<τ

(
ut + vI−Nt(ut)− Et

[∫ τ

t

(I −Ns)µds

])]

≥ E

[∫ τ

0
((I −Ns)µ− δs) ds

]
+ E [1t<τ (−Iµτ + ut + vI−Nt(ut))] . (3.34)

Then, we know that for all j the function u −→ u + vj(u) is increasing before γj and is

constant for u ≥ γj . It is therefore bounded and we have

|−Iµτ + ut + vI−Nt(ut)| ≤ Iµτ + sup
1≤j≤I

∣∣γj + vj(γj)
∣∣ ≤ C(1 + τ),

for some positive constant C. This quantity being integrable, we can apply the dominated

convergence theorem in (3.34) and let t go to +∞ to obtain

vI(u0) ≥ E

[∫ τ

0
((I −Ns)µ− δs)ds

]
,

which is the desired result. �

4 What happens when r = 0?

In this section we treat our problem in the special case where the bank is as patient as the

investors. We will see that in that case, the optimal contract leads to the first-best utility

for the investors (but with fees paid continuously to the bank instead of a lump payment at

time 0). Since most of the proofs follow exactly the same arguments as in the case r > 0,

we will only sketch them. First, we give the analogue of Proposition 3.2 in that case.
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Proposition 4.1. Assume that r = 0.

(i) The ordinary differential equations (3.21), along with (3.20), have unique maximal

solutions vj for j ≥ 1. The functions vj are globally concave, differentiable everywhere

except at bj and twice differentiable everywhere except at bj and bj + bj−1. The

endogenous thresholds γj are uniquely determined by

γj =

j∑

i=1

bi. (4.1)

(ii) We also have

v′j(u)− v′j−1(u− bj) ≤ 0, for all u ≥ bj . (4.2)

Proof. (i) When r = 0, the solution of (3.21) for a given γ ≥ bj is

vj(u) =
jµ

λj
+ e

u−γ
bj (vj−1(γ − bj)− bj) +

∫ γ

u

e
u−x
bj

bj
vj−1(x− bj)dx, bj < u ≤ γ

vj(u) = γ − u+ vj(γ), u > γ.

Using the same arguments as in the proof of Proposition 3.2, it is easily proved that the

choice of γ which leads to the maximum solution is

γj = γj−1 + bj .

Reasoning by induction, we can then prove similarly that the functions vj verify all the

desired properties. Moreover, since γ1 = b1, we obtain that

γj =

j∑

i=1

bi.

(ii) We can prove that

v′j(u) =

∫ γj

u

e
u−x
bj

bj

dvj−1
du

(x− bj)dx− e
u−γj
bj , bj < u ≤ γj

dvj
du
(u) = −1, u > γj .

By the concavity of vj−1, this implies that for bj < u ≤ γj

v′j(u)− v′j−1(u− bj) ≤ −e
u−γj
bj
(
v′j−1(u− bj) + 1

)
≤ 0.

Since (4.2) is clear when u > γj , this proves (ii). �

Thanks to Proposition 4.1, we have a concave solution of the HJB equation, then using the

same techniques as in the case r > 0, we can verify that the optimal contract is given by
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Contract 4.1. (i) Given size j, the pool remains in operation (i.e. there is no liquida-

tion) with one less unit at any time there is a default in the range
[
bj + bj−1, γj

]
.

(ii) The flow of fees paid to the bank given j is δjt = λjbj as long as no default occurs.

(iii) Liquidation of the whole pool occurs with probability θjt = (ut − bj) /bj−1 in the range

[bj, bj + bj−1).

Hence, when the bank starts with a reservation utility equal to γI (which is the only viable

value for competitive investors, the contracts being on a take-it-or-leave-it basis), payments

are never suspended since the penalty arising upon default brings the bank utility to the

level γI−1. Besides, in that case it is never optimal to use the threat of stochastic liquidation.

In that case, we also have

vI(γI) =
jµ

λj
− bj + vj−1(γj−1) =

1

αi

(
µ−

B

ε

)
+ vj−1(γj−1) =

I

αI

(
µ−

B

ε

)
.

