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Expositions bilatérales et risque systémique de solvabilité

Résumé : En utilisant une structure des états financiers des banques qui
tient compte de leurs expositions bilatérales en termes d’actions et de prêts,
on développe un modèle structurel de faillite. Ce modèle permet de dis-
tinguer les facteurs exogènes et endogènes dont dépend la faillite. On prouve
l’existence et l’unicité de l’équilibre de liquidation, on étudie les conséquences
des chocs exogènes sur le système bancaire, et on mesure le phénomène de
contagion. On illustre l’usage de cette approche en l’appliquant au système
bancaire français.

Mots-clés : Contagion, Risque Systémique, Solvabilité, Compensation, Équilibre
de Liquidation, Impulsion-Réponse, Modèle de la Valeur-de-la-Firme.

Code JEL : G21, G28, G18, G33

Bilateral Exposures and Systemic Solvency Risk

Abstract: By introducing a structure of the balance sheets of the banks,
which takes into account their bilateral exposures in terms of stocks or lend-
ings, we get a structural model for default analysis. This model allows dis-
tinguishing the exogenous and endogenous default dependence. We prove
the existence and uniqueness of the liquidation equilibrium, we study the
consequences of exogenous shocks on the banking system and we measure
contagion phenomena. This approach is illustrated by an application to the
French banking system.

Keywords: Contagion, Systemic Risk, Solvency, Clearing, Liquidation Equi-
librium, Impulse Response, Value-of-the Firm Model.

JEL Classification: G21, G28, G18, G33
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1 Introduction

Following the crisis, the measurement of risk of financial institutions has be-
come a critical question. How far will the value of a particular bank fall after
an exogenous shock? How large would a shock on asset values have to be
in order for a particular bank to go bankrupt ? Consider a set of financial
institutions. If these institutions are not linked, then measuring the exposure
to a change in the prices of several assets would be straightforward, given
information on the institution’s balance sheet only. For instance, if a bank
owns 100 millions in a specific corporate stock and if the market price of this
stock drops by 2%, then the bank’s assets drops from 100 to 98 millions.
The problem, as revealed emphatically in the financial crisis, is that financial
institutions are linked : each bank has ownership of a set of exogenous assets
and as well as shares of other banks equity and loans. Therefore, measuring
the risk of a financial institution needs to take into account the interconnec-
tions between banks’ balance sheets, i.e. to find a consistent set of balance
sheet values prior to the shock, and a consistent set of values afterwards.
A main deficiency of the regulations and practices before the recent financial
crisis is the stand-alone computation of risk measures, i.e. the evaluation of
risk made independently for the different financial institutions, followed by
a crude aggregation to deduce the magnitude of the global risk. This prac-
tice concerns the assets themselves : for instance, the ratings of sovereign
bonds (resp. credits) are determined separately for the different countries
(resp. borrowers), and are not really informative on the risk of a portfolio
of such bonds (resp. credits). Loosely speaking a portfolio of AAA bonds
might be as risky as a portfolio of AA bonds, if the AAA bonds are positively
dependent. Similarly, the required capitals in Basel 2 were computed bank
by bank, without taking into account the dependence between the risks of
these institutions. Even if this practice is not the cause of the financial cri-
sis, it participated in its development. Since they were jointly exposed to an
exogenous adverse shock, the banks had to increase their required capital si-
multaneously, and, thus, they had an important demand for cash, or riskfree
asset. As a consequence of this need for liquidity, they tried to sell quickly
the stocks they possessed, which implied in two days a significant drop in
market stock prices.

The post-crisis regulation (Basel 3, Financial Stability Board) highlights
the importance of risk dependences and consider financial institutions (banks
and insurance companies) as parts of a system. They focus on the risk of the
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system (systemic risk) and the role of each institution in this systemic risk.

For a given system, like the set of European banks, say, there exist two
reasons for a joint increase of risks for a large number of institutions, that
are common exogenous adverse shocks and contagion.
i) First, there can exist shocks on a factor exogenous to the system. For
instance, the increase of a prime rate will have an effect on the monthly
payment for adjustable rate mortgages, will imply default clustering for in-
dividual mortgages and will diminish the results of all institutions having an
important quantity of such mortgages, or associated mortgage backed secu-
rities, in their balance sheets. The default on a sovereign bond is another
example of an exogenous shock with joint effects on the risk of the institu-
tions.
ii) Contagion phenomena may arise in a second step and can amplify sig-
nificantly the effect of exogenous shocks. They are due to the connection
between the institutions through the structure of their balance sheets. For
instance, a bank failure will have an impact on the institutions holding loans,
bonds, stocks of this bank. In extreme cases, this may imply the failure of
other institutions and so on. These contagion phenomena and chains of fail-
ures (the so-called domino effect of solvency) can result from an exogenous
shock specific to an institution, such as a management error or a fraud, not
necessarily from a shock on a common risk factor.

There exist two streams of literature on risk dependences, depending on
the kind of available data.

i) Some analyses are based on the values of the institutions. These values
can be deduced from their balance sheets, possibly disaggregated by class
of assets, or from their capitalizations if they are quoted on a stock market.
However, these balance sheets give no information on the existing contagion
channels. This explains why it is difficult with such reduced form approaches
to disentangle the exogenous and contagion effects. Systemic risk measures
such as the CoVaR [Adrian, Brunnermeier (2008)], the Marginal Expected
Shortfall (MES) [Acharya et alii (2010), Brownlees, Engle (2011), Acharya,
Engle, Richardson (2012)], the Euler allocations [see Gourieroux, Monfort
(2011) for a detailed discussion], are examples of reduced form measures un-
able to identify the two components of risk dependences.
As usual there exist two solutions to an identification problem. First, we
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can constrain the model by introducing identification restrictions. This ap-
proach is followed in a static framework by Rosch, Winterfeld (2008), who
set ex-ante to 20 % the number of contaminating firms. Another identifi-
cation method is used in a dynamic framework by Gagliardini, Gourieroux
(2012), Darolles, Gagliardini, Gourieroux (2012). Intuitively, simultaneity
effects can be disentangled from lagged exogenous factor effects, interpreted
as contagion. However, such identification restrictions are always rather ad
hoc.

ii) An alternative approach is based on more informative data sets. In
our framework, we need balance sheets disaggregated by class of assets and
counterparties, not by class of assets only. Equivalently, we need the expo-
sures of each bank for each class of asset and each counterparty. This type of
data might become available soon due to the reporting by banks and insur-
ance companies required by the new regulations on financial stability. They
were not available in the past, except for specific segments of bank inter-
lending, corresponding to some payment systems. For instance Humphrey
(1986) uses data from the Clearinghouse Interbank Payments System and
Furfine (2003) from Fedwire, the Federal Reserve’s large value transfer sys-
tem [see also McAndrews, Wasilyev (1995), Angelini, Maresca, Russo (1996),
Elsinger, Lehar, Summer (2004), (2006)]. Other papers try to construct the
missing data by using the knowledge on marginal exposures and by looking
for the least favorable bilateral exposures [see e.g. Maurer, Sheldon (1998),
Upper, Worms (2004), Upper (2011), Moussa (2011)]. This methodology is
largely used in the central banks [see e.g. Wells (2004), Degryse, Nguyen
(2007), Mistrulli (2007), Toivanen (2009)]. However, this methodology is
based on a rather ad-hoc statistical criterion, called information criterion4,
to reconstruct the missing exposures, and thus is without any financial or

4The usual method is the so-called ”entropy minimization method”. The underlying
principle is that each institution seeks for diversifying its interbank interconnections.
Consider n banks whose total interbank assets and total interbank liabilities, respectively
denoted ai and li, for i = 1, ..., n, are known. The issue is to estimate the bilateral
exposures xi,j , i = 1, ..., n, j = 1, ..., n, considering that

∑
j xi,j = ai and

∑
i xi,j = lj .