Therefore, the social value of the contract is

γI + vI(γI) =
Iµ

αI
,

which is exactly equal to E
[∫ τ
0 µ(I −Nt)dt

]
, that is to say the social value which can be

attained in the first-best. Hence, when the bank is no longer impatient, our contract leads

to the same utility as in the first-best. This was to be expected, since there is no longer

loss in utility due to the fact that the bank has to be penalized because of its impatience.

We also refer to [15] for heuristic results when other hypotheses of the model are relaxed.
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A Appendix

Proof. [Proof of Proposition 3.1] It is clear from the equation (3.16) that the right-

derivative of v1 at b1 is equal to
λ1v1(b1)−µ
b1(r+λ1)

. We therefore have to consider three cases.

• If λ1v1(b1) > µ.

Then at least on a small interval on the right of b1, we have v′1 ≥ 0. Thus on this interval

the equation becomes

(r + λ1)uv
′
1(u) + µ− λ1v1(u) = 0,

whose solution is given by

ṽ1(u) :=

(
v1(b1)−

µ

λ1

)(
u

b1

) λ1
λ1+r

+
µ

λ1
.

Since this function has a derivative which is always positive, this means that in that case

v′1 + 1 > 0 and therefore δ is always equal to 0. Thus it follows that the investor’s utility

is equal to (see (3.2) when k = 0)

v1(b1) = E

[∫ τ1

0
µds

]
=

µ

λ1
,

contradicting the fact that λ1v1(b1) > µ. Hence this case is not possible.

• If λ1v1(b1) = µ.

Then using (3.2) with k = 0, we obtain that δ = 0 (since we assumed that δ ≥ 0). Plugging

this in (3.1), we get that the bank utility is equal to 0 even if the loan has not defaulted,

which contradicts the fact that it should remain above its minimum level b1. Hence this

case is not possible either.

• If λ1v1(b1) < µ.

Then at least on a small interval on the right of b1, we have v
′
1 ≤ 0. Thus on this interval

the variational inequality becomes

min
{
− (ru+ λ1b1) v

′
1(u)− µ+ λ1v1(u), v

′
1(u) + 1

}
= 0.

The solution of the first ODE in the system is given by

v̂1(u) :=

(
v1(b1)−

µ

λ1

)(
ru+ λ1b1
rb1 + λ1b1

)λ1
r

+
µ

λ1
.

First, we consider the case r ≤ λ1. In that case the above function is concave for u > b1,

its derivative decreases to −∞ and is therefore always negative. We will also verify next

that we have

v′1(b1) ≥ −1. (A.1)

27



This implies that the solution v1 is equal to v̂1 until its derivative reaches the value −1 at

some uniquely defined point γ1. Thus, we have a solution on the interval [b1, γ1]. In that

case we know that δ = 0 for u < γ1. In order to obtain the value of δ when u = γ1, we

return to the bank’s utility dynamics given by (3.7)

du0t = (ru
0
t − δt + λ1(h

1
t + (1− θt)h

2
t )dt, for t < τ1.

Since h1 = b1, h2 = u− b1 and θ = 1, we obtain

du0t = (ru
0
t − δt + λ1b1)dt, for t < τ1.

Hence, if u00 < γ1 then δ = 0 and thus the utility of the bank keeps on increasing until the

default occurs or until the time t∗ for which u0t∗ = γ1. Then, δt should be chosen so that

u0t stays constant after that time t
∗, that is to say

δt = 1t=t∗(rγ1 + λ1b1).

Indeed, if δt∗ < rγ1+λ1b1 then u0 keeps on increasing after t∗ and therefore δt is equal to 0

except at t∗, and thus the utility of the bank given by (3.1) is 0, which contradicts the fact

that it should stay above b1. We obtain similarly a contradiction when δt∗ > rγ1 + λ1b1.

Now we want to calculate v1(b1). First, in this case u00 = b1, and we therefore have after

some calculations

t∗ =
1

r
ln

(
rγ1 + λ1b1
rb1 + λ1b1

)
,

and thus by definition

v1(b1) =
µ

λ1
− (rγ1 + λ1b1)E

P
[
1t∗<τ1(τ

1 − t∗)
]

=
µ− (rγ1 + λ1b1)e

−λ1t∗

λ1

=
µ

λ1
−

rγ1 + λ1b1
λ1

(
rb1 + λ1b1
rγ1 + λ1b1

)λ1
r

.

Now recall that we have to verify that (A.1) holds. With the above value of v1(b1), we

obtain

v′1(b1) = −

(
rb1 + λ1b1
rγ1 + λ1b1

)λ1
r
−1

≥ −1.

Hence, it remains to verify that we indeed have that u00 calculated with (3.1) is equal to b1.
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We have

u00 = (rγ1 + λ1b1)E
P

[
1t∗<τ1

∫ τ

t∗
e−rsds

]

=
rγ1 + λ1b1

r
E
P

[
1t∗<τ1

(
e−rt

∗

− e−rτ
1
)]

=
rγ1 + λ1b1
r + λ1

e−(λ1+r)t
∗

= b1

(
rb1 + λ1b1
rγ1 + λ1b1

)λ1
r

.

Thus, u00 = b1 if and only if we actually have γ1 = b1, which means that v1 should be linear

above b1
v1(u) = v1(b1)− u+ b1, u ≥ b1.

We now need to verify that

− (ru+ λ1b1) v
′
1(u)− µ+ λ1v1(u) ≥ 0, u ≥ b1.

We have

− (ru+ λ1b1) v
′
1(u)− µ+ λ1v1(u) = r(u− b1) ≥ 0,

which shows that we indeed have found a solution of the variational inequality when r ≤ λ1.

Now, if r > λ1, the function v̂1 becomes convex and thus its derivative increases. Therefore,

if v̂′1(b
+
1 ) > −1, then δ is always equal to 0 and arguing as above this case is not possible.

Hence v̂′1(b
+
1 ) = −1, and we end up with the same solution as in the case r ≤ λ1.

Finally, we compute that

v′1(b
−
1 )− v1(b

+
1 ) =

µ− b1(r + λ1)

λ1b1
+ 1 =

µ− rb1
λ1b1

≥
µ+B

1 + ε
> 0,

by Assumption 2.2, we have µ− rb1 ≥
µ+B
1+ε > 0, which implies that v1 is concave.

�

Proof. [Proof of Proposition 3.2(i)] We will show the result by induction.

• Initialization with j = 2

The solution of the ODE (3.21) for j = 2 and a given fixed value of γ ≥ b2 can be easily

calculated and is given by

ṽ2(u, γ) := (ru+ λ2b2)
λ2
r

∫ γ

u

2µ+ λ2v1(x− b2)

(rx+ λ2b2)
λ2
r
+1

dx

+

(
v1(γ − b2) +

2µ− (rγ + λ2b2)

λ2

)(
ru+ λ2b2
rγ + λ2b2

)λ2
r

, b2 < u ≤ γ,
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and ṽ2(u, γ) = γ − u+ v2(γ) for u > γ.

Now since we have shown that v1 is everywhere twice differentiable except at b1, we have

for every γ �= b1 + b2 and every b2 < u ≤ γ

∂ṽ2
∂γ
(u, γ) =

(
v′1(γ − b2) + 1−

r

λ2

)

(
ru+ λ2b2
rγ + λ2b2

)λ2
r

1u≤γ + 1u>γ


 .

Thus, the above expression always has the sign of v′1(γ − b2) + 1−
r
λ2
, that is to say that

it is positive for γ < b1 + b2 and negative for γ > b1 + b2. Hence, we clearly have for all

b2 < u

sup
γ≥b2

ṽ2(u, γ) = ṽ2(u, b1 + b2),

which means that the maximal solution of (3.21) for j = 2 corresponds to the choice

γ2 = b1 + b2, which also happens to correspond to the unique solution of

r

λ2
− 1 ∈ ∂v1(γ2 − b1).