Moreover, a usual assumption is to set xi,i = 0 for i = 1, ..., n. In practice, this assumption
is required to avoid that using the ”entropy minimization method” leads to almost only
self-exposures [see Upper (2011)].
Technically, let us denote X̃ the vector of size n2− n containing the off-diagonal elements
of the bilateral exposure matrix to be estimated, Z the vector of size n2 − n containing
the off-diagonal elements of matrix (ailj)i,j=1,...,n, A a 2n × (n2 − n) matrix such that
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risk interpretation.

The aim of our paper is to provide a complete theoretical analysis which
distinguishes different types of contagion channels. We extend the seminal
paper by Eisenberg, Noe (2001) [see also Demange (2011)] to channels in-
volving stocks and lendings, instead of lendings only. Moreover, we allow for
stakeholders, i.e. shareholders and debtholders, outside the system.
In Section 2, we describe the system and the balance sheets of the institu-
tions when all institutions are alive. The interconnections between them can
be summarized by matrices of exposures through stocks or lendings. Thus
the framework requires that the counterparties of any financial assets were
identified. Note that, for a large set of assets during the financial crisis, such
as credit derivatives, it was often impossible to know who the counterpar-
ties were. The regular collection of this information is a main innovation
of the new European regulation. Examples of exposure matrices are given
for the French banking sector. In Section 3, we study the consequences on
the system of an exogenous shock. This shock may imply defaults of some
institutions and changes in the balance sheets of the surviving ones. We
prove the existence and uniqueness of the equilibrium after the shock. We
discuss how the equilibrium depends on the magnitude of the shock. In par-
ticular, we construct impulse response functions and we consider the case of
stochastic shocks. In Section 4, we provide a methodology to disentangle the
direct and contagion systemic effects on the liquidation equilibrium. Section
5 concludes. The proofs are gathered in Appendices.

2 Balance sheet and exposure

2.1 System and systemic risk

Before discussing systemic risk and its exogenous or contagion components,
it is necessary to precisely define the system. The perimeter of the system

[AX̃]i = 1i∈[1,n]
∑

j xi,j + 1i∈[n+1,2n]

∑
j xj,i. The minimization of entropy is

minx̃1,...,x̃n2−n

∑n2−n
k=1 x̃kln( x̃k

z̃k
)

s.t. X̃ ≥ 0

s.t. AX̃ = [a′, l′]′
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has to specify :

• the type of institutions : banks/insurance-companies/hedge funds...

• the activity zone : France/Europe/World.

• the type of balance sheet, including or not the off, the intraday pay-
ments and settlements...

• the numeraire : Dollar/Euro...

• the assets which are the possible channels for contagion : loans/stocks/
derivatives...

• the existing regulation : definition and management of failure, bankruptcy,
unsolvency...

It is also necessary to say what are the changes of a given system considered
as risky. It is possible to consider the structure of the system, for instance the
number of institutions (possibly weighted by their values), then to analyze
the (weighted) number of failures following a shock, and among these failures
the part due to the initial shock and the part due to contagion.

However, in some situations, a defaulted bank can be merged with a safer
one. This will modify the structure of this system, but not necessarily with
a significant impact on the account of the system, obtained by consolidating
the balance sheets of all institutions. Thus, it is necessary to choose between
a global (consolidated) analysis of the system and an analysis of its structure.

2.2 Balance sheet

We consider below a simplified description of the balance sheet of the insti-
tutions i = 1, . . . , n in the system, and assume that the possible interconnec-
tions appear either through stocks, or debts5. The structure of the balance
sheet of institution i is given in Table 1.

Yi denotes the value of institution i, Li the total value of its debt6. This
debt value is equal to the nominal (contractual) value L∗i , if the institution is

5We do not distinguish in the paper : bonds, loans and lendings. Thus we assume a
uniform debt structure.

6Different terminologies are used in the literature , such as :

• for institution i : node...
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Asset Liability

πi,1Y1 Li
...

πi,nYn
γi,1L1

...
γi,nLn
Axi

Ai Li

Table 1: Balance Sheet of Bank i

alive, but can be strictly smaller if there is default. The debt includes the is-
sued bonds as well as the deposits, the interlending and the over-the-counter
loans. For expository purpose, we assume that the debt is homogeneous,
that is, we do not distinguish the seniority levels7, the maturities and the
different degrees of liquidity of the debt. In particular, we focus on solvency
constraints, not on liquidity constraints, contrary to a large part of the theo-
retical literature. Institution i holds a proportion πi,j of the total number of
shares of institution j, and a given proportion γi,j of its total debt8. Thus,
we assume a proportional sharing among counterparties of the debt of in-
stitution j in case of default. Axi gathers the asset components, which are
outside the system, i.e. that correspond to sovereign, corporates, households,
or even banks ( which do not belong to this system). In general

∑
i γi,j is

much smaller than 1, since a significant part of the debt is hold by outsiders,
such as depositors.

At this stage we do not explain how the asset and liability components
are balanced. Indeed, the values of Y and L depend on the situations of the

• for value of the firm Yi : equity capital, equity, net equity...

• for debt Li : liability, debt obligation...

• for external asset Axi : net worth, operating cash-flow...

7See Gouriéroux, Héam, Monfort (2012) for an extension to multiple seniority levels.
8These assets may be hold or correspond to an uncovered operation.
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banks, that is, if they are in default, or alive.

When all institutions of the system are alive, the balance sheets are char-
acterized by :

i) The exogenous asset values : Ax = (Ax1, . . . , Axn)′;

ii) The nominal values of the debt : L∗ = (L∗1, . . . , L
∗
n)′;

iii) The interconnections induced by stocks and debts, that are, the (n, n)
exposure matrices Π = (πi,j) and Γ = (γi,j), respectively.

In this situation, we get the standard accounting relationships:

Li = L∗i ,

Yi = Ai − Li, i = 1, . . . , n,

=
n∑
j=1

(πi,jYj) +
n∑
j=1

(γi,jL
∗
j)− L∗i + Axi.

(2.1)

They provide the values of the firms when all institutions are alive :

Y = (Id− Π)−1[(Γ− Id)L∗ + Ax], (2.2)

whenever Id− Π is invertible (see Lemma A.1 in Appendix 2).