Then, after some calculations, we obtain that for all b2 < u < b1 + b2

v′′2(u) = −

(
λ2 − r + λ2

v1
b1

)
(ru+ λ2b2)

λ2
r
−1

(r(b1 + b2) + λ2b2)
λ2
r

≤ 0,

because of (3.22).

Hence, since v2, is linear on [b1 + b2,+∞) and is differentiable at b1 + b2, it is concave on

(b2,+∞). Now if we consider the linear extrapolation of v2 over [0, b1] by (3.20), we just

need to verify that the left-derivative of v2 at b2 is less than its right-derivative to obtain

the concavity of v2 over [0,+∞]. Taking the limit for u ↓ b2 in the equation (3.21), we

obtain

v′2(b
+
2 ) =

λ2v2 − 2µ

b2(r + λ2)
.

This implies that

v′2(b
−
2 )− v′2(b

+
2 ) =

2µ

b2λ2
+ v′2(b

+
2 )

r

λ2
≥

µǫ

B
−

r

λ2
.

Now recall Assumption 2.2, which implies that

r

λj
<

r

αj
≤

µǫ−B

B

ǫ

1 + ǫ
<

µǫ

B

for any j so that v′2(b
−
2 )− v′2(b

+
2 ) ≥ 0.

• Heredity : j ≥ 3
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Let us now suppose that the maximal solution of (3.21) vj−1 has been constructed for some

j ≥ 3, that it is globally concave on [0,+∞), everywhere differentiable except at bj−1,

everywhere twice differentiable except at bj−1 and bj−1 + bj−2, and that the corresponding

γj−1 ≥ bj−1+bj−2. Let us now construct the maximal solution corresponding to j. Exactly

as in the case j = 2, the solution of the ODE (3.21) and a given fixed value of γ ≥ bj can

be easily calculated and is given by

ṽj(u, γ) :=(ru+ λjbj)
λj

r

∫ γ

u

jµ+ λjvj−1(x− bj)

(rx+ λjbj)
λj

r
+1

dx

+

(
vj−1(γ − bj) +

jµ− (rγ + λjbj)

λj

)(
ru+ λjbj
rγ + λjbj

)λj

r

, bj < u ≤ γ,

and ṽj(u, γ) = γ − u+ vj(γ) for u > γ.

Note also that from (3.21) it is clear that vj is differentiable everywhere except at bj , and

twice differentiable everywhere except at bj and bj + bj−1.

Now since we assumed that vj−1 is everywhere differentiable except at bj−1, we have for

every γ �= bj−1 + bj and every bj < u ≤ γ

∂ṽj
∂γ
(u, γ) =

(
v′j−1(γ − bj) + 1−

r

λj

)

(
ru+ λjbj
rγ + λjbj

)λj

r

1u≤γ + 1u>γ


 .

Thus, since vj−1 is concave and its derivative non-increasing, we can conclude as in the case

j = 2 that the maximal solution is uniquely determined by the choice γj which corresponds

to the solution of
r

λj
− 1 ∈ ∂vj−1(γj − bj).

More precisely, using (3.22), we have only two cases. Either,

v′j−1(b
+
j−1) ≤

r

λj
− 1 ≤

vj−1
bj−1

,

and γj = bj−1 + bj, or
r

λj
− 1 < v′j−1(b

+
j−1),

and bj−1 + bj < γj ≤ γj−1 + bj .

Let us now study the concavity. We can differentiate twice the equation (3.21) on (bj, bj +

bj−1) since vj−1(u − bj) is linear and thus twice differentiable on this open interval. We

then obtain easily

v′′j (u) = v′′j ((bj + bj−1)
−)

(
ru+ λjbj

r(bj + bj−1) + λjbj

)λj
r
−2

, bj < u < bj + bj−1. (A.2)
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There are then two cases. If γj = bj + bj−1, differentiating once (3.21) and then taking the

limit u ↑ bj + bj−1, we get

(r(bj + bj−1) + λjbj)v
′′
j ((bj + bj−1)

−) = λj

(
r

λj
− 1−

vj−1
bj−1

)
≤ 0.

Since v′′j (u) = 0 for u > bj + bj1 , we have proved the concavity on (bj ,+∞).

Now if γj > bj+bj−1, differentiating once (3.21) and taking limits on both sides of bj+bj−1,

we obtain

v′′j ((bj + bj−1)
+)− v′′j ((bj + bj−1)

−) =
λj

r(bj + bj−1) + λjbj

(
vj−1
bj−1

− v′j−1(b
+
j−1)

)
, (A.3)

where the right-hand side is positive by the concavity of vj−1.

Next, we differentiate twice (3.21) on (bj + bj−1, γj]. We obtain easily

v′′j (u) = λj(ru+ λjbj)
λj

r
−2

∫ γj

u

v′′j−1(x− bj)

(ru+ λjbj)
λj

r
−1

dx. (A.4)

Note that we should normally distinguish between the cases bj + bj−1 + bj−2 ≤ γj or not,

since vj−1 is not twice differentiable at bj−1+bj−2. However, since we know that vj is twice

differentiable at bj + bj−1 + bj−2, this actually does not change the result. Since vj−1 is

concave, (A.4) implies that vj is concave on (bj + bj−1,+∞). Then with (A.3) we obtain

that the left second derivative of vj at bj + bj−1 is negative, which, thanks to (A.2) shows

finally the concavity on (bj,+∞).

Finally, it remains to show that v′j(b
+
j ) ≤

vj
bj
. We take the limit for u ↓ bj in the equation

(3.21), we obtain

v′j(b
+
j ) =

λjvj − jµ

bj(r + λj)
.

Since v′j ≥ −1, this implies that

v′j(b
−
j )− v′j(b

+
j ) =

jµ

bjλj
+ v′j(b

+
j )

r

λj
≥

µǫ

B
−

r

λj
,

which has already been shown to be positive under Assumption 2.2. Hence vj is concave

on [0,+∞). �

Proof. [Proof of Proposition 3.2(ii)] First of all, by the properties of the function ψ1
recalled in Remark 3.3, it is clear that we can always find a λj such that (3.25) is satisfied.

Then, if for a fixed j ≥ 2 we have v′j−1(b
+
j−1) ≤ 0, by differentiating (3.21), we immediately

have for u > bj and u �= bj + bj−1

λj
(
v′j(u)− v′j−1(u− bj)

)
= (ru+ λjbj)v

′′
j (u) + rv′j(u). (A.5)
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Since we have proved in (i) that the vj are concave, it is clear that if v
′
j−1(b

+
j−1) ≤ 0, the

right-hand side above is negative. Then by left and right continuity of v′j−1 at bj−1, the

result extends to u = bj+bj−1. Hence the desired property (3.26). In particular, this proves

the result for j = 2 since v′1(b
+
1 ) = −1.

Note also that the property (3.26) clearly holds for vj when u > γj . Indeed, we have

v′j = −1

and we know that the derivative of vj−1 is always greater than −1.

Let us now show the rest of the result by induction. Since (3.26) is true for j = 2, let us

fix a j ≥ 3 and assume that

v′j−1(u)− v′j−2(u− bj−1) ≤ 0, u > bj−1. (A.6)

Now if v′j−1(b
+
j−1) ≤ 0, we already know that the property 3.26 is true for vj, so we will

assume that v′j−1(b
+
j−1) > 0. Moreover, by our remark above, we know that (3.26) holds

true for vj when u > γj . Let us then first prove that (3.26) for vj when u > bj + bj−1. If

γj = bj + bj−1, there is nothing to do. Otherwise, we have using successively (A.5) and

(A.4)

λj
(
v′j(u)− v′j−1(u− bj)

)
= (ru+ λjbj)v

′′
j (u) + rv′j(u)

= (ru+ λjbj)
λj

r
−1

∫ γj

u

λjv
′′
j−1(x− bj)

(rx+ λjbj)
λj

r
−1

dx+ rv′j(u). (A.7)