2.3 Exposure matrices

The banks and insurance companies regularly report detailed balance sheets
intended to give shareholders, investors and Supervisory Authorities infor-
mation on their activities. The information on the structure of the balance
sheets can be obtained by an appropriate treatment of the Financial Report
database established by the European Banking Authority. An example of
templates is provided in Appendix 1. The banks (and insurance companies)
have to report their connections when the amount is larger than 300 MEuros,
or 10% if its total equity.
The public financial statements on balance sheets allow us to reallocate as-
sets and liabilities by categories and counterparties. We can estimate for

8



every quarter t since December 2007, the matrices of exposures Πt, Γt, as
well as the vector of contractual debts L∗t and the vector of exogenous asset
components Axt.

i) The exposure matrices depend on the selected perimeter. We provide
in Table 2, the exposure matrices at date 12/31/2010. They concern a sys-
tem of five large French banks. We have kept large firms in terms of total
assets to get exposure matrices of reasonable dimension. In fact, the num-
ber of financial institutions can reach several hundreds of firms. There are
about 1000 banking institutions, reduced to about 200 consolidated groups
for France. However, the first dozen consolidated groups represent about
95% of the total asset value. The selected financial institutions include two
banks quoted on the stock markets and two mutual saving banks. The fifth
is mixed : it is originally a mutual saving bank with several regional mutual
saving funds, but this bank has developed a publicly traded subsidiary. This
subsidiary represents approximately 60% of the banking group. These banks
are denoted A, B, C, D and E for confidentiality restrictions.
Let us first describe the exposure matrix for stocks Π. For pure mutual sav-
ing banks, the absence of stocks9 implies zero columns. Only a part of the
mixed bank is quoted so that the corresponding column is much lower than
the two columns for quoted banks. The diagonal reports the part of the total
equity of a group hold by itself.
The exposure matrix for loans Γ has non zero coefficients out of the diagonal:
every bank is lending and borrowing from every other bank. This corresponds
to a complete structure in Allen, Gale (2001) terminology. Since we consider
consolidated groups, there is no self-lending and the diagonal elements of Γ
are equal to zero.

These exposure matrices can vary significantly over time. This arises for
instance after the supporting plans from governments and after new Basel 3
regulations introduced to reduce systemic risk and potential risk contagion.

ii) The knowledge of the exogenous asset components and their joint dy-
namics is also important, since it may be used to define the static/dynamic,
deterministic/stochastic shocks of interest. We provide in Figures 1-2 the

9Rigourously, the two mutual saving banks have a quoted subsidiary. But since they
are very small, we neglected them. Moreover, it might happen that one bank holds shares
of a mutual saving banks. But this type of link is very uncommon.
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Π (%) Bank A Bank B Bank C Bank D Bank E
Bank A 0.00 0.00 0.23 0.23 0.14
Bank B 0.00 0.00 0.68 0.69 0.41
Bank C 0.00 0.00 0.39 0.71 0.42
Bank D 0.00 0.00 0.34 1.65 0.21
Bank E 0.00 0.00 0.30 0.31 0.30

Γ (%) Bank A Bank B Bank C Bank D Bank E
Bank A 0.00 0.43 0.41 0.35 0.38
Bank B 0.90 0.00 1.22 1.04 1.14
Bank C 2.32 3.27 0.00 2.66 2.93
Bank D 0.45 0.63 0.61 0.00 0.57
Bank E 0.40 0.57 0.54 0.46 0.00

Table 2: Exposure Matrices for the Banking Sector (at 12/31/2010)
[source: public financial statements]

evolutions of these exogenous components for one of the mutual saving bank
and one of the commercial bank. The frequency is quarterly.
Two pricing methods coexist in the balance sheet reports, that are the
marked-to-market approach mainly for trading activities and the contrac-
tual values for credit activities. A given asset has to remain evaluated using
the same method during its holding time, but many exceptions exist [see e.g.
WSJ (2011)]. These pricing methods differ from the liquidation values which
are implicit in Merton’s model. For expository purpose, the consequences of
these different valorizations are not considered here.

The exogenous assets fall into four main categories. The trading category
gathers all elements that are marked-to-market or corresponding to short
term perspectives. The second category corresponds to the retail activity ;
it mainly consists in mortgages. Corporate loans form a third category. The
last one, sovereign, includes the assets whose counterparty is part of the
public sector (governments, states, local,...).
We observe that the selected mutual saving bank and commercial bank have
a different structure of activity portfolios. The mutual saving bank splits
its assets similarly between retail and corporate activities. The commercial
bank seems to favor trading activities over other activities.
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Despite the differences in term of structure, a similar trend and cycle drive
the evolution of the structure of balance sheets. We observe that the decrease
of the part of asset dedicated to trading activity varies across banks.

Figure 1: Exogenous Asset Components for a mutual saving bank
[source: public financial statements]

Figure 2: Exogenous Asset Components for a commercial bank [source: pub-
lic financial statements]
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3 Consequences of an exogenous shock

3.1 The liquidation equilibrium

Let us now consider an exogenous shock changing the initial exogenous asset
value Ax0 into Ax. This shock implies a change of the value of the firms and
maybe the default of some institutions, which are no longer able to cover
their nominal debt and will have zero value.

The values of the firms and the values of their debts after this shock are
solutions of the system :

Yi = (Ai − Li)+,
, i = 1, . . . , n,

Li = min(Ai, L
∗
i ).

(3.1)

The first equation takes into account the possibility of default (when Ai <
Li) and the limited liability of shareholders [see Merton (1974)]. The second
equation shows the seniority of debtholders with respect to shareholders.
This implies an endogenous recovery rate equal to Ai/L

∗
i in case of default10.

It is easily seen that system (3.1) reduces to the standard Merton model
for a system with a single firm and no self-holding of stocks, or bonds (see
Appendix 7 for the analysis of equilibrium in the standard Merton’s model).

System (3.1) can be written explicitly as :

Yi =

[
n∑
j=1

(πijYj) +
n∑
j=1

(γi,jLj) + Axi − Li

]+

, i = 1, . . . , n,

Li = min

[
n∑
j=1

(πi,jYj) +
n∑
j=1

(γi,jLj) + Axi, L
∗
i

]
.

(3.2)

10A part of the literature assumes a constant exogenous recovery rate [see e.g. Furfine
(2003), Upper, Worms (2004)], possibly set to zero [Cont et alii. (2010)]. In such a
case, the piecewise affine mapping defining the equilibrium is no longer continuous and
the existence and uniqueness of equilibrium is no longer ensured [Gouriéroux, Laffont,
Monfort (1980)]. However, this assumption does not correspond to reality. For instance,
the estimation of the recovery rates by Moody’s are based on the value of the zero-coupon
bonds of the firm one month after failure. Indeed, the bond market for a defaulted firm is
still open and often shows a nonzero price of these bonds.
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We get a 2n-dimensional piecewise linear system, which can be solved to
find a consistent set of values Y = (Y1, . . . , Yn)′, L = (L1, . . . , Ln)′. As a
by-product, the resolution of the system provides the institutions, which are
in default : {Yi = 0, Li < L∗i }, the set of institutions, which are still alive
{Yi > 0, Li = L∗i }, and the values of each asset business line of the alive
institutions. In some particular cases, it has been proved that the consistent
set of values Y , L can be interpreted as equilibrium values in an appropriate
liquidation process managed by a centralized liquidator [see e.g. Demange
(2011)]. This justifies the terminology liquidation equilibrium values used
later on in the text.

The following Proposition is derived in Appendix 2 :

Proposition 1 : If πi,j ≥ 0, γi,j ≥ 0,∀i, j,
n∑
i=1

πi,j < 1,∀j,
n∑
i=1

γi,j < 1,∀j,

the liquidation equilibrium Y, L exists and is unique for any choices of non-
negative11 Axi, L

∗
i , i = 1, ..., n.

This equilibrium concerns the values of the institutions Y and the val-
ues of the debt L, and depends on the financial system S = {Π,Γ, L∗, Ax}.
Equivalently, if the numbers of shares are given and if there is a unique ma-
turity of the debt, this is an equilibrium in the prices of stocks and digital
credit default swap (CDS) written on the n institutions.
The result in Proposition 1 can be compared with the literature analyzing
the existence and uniqueness of clearing repayment vector in the interlend-
ing market [see Eisenberg, Noe (2001), Demange (2011)]. In our notations,

11As noted in Demange (2011), there can exist situations with negative exogenous net
worth Axi. In this case, the second equation in system (3.2) has to be written with an
additional zero threshold as [see Elsinger et alii. (2006)]:

Li = max
(

min

 n∑
j=1

(πi,jYj) +

n∑
j=1

(γi,jLj) +Axi, L
∗
i

 , 0),

and the regimes of default can now distinguish whether the recovery rate is equal to zero.
However, this case arises if some debtors, such as depositors, are served before the banks
in the system in case of default. This is an example of model with different seniority levels
[see Gouriéroux, Héam, Monfort (2012)].
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these papers assume no contagion by means of stocks, i.e. Π = 0, and an
exposure matrix Γ with all columns summing up to 1. This explains why
their proofs of existence and uniqueness rely on the interpretation in terms of
graph structure of stochastic matrices. Proposition 1 completes their analy-
sis in two respects : by introducing interconnection by means of stocks and
by considering creditors outside the system. The proof is based on a neces-
sary and sufficient condition for the invertibility of a piecewise linear function.

Let us illustrate the liquidation equilibrium as a function of the exogenous
asset components for a system of two banks. For expository purpose, it is
more appropriate to write the liquidation equilibrium conditions in terms
of variables Y and ∆L = L∗ − L. Let us also denote ∆Ax = Ax − Ax∗,
where Ax∗ = (Id − Γ)L∗. We get four possible regimes with the following
liquidation equilibrium values :

Regime 1 : No default. We get : Y = (Id− Π)−1∆Ax,∆L = 0,

and this regime occurs iff :

∆Ax ∈ (Id− Π)(IR+)2 ≡ C1.

Regime 2 : Joint default. We get : Y = 0,∆L = (Γ− Id)−1∆Ax,

and this regime occurs iff :

∆Ax ∈ (Γ− Id)[0;L∗1]× [0;L∗2] ≡ C2.

Regime 3 : Default of bank 1 only. We get : Y1 = 0,∆L2 = 0, and

(
∆L1

Y2

)
=

 γ1,1 − 1 −π1,2

γ2,1 1− π2,2

−1

∆Ax.

The regime occurs if :

∆Ax ∈

 γ1,1 − 1 −π1,2

γ2,1 1− π2,2

 [0;L∗1]× IR+ ≡ C3.

Regime 4 : Default of bank 2 only. We get : ∆L1 = 0, Y2 = 0, and
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(
Y1

∆L2

)
=

 1− π1,1 γ1,2

−π2,1 γ2,2 − 1

−1

∆Ax.

The regime occurs iff :

∆Ax ∈

 1− π1,1 γ1,2

−π2,1 γ2,2 − 1

 IR+ × [0;L∗2] ≡ C4.

The sets Cj, j = 1, . . . , 4, are truncated positive cones. They are generated
by the following pairs of vectors : C1 is generated by (u1, u2), C4 is generated
by (u4, u1), C2 is generated by (u3, u4), C3 is generated by (u2, u3), where :

u1 =

(
1− π1,1

−π2,1

)
, u2 =

(
−π1,2

1− π2,2

)
, u3 =

(
γ1,1 − 1
γ2,1

)
, u4 =

(
γ1,2

γ2,2 − 1

)
.

(3.3)
The conditions in Proposition 1 ensure that these truncated cones do not

overlap. The regimes are represented in Figure 3.

There is no default for both banks, if the exogenous asset components
Ax1 and Ax2 are sufficiently large. We observe that there exists thresholds

Ax1 = Ax∗1 +
1− π1,1

π2,1

Ax∗2, Ax2 = Ax∗2 +
1− π2,2

π1,2

Ax∗1,

such that if Axi > Axi, institution i will not default whatever the exogenous
asset component of the other institution.

The proof of the existence and uniqueness in the case of two banks is easy
to understand. Indeed, there exists a unique equilibrium if the cones defining
the regimes in Figure 3 do not overlap. Since the sign of det(u, v), where u,v
are vectors of IR2, gives the direction of rotation from u to v, the condition
is simply that the four determinants : det(u1, u2), det(u2, u3), det(u3, u4) and
det(u4, u1) have the same sign. It is easily checked that all these determinants
are strictly positive under the assumption on the exposure matrices given in
Proposition 1.

The conditions on exposure matrices given in Proposition 1 are sufficient
for the existence and uniqueness of the liquidation equilibrium. When they
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joint default

default of
bank 1 only

default of
bank 2 only

no default

Figure 3: The Regimes of Default

are not satisfied, we do not have necessarily a unique liquidation equilibrium.
For instance, we have a multiplicity of liquidation equilibria in Regime 1

if Π has a unitary eigenvalue, in particular if
n∑
i=1

πi,j = 1, j = 1, ..., n,

since (Id − Π) is not invertible. This is easily understood : if
n∑
i=1

πi,j =

1, j = 1, ..., n, the stock cross-holdings are so large, that we have in fact
a unique group. The multiplicity of liquidation equilibria reveals that the
consolidation step has not been well done12.

3.2 Impulse Response Analysis and Stochastic Shock

i) Comparative statics
We can now discuss how the equilibrium responds to shocks on the exogenous
asset components. We have the following monotonicity property :

12The counterexamples provided in Eisenberg, Noe (2001), Appendix 2, and Demange
(2011), p11, are of the same type.
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Proposition 2 : If πi,j ≥ 0, γi,j ≥ 0, ∀i, j,
n∑
i=1

πi,j < 1, ∀j,
n∑
i=1

γi,j < 1, ∀j,

the equilibrium values Yi, Li, i = 1, ..., n are nondecreasing functions of the
asset components Axj, j = 1, ..., n, for any given nominal debt and exposure
matrices.

Proof : See the appendix on line.

This result was expected. An increase of the exogenous component de-
creases the default occurrence, increases the value of the firm, and also the
recovery rate of any defaulting firm. It has been shown in Eisenberg, Noe
(2001), that the debt level L is a componentwise concave function of Ax,
when Π = 0 and

∑
j γi,j = 1, ∀i. This result is no longer valid when there is

a feedback effect by means of stock cross-holdings.

ii) Impulse response analysis
Let us now consider an initial exogenous asset component Ax0, a (multidi-
mensional) direction of shocks β = (β1, ..., βn)′ and the new exogenous asset
components defined by :

Ax(δ) = Ax0 + δβ, (3.4)

where δ, δ > 0, is the magnitude of the deterministic shock. The impulse
response13 explains how the equilibrium values Y and L depend on δ, for
given β and initial conditions.
As usual in the current regulation, the effects of the shocks are analyzed
with crystallized, i.e. fixed, bilateral exposure matrices. From an economic
point of view, this might be interpreted as the effect of an immediate not
anticipated shock. From a practical point of view, it is difficult for the
regulator to make reasonable assumptions about the reaction of the financial
institutions to the different types of shocks, or to get reliable information on
the future strategies of the institutions under stress. In a strand of literature,
banks’ reactions are stylized in a mechanical reaction in order to stabilized
a target ratio [see e.g. Greenwood, Landier, Thesmar (2012), Cifuentes,
Ferrucci, Shin (2005)]. However,these reactions are partly taken into account

13An impulse response describes the reaction of a system to a function of time, or some
other independent variable. The latter interpretation is used in our static framework.
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Figure 4: Directions of the Shocks

if these exercises are performed on a regular basis, monthly or quarterly, with
updated bilateral exposure matrices14.
A simple case is that of uniformly adverse shocks, when all components of the
direction of the shocks are nonpositive : βi ≤ 0, ∀i. Indeed, by Proposition
2, we can apply the monotonicity property, and deduce a minimal value of
δ : δ∗1, say, for which we observe the first default, then a minimal value, δ∗2,
say, for which we observe the first two defaults, and so on. By studying the
thresholds of magnitude δ of the shock that trigger default, we build the
inverse impulse response. Central bankers call this approach ”reverse stress
test” [see e.g. BIS (2009), or FSA (2009)]. This is illustrated in Figure 4 for
a system of two banks.

The initial situation corresponds to a banking system in a joint no default
regime. A direction of shock β = (β1, β2)′, with β1 ≤ 0, β2 ≤ 0 defines a half-

14The histories of bilateral exposure matrices may be used to introduce a dynamic
definition of shocks and to understand how the financial institutions adjust their strategies.
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line with negative slope. This line can cross between 0 and 2 other regimes.
For instance the directions β1 and β2 displayed on Figure 4 cross two other
regimes, whereas direction β3 crosses only one.

Figure 5 reports the impulse response functions with a direction β2 for
different characteristics of the equilibrium, that are the values of the exoge-
nous asset components, the default indicators, the values of the firms and
the values of the debts. The magnitude δ of the shock is on the x-axis. We
set :

Π =

(
0.05 0.37
0.46 0.07

)
; Γ =

(
0.07 0.13
0.15 0.00

)
; Ax0 =

(
2.9
2.2

)
; L∗ =

(
2.5
2

)

β2 =

(
−0.003
−0.005

)
The effects of the shocks on the external asset component are reported on
the North-West panel. As the values of external asset decrease both for
bank 1 and bank 2, the values of the banks plotted on South-West panel
decrease and stop at 0, triggering first the default of bank 2, then the default
of bank 1. When in default, the value of the bank remains constant equal
to zero, but the value of its debt, that is the recovery rate, starts decreasing
(South-East panel). The status of a bank (North-East panel) is 0, when it
is alive and 1, otherwise : bank 1 defaults first at δ∗1 ≈ 125, then bank 2
defaults at δ∗2 ≈ 250.We also observe the convexity of the value of the bank
and the concavity of the value of its debt corresponding to the call and put
interpretations, respectively (see Appendix 4, d).
Some components of Ax may become negative when δ is too large. For this
reason, we increase δ up to the first zero component of Ax.

iii) Stochastic shock
We can also consider a stochastic new situation Ax, and the associated
stochastic shock Ax − Ax0. This situation is characterized by the multi-
variate distribution of the vector of exogenous asset components. Then we
can deduce explicitly the distribution of the equilibrium values Y and L.
More precisely, let us introduce the regime indicator : z = (z1, ..., zn), where
zi = 1, if bank i defaults, zi = 0 otherwise. It is shown in Appendix 2 that
regime z occurs iff :

∆Ax = Ax− Ax∗ ∈ C(z),
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Figure 5: Impulse Response Functions
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where Ax∗ = (Id− Γ)L∗, C(z) is a truncated cone, function of Π, Γ and L∗,
defined in Appendix 2. Therefore the probability to be in regime z is :

P(regime z) = P[Ax− Ax∗ ∈ C(z)].

Then it is easy to derive the conditional distribution of (Y, L)′ = X, say,
given the regime. Indeed, in regime z, we have :

Yi = 0, if zi = 1, Li = L∗i , if zi = 0.

Let us denote by Xz the n-dimensional vector obtained by stacking the value
of Yi for the banks such that zi = 0, and the value of Li, for the banks
such that zi = 1. It is proved in Appendix 2, that Xz is an invertible linear
function of ∆Ax in regime z :

Xz = Bz∆Ax,

where Bz is a matrix function of Π and Γ, whose expression is given in
Appendix 2. Therefore, in regime z, the vector Xz has a n-dimensional
distribution with density :

h(xz) =
1

det(Bz)
f(B−1

z xz),

where f denotes the density of ∆Ax.
To summarize, the joint distribution of (Y, L) is a mixture of 2n-dimensional
distributions, which are continuous for n coordinates and discrete for the
other ones.
We get a complicated uncertainty, which is well illustrated by considering for
instance the probability of default (PD) of a given bank. The probability of
default of bank 1, say, is given by :

PD1 = P(z1 = 1)

=
∑
z/z1=1

P(regime z)

= P(regime (1, 0, ..., 0)) +
∑
i 6=1

P(regime z1 = 1, zi = 1, zj = 0, j 6= 1, i)

+
∑

i,j/i6=j 6=1

P(regime z1 = 1, zi = 1, zj = 1, zk = 0, k 6= 1, i, j)

+...
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Thus the standard PD can be decomposed to highlight the number of banks,
which are in default jointly with bank 1 :

PD1 = PD1(1) + PD1(2) + ...+ PD1(n), say. (3.5)

Similarly, we may compute the probability of a joint default of two banks
PD1,2, say, if these banks are 1 and 2, and decompose it according to the
total number of defaults in the system. Such a decomposition may be used
to complete the standard analysis of default correlation.

4 Contagion measure

4.1 The standard analysis in a linear framework

Let us consider linear system (2.1), which can be rewritten :

Y = ΠY + (Γ− Id)L∗ + Ax0, say, (4.1)

and let us introduce a deterministic shock on the exogenous asset component :

Ax = Ax0 + δβ, (4.2)

where β denotes the direction of the shock and δ its magnitude. The effect
on the equilibrium values of the firms is :

∆Y = δ(Id− Π)−1β. (4.3)

This shock is linear in δ and involves both a direct effect of the shock
and a contagion effect. To disentangle these two components, we usually
introduce a recursive version of model (4.1) :

Yk = ΠYk−1 + (Γ− Id)L∗ + Ax0, (4.4)

leading to the equilibrium solution (4.1), when k tends to infinity, assuming
that matrix Π has eigenvalues with modulus strictly smaller than one. Then
we compute the short term effect of the shock, equal to δβ, and decompose
the total effect as :
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∆Y = δ(Id− Π)−1β = δβ︸︷︷︸ + δ(
∞∑
j=1

Πj)β︸ ︷︷ ︸ .
direct effect contagion
of the exogenous effect
shock

(4.5)

In this linear framework, the direct and contagion effects are both linear
in the direction β of the shock and its magnitude δ. In particular, they can
easily be deduced from the shocks specific to each institution, since :
β = β1(1, 0, . . . , 0)′ + β2(0, 1, 0, . . . , 0)′ + . . .+ βn(0, 0, . . . , 0, 1)′.
Moreover, the two components in (4.5) can be obtained directly without
specifying an underlying recursive process. Indeed, the direct effect is simply
obtained by setting Π = 0 in formula (4.1), that is by canceling the contagion
channel in terms of stocks. Note that the direct effect is independent of Γ
and therefore can be also computed under Π = Γ = 0.

4.2 How to disentangle exogenous and contagion ef-
fects ?

Let us consider an initial financial system with exogenous asset components
Ax0, in which all institutions are alive. As noted earlier, the equilibrium
values are :

Y 0 = (Id− Π)−1
[
(Γ− Id)L∗ + Ax0

]
. (4.6)

The equilibrium values with contagion, when Ax = Ax0 +δβ ≥ 0, are the so-
lutions of system (3.2). They will be denoted by : Y (S0; δ, β) and L(S0; δ, β),
where S0 = {Π,Γ, L∗, Ax0} characterizes the financial system.
It is easy to suppress the contagion channel in our framework, that is to get
Π = Γ = 0. Indeed, let us assume that, in the initial financial system S0,
the institutions cash their stocks and bonds of the other institutions15. The
balance sheet becomes :

15Implicitly we assume liquid markets for stocks and bonds. This assumption is consis-
tent with the conditions of

∑
j πi,j < 1 and

∑
j γi,j < 1, which means that a part of stocks

and bonds issued by institutions are hold by external agents (households, corporates...).
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Asset Liability

Ãx0
i Li

where Ãx0
i = ΠiY

0 + ΓiL
∗ + Ax0

i = Y 0
i + L∗i . We have eliminated the

contagions by setting Π = 0 and Γ = 0, while keeping the same value of the
firm. Let us now apply the exogenous shock to this new financial system

S̃0 = {0, 0, L∗, Ãx0}. We get another equilibrium Y (S̃0; δ, β) and L(S̃0; δ, β),
such that:

• institution i is alive if and only if : Y 0
i + δβi > 0,

• Ỹi = (Y 0
i + δβi)

+,

• L̃i = min(Ãx0
i + δβi ;L∗i ).

By comparing the two liquidation equilibria associated with S0 and S̃0, re-
spectively, we get the effect of contagion. This approach can be applied to
different aggregate measures of the final state of the system such as :

i) The number of non-defaulted banks :

N0 =
n∑
i=1

1lYi>0 =
n∑
i=1

1lLi−L∗
i =0, (4.7)

where 1lA denotes the indicator function of A.

ii) The total value of the banks :

Ȳ =
n∑
i=1

Yi =
n∑
i=1

Yi1lYi>0, (4.8)

which is a criterion appropriate for shareholders.

iii) The total value of the debt :

L̄ =
n∑
i=1

Li =
n∑
i=1

L∗i 1lYi>0 +
n∑
i=1

Li1lLi<L∗
i
, (4.9)

which is a criterion appropriate for bondholders
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All these scalar measures of the global state of the banking system are non-
decreasing functions of Yi, Li, i = 1, . . . , n, and, therefore, also nondecreasing
functions of the exogenous asset components Axi, by the monotonicity prop-
erty established in Section 3.2. If we consider for instance the number of non-

defaulted banks, we compute N0(S0; δ, β), N0(S̃0; δ, β), which are decreasing
functions of δ (if βi < 0, ∀i), and decompose the total effect N0(S0; δ, β) into

the direct effect N0(S̃0; δ, β) and the contagion effect equal to the difference

N0(S0; δ, β)−N0(S̃0; δ, β). The (absolute and per-cent) contagion effects de-
pend on the initial configuration S0, but also on the direction and magnitude
of the shock. This dependence is rather complex, and, as already noted, the
contagion effect is not a linear function of β. Therefore, we cannot deduce
the effect of a global shock from the effects of the specific shocks. Because
of this dependence of the shock, we have to avoid relying only on:

• the ranking of Systematically Important Financial Institutions (the so-
called SIFI’s in the terminology of the Financial Stability Board),

• the distinction between ”shock transmitters” and ”shock absorbers”
[Nier et alii (2007)],

• a definition of contagion measure based on a unique type of shock, such
as the so-called market shock [Cont, Moussa, Santos (2010)].

The previous approach can also be applied by partly canceling contagion
channels. For instance, we can set to zero, i.e. cash, all cross-holdings be-
tween the bank and insurance sectors to evaluate the effect of bancassurance
business model on systemic risk. With respect to perimeter, we may also
assess the effect of contagion through mutualization features or hedge fund
industry. We may also cancel all links which do not involve a given institu-
tion i to focus on the contagion channel passing by this institution.

Let us illustrate the contagion effect in the case of two banks with nominal
debts L∗ = (2, 3)′ and values Y 0 = (1, 1)′, in all experiments below. We
consider the following set of exposure matrices :

• Set 1 : Π =

(
0 30%
0 0

)
, Γ =

(
0 0
0 0

)
,

• Set 2 : Π =

(
0 0

30% 0

)
, Γ =

(
0 0
0 0

)
,
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• Set 3 : Π =

(
0 30%

30% 0

)
, Γ =

(
0 0
0 0

)
,

• Set 4 : Π =

(
0 0
0 0

)
, Γ =

(
0 30%
0 0

)
,

• Set 5 : Π =

(
0 0
0 0

)
, Γ =

(
0 0

30% 0

)
,

• Set 6 : Π =

(
0 0
0 0

)
, Γ =

(
0 30%

30% 0

)
,

For each set, both banks are assumed alive and the exogenous asset compo-
nents are deduced by the formula : Ax0 = (Id − Π)Y 0 + (Id − Γ)L∗. We
consider a shock specific to bank 1, that is : β = (−1, 0)′. We report in
Figures 6 and 7, the impulse response functions for the total debt, with their
decompositions into direct and contagion effects.

The contagion effect depends on the system which is considered. It is
always more pronounced on the total value of the debt. However, the effect
of contagion is far to be clear in a general framework. It depends on the
form of the exposure matrices, but also on the type of exogenous shock,
deterministic or stochastic, of its direction and magnitude [see e.g. Dubecq,
Gouriéroux (2012)]. As an illustration, let us consider a small stochastic
shock such that δ = 1 and β is such that the system stays in the no joint
default regime. We know that there is no effect of debt exposure and that the
decomposition of the effect of the shock on the value of the firm corresponds
to equation (4.5). The per-cent contagion effect on the expected total value
of the firm is:

1− 1′E(β)

1′(Id− Π)−1E(β)
,

where E(β) denotes the expected multivariate shock and 1 = (1, . . . , 1)′. In
fact, the terminology per-cent contagion effect is misleading. Indeed, if this
quantity is between 0 and 1 when the expected shocks are uniformly adverse
E[βi] ≤ 0, i = 1, ..., n, this is no longer the case in general. The contagion
effect on the total value of the firm is more difficult to discuss for stochastic
shock due to the dependence between direct and contagion effects [see also
Darolles, Gagliardini, Gourieroux (2012)]. Indeed, we get from equation
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Figure 6: Decomposition of the Impulse Response Functions for Sets 1, 2
and 3

(4.5) :

V(1′∆Y ) = V(1′β)︸ ︷︷ ︸
Direct effect

+V
(
1′(

∞∑
j=1

Πj)β
)

︸ ︷︷ ︸
Contagion effect

+ 2× Cov
(
1′β;1′(

∞∑
j=1

Πj)β
)

︸ ︷︷ ︸
Cross direct-contagion effect

= 1′V(β)1+ 1′(
∞∑
j=1

Πj)V(β)(
∞∑
j=1

Πj)′1+ 2× 1′V(β)(
∞∑
j=1

Πj)′1.
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Figure 7: Decomposition of the Impulse Response Functions for Sets 4, 5
and 6

4.3 The effect of contagion on reverse stress-test

For a given bank, bank 1, say, and a shock specific to the exogenous asset
component of this bank :

Ax = Ax0 − δ(Ax1, 0, ..., 0)′, (4.10)
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with δ ∈ (0, 1), there is a minimal value of δ, which implies the first failure
of a bank in the system. We might expect that this bank will be bank 1,
but this is not always the case because of the stock interconnections. For
instance, in a system of two banks with balance sheets such as :

• Bank 1 : π1,1 = π1,2 = γ1,1 = γ1,2 = 0, L∗1 = 100 and Ax1 = 200,

• Bank 2 : π2,1 = 50%, π2,2 = γ2,1 = γ2,2 = 0, L∗2 = 100 and Ax2 = 55,

bank 2 will first fail for a decrease of 5% of Ax1.

To illustrate the effect of contagion, we consider the French banking sys-
tem as described above. For each bank i, we consider: i) the reverse stress-
test of the initial system for a specific shock, ii) the reverse stress-test when
the contagion effects are canceled, iii) the quantity 1 − L∗i /Ax0

i . The levels
of exogenous asset components and nominal debts at 12/31/2010 (in trillions
of Euros) are :

Ax0 = (0.58; 1.08; 1.59; 1.10; 1.98)′, L∗ = (0.56; 1.09; 1.67; 1.08; 1.91)′.

The results of the reverse stress-tests are given in Table 3.

Specific shock on Bank A Bank B Bank C Bank D Bank E
First bank to fail Bank A Bank B Bank C Bank D Bank E

δ (with contagion, %) 5.810 4.544 3.073 4.559 4.340
δ (without contagion, %) 5.810 4.544 3.085 4.635 4.353

1− L∗i /Ax0
i (%) 1.77 -0.98 -5.36 1.76 3.19

Table 3: Reverse Stress-Tests for the Banking Sector (at 12/31/2010) ; δ in
percent

Comparing the δ’s with and without contagion, two cases arises. First,
for two banks, there is no significative effect of contagion, since the δ’s are
equal. Second, the effect of contagion increases the δ for three banks. The
difference in δ corresponds up to few hundreds millions of Euros, that is up
to few percent of their prudential capitals.
A positive value in the last row means that the initial exogenous assets are
sufficient to cover any possible loss on the debt and stock holding of the other
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banks, whereas a negative value points out that at least a part of the inter-
bank assets are needed to cover all the debt. Thus the solvency of two banks
seems to be sensitive to the health of the banking sector. This is consistent
with the larger row in the exposure matrices. The small contagion effects
observed above are contingent to the selected system.

The optimal δ values in Table 3 admit explicit forms. Indeed, given the
initial configuration S0 and a direction of shock with nonpositive components,
we have :

δ = max
d

{
there exists i such that[

(Id− Π)−1((Γ− Id)L∗ + Ax0 + dβ)
]
i

= 0,

[
(Id− Π)−1((Γ− Id)L∗ + Ax0 + dβ)

]
j
> 0,∀j 6= i

}
= max

i/[(Id−Π)−1β]
i
>0

{
[(Id− Π)−1((Γ− Id)L∗ + Ax0)]i/[(Id− Π)−1β]i

}
.

4.4 Decomposition of a probability of default

Let us consider the financial system S0 = {Π,Γ, L∗, Ax0} and a stochastic
shock, that is a new exogenous asset component Ax which is stochastic. After
the shock, we get the system : S = {Π,Γ, L∗, Ax}. The equilibrium values
Y (S), L(S) are stochastic [see Section 3.2.iii)]. In particular, we can compute
the probability of default of bank i : PDi.
As noted in Section 4.2, it is possible to cancel the contagion channel by

considering the virtual initial financial system S̃0 = {0, 0, L∗, Ãx0}, with

Ãx0 = ΠY 0 + ΓL∗ + Ax0 = Y 0 + L∗. Then we can apply the same shock

to system S̃0 in order to get a virtual financial system after shock S̃ =

{0, 0, L∗, Ax − Ax0 + Ãx0} = {0, 0, L∗, Ax + ΠY 0 + ΓL∗}, and define the
probability of default without contagion (or direct PD) as : PDd

i .
A measure of the effect of contagion on the probability of default is :

Ki =
PDi

PDd
i

Contagion has an increasing effect (resp. decreasing effect), if Ki > 1 (resp.
Ki < 1).
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As an illustration of the effect of stochastic shocks on the probability of
default, we consider the same initial situation of the French banking system as
in Section 4.3. Then, the stochastic shocks are introduced on the exogenous
asset components as in the standard Vasicek extension of the Value-of-the-
Firm model [Vasicek (1987)]. We assume that :

log(Axi) = log(Ax0
i ) + ui, i = 1, ..., n,

where the stochastic ui’s are Gaussian. We set E(u) = 0, V(u) = σ2Id,
where σ = 0.0141.
The probability of default with and without contagion can be easily derived
by simulation and can be converted into ratings. For instance, for this type
of stochastic shock and without connection, the equivalent ratings vary from
A to AAA [see e.g. Carey (2001), Table 1].
Considering the variation of individual probabilities of default in Table 4, the
effect of interconnection is not uniform across banks. Generally speaking,
being interconnected lowers the probability of default. The interconnections
can be seen as an efficient diversification of risk since the stochastic shocks
ui’s, are independent. The probabilities of joint default are reported Table
5, respectively without and with interconnections. Pairwise defaults appear
slightly more with interconnections than without interconnections. Compar-
ing this result to the general decrease of probability of default is consistent
with previous results in the literature : interconnections can have ambiguous
effects. Indeed, the numerical results relies on the selected shock.

PD (in %) PD (in %)
Without connection With connection ∆PD

bank A 0.001 0.000 -0.001
bank B 0.056 0.025 -0.003
bank C 1.348 1.391 +0.043
bank D 0.052 0.001 -0.041
bank E 0.091 0.002 -0.089

Table 4: Simulated Probabilities of Default for the Banking Sector (at
12/31/2010) ; 100,000 simulations
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Without Bank A Bank B Bank C Bank D Bank E
Bank A 0.001 0. 0. 0. 0.
Bank B 0.055 0.001 0. 0.
Bank C 1.346 0. 0.001
Bank D 0.042 0.
Bank E 0.090

With Bank A Bank B Bank C Bank D Bank E
Bank A 0. 0. 0. 0. 0.
Bank B 0.024 0.001 0. 0.
Bank C 1.388 0.001 0.001
Bank D 0. 0.
Bank E 0.

Table 5: Simulated Probabilities of Joint Default for the Banking Sector (at
12/31/2010) ; 100,000 simulations ;

5 Concluding remarks

Until now very little was known about the actual structure of bilateral ex-
posures in the Finance and Insurance sectors. The new regulations for fi-
nancial stability require a periodic reporting by banks and insurance compa-
nies about their counterparties by class of assets, possibly distinguished by
maturities and seniorities. This information might be used to quantify the
bilateral exposures in terms of stocks, lendings, or derivatives. In our paper,
we considered a simplified framework, which does not distinguish seniorities,
maturities, and more generally liquidity features, and focus on solvency risk.
We also exclude feedback effect through market prices of assets following
banks’ reactions to a shock as modeled in Greenwood, Landier and Thesmar
(2012). This fire-sale phenomena can affect unconnected banks simply by
their common exposure. We saw how such a structural information on the
balance sheet can be used to define the system of banks and its structure
after an exogenous shock, the so-called liquidation equilibrium. We also saw
that this information can be used to decompose the systemic effect of an
exogenous deterministic or stochastic shock into a direct and a contagion ef-
fect, respectively. Such a decomposition is appealing for the interpretation of
stress tests and reserve for systemic risk. It is also appealing in a perspective
of controlling systemic risk. Indeed an alternative to a control of system-
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atic exogenous factors, such as the sovereign Greek debt for instance, is the
control of the exposure matrices. Such a policy was followed by the Federal
Reserve of New York to avoid the forced liquidation of LTCM. In order to
avoid an uncontrolled transmission of losses from LTCM to its counterparties
that could put the financial sector in distress, the FED asked several private
banks to take control of this institution, that is, to change the matrix of
bilateral stock exposures [see Greenspan(1998), McDonough(1998)].
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Appendix 1 Balance Sheet and Large Exposure European

Templates

In order to collect data, the European National Supervisory Au-
thorities could use the templates of the Committee of European Banking
Supervisors (CEBS). These templates are filled by banks and controlled by
National Supervisory Authorities.

Figures A.1.1 and A.1.2 are extracts of the balance sheet. The first one
is the general structure of the asset side with in column : the financial item,
the accounting rules (IFRS for International Financial Reporting Standards
and IAS for International Accounting Standards), the reference to a sub-
table where the amount is decomposed and, in last column, the amount.
Figure A.1.2 is the sub-table for Financial Assets Held for Trading. The
decomposition mixes financial instruments (Equity, Debt...) and nature of
counterparties (Central Bank, General governments...). Besides the general
accounting rules and the total marked-to-market amount, a decomposition
between price and volume is given.

Figure A.1.3 is a table for large exposures report. In this template, the
main counterparties (of the filling bank) are reported in column. The rows
report the name of the counterparty, the total exposed amount, a breakdown
of this amount across financial instruments, provision...
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Figure A.1.1 : Extract from the main template for asset side
[source : CEBS (2009)]

Figure A.1.2 : Extract from an asset side decomposition template
for Financial Assets Held for Trading [source : CEBS (2009)]
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Figure A.1.3 : Extract from the Large Exposure template
[source : CEBS (2009)]
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Appendix 2

Proof of Proposition 1

In the case of n banks, the 2n regimes can be indexed by a sequence
z = (z1, . . . , zn) of 0 and 1, where zi = 1, if bank i defaults, zi = 0, other-
wise. Let us define the matrix Q(z) as follows. The ith column of matrix
Q(z) is the ith column of Γ when zi = 1, of Π when zi = 0.

i) A preliminary lemma :

Lemma A.1 : If πi,j ≥ 0, γi,j ≥ 0, ∀i, j,
n∑
i=1

πi,j < 1,∀j,
n∑
i=1

γi,j < 1,∀j, then

det[Id−Q(z)] > 0,∀z.

Proof :
By the assumptions in Proposition 1, the matrices Q′(z) have nonnegative
coefficients, which sum up to a value strictly smaller than 1 per row. By ap-
plying Perron-Froebenius theorem, we deduce that the eigenvalues of Q′(z),
which are also equal to the eigenvalues ofQ(z) have a modulus strictly smaller
than 1. Therefore the eigenvalues of Id−Q(z) are either complex conjugates,
or real positive, and their product equal to det[Id−Q(z)] is strictly positive.

QED

In particular, the matrices Id− Π and Id− Γ are invertible.

ii) Existence and Uniqueness :

The first equation of system (3.2) can be rewritten as :

Yi =
[ n∑
j=1

πi,jYj −
n∑
j=1

γi,j∆Lj + Axi − Li +
n∑
j=1

γi,jL
∗
j

]+

=
[ n∑
j=1

πi,jYj −
n∑
j=1

γi,j∆Lj + ∆Li + ∆Axi

]+

,
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with ∆Li = L∗i − Li, ∆Axi = Axi − Ax∗i and Ax∗i = L∗i −
n∑
j=1

γi,jL
∗
j . The

second equation of system (3.2) can be rewritten as :

∆Li = −min
[ n∑
j=1

πi,jYj +
n∑
j=1

γi,jLj + Axi − L∗i , 0
]

=
[
−

n∑
j=1

πi,jYj +
n∑
j=1

γi,j∆Lj −∆Axi

]+

.

Therefore in regime z, the equilibrium values are such that :

ziYi + (1− zi)∆Li = 0, i = 1, . . . , n, (a.1) (1− z1)Y1 − z1∆L1
...

(1− zn)Yn − zn∆Ln

 = [Id−Q(z)]−1∆Ax. (a.2)

Equations (a.1) say that Y = 0 for a defaulted bank and ∆L = 0 for a non
defaulted bank. Equations (a.1) and (a.2) provide the equilibrium values
of ∆L for the defaulted banks and the equilibrium values of Y for the non
defaulted banks.

We deduce that regime z occurs iff :

∆Ax ∈ [Id−Q(z)]
n∏
i=1

{
(1− zi)(IR+) + zi[−L∗i , 0]

}
= C(z), say.

The liquidation equilibrium exists for any admissible Ax iff the union of the
truncated cones C(z), z varying, contains the set of admissible values of ∆Ax.
This condition is :⋃

z

C(z) ⊃ −Ax∗ + (IR+)n = −(Id− Γ)L∗ + (IR+)n,

since the exogenous asset components Axi are positive. Note that, since
L∗ ∈ (IR+)n, Ax∗ cannot belong to (IR−)n, because, in this case, L∗ =
(Id− Γ)−1Ax∗ = (Id+ Γ + Γ2 + ...)Ax∗ would belong to (IR−)n.
When it exists the liquidation equilibrium is unique iff the truncated cones
C(z), z varying, do not overlap.
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To analyze the existence and uniqueness of this equilibrium let us consider
the piecewise linear function from IRn to IRn

g(x) =
∑
z

[Id−Q(z)]x1[x∈C∗(z)], (a.3)

where C∗(z) =
n∏
i=1

{
(1− zi)IR+ + ziIR