Now if we differentiate (3.21) and solve the corresponding ODE for v′j, we obtain

v′j(u) = (ru+ λjbj)
λj
r
−1

∫ γj

u

λjv
′
j−1(x− bj)

(rx+ λjbj)
λj

r

dv −

(
ru+ λjbj
rγj + λjbj

)λj
r
−1

. (A.8)

Using (A.8) in (A.7), we obtain for u > bj + bj−1

λj
(
v′j(u)− v′j−1(u− bj)

)

= λj(ru+ λjbj)
λj

r
−1

∫ γj

u

(rx+ λjbj)v′′j−1(x− bj) + rv′j−1(x− bj)

(rx+ λjbj)
λj

r

dv

− r

(
ru+ λjbj
rγj + λjbj

)λj

r
−1

. (A.9)
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Then we have for all x ≥ u > bj + bj−1 and x �= bj + bj−1 + bj−2

(rx+ λjbj)v
′′
j−1(x− bj) + rv′j−1(x− bj) = (r(x− bj) + λj−1bj−1)v

′′
j−1(x− bj)

+ (λjbj − λj−1bj−1 + rbj) v
′′
j−1(x− bj)

+ rv′j−1(x− bj)

= λj−1
(
v′j−1(x− bj)− v′j−2(x− bj − bj−1)

)

+ (λjbj − λj−1bj−1 + rbj) v
′′
j−1(x− bj)

≤ (λjbj − λj−1bj−1 + rbj) v
′′
j−1(x− bj),

where we used the induction hypothesis (A.6) in the last inequality.

Since vj−1 is concave, the sign of the right-hand side above is given by the sign of

λjbj − λj−1bj−1 + rbj =
JB

ε
−
(J − 1)B

ε
+ rbj =

B

ε
+ rbj ≥ 0.

Reporting this in (A.9) implies

v′j(u)− v′j−1(u− bj) ≤ 0, u > bj + bj−1.

It remains to prove (3.26) when bj < u < bj + bj−1. In that case, (3.26) can be written

v′j(u)−
vj−1
bj−1

≤ 0, bj < u < bj + bj−1,

which is equivalent by concavity of vj to

v′j(b
+
j )−

vj−1
bj−1

≤ 0.
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Now using (A.8), we also have

v′j(b
+
j ) = (ru+ λjbj)

λj
r
−1

∫ bj+bj−1

bj

λj
vj−1
bj−1

(rx+ λjbj)
λj

r

dv

+ v′j−1(bj + bj−1)

(
ru+ λjbj

r(bj + bj−1) + λjbj

)λj

r
−1

=
vj−1
bj−1

λj
λj − r


1−

(
rbj + λjbj

r(bj + bj−1) + λjbj

)λj

r
−1



+ v′j−1(bj + bj−1)

(
ru+ λjbj

r(bj + bj−1) + λjbj

)λj

r
−1

≤
vj−1
bj−1

λj
λj − r


1−

(
rbj + λjbj

r(bj + bj−1) + λjbj

)λj
r
−1



+ v′j−1(b
+
j−1)

(
ru+ λjbj

r(bj + bj−1) + λjbj

)λj
r
−1

= φ bj−1
bj

(
r

λj

)
vj−1
bj−1




φ bj−1
bj

(
r
λj

)
− 1

φ bj−1
bj

(
r
λj

)
(x− 1)

+
v′j−1(b

+
j−1)

vj−1
bj−1


 ,

which implies

v′j(b
+
j )−

vj−1
bj−1

≤ φ bj−1
bj

(
r

λj

)
vj−1
bj−1


v′j−1(b

+
j−1)

vj−1
bj−1

− ψ bj−1
bj

(
r

λj

)
 .

By Assumption 2.3, we know that bj ≥ bj−1, hence with (3.25) and what we recalled earlier

about the functions ψβ in Remark 3.3, we have

vj−1
bj−1

≤ ψ

(
r

λj

)
≤ ψ bj−1

bj

(
r

λj

)
,

which implies the desired property and ends finally the proof.
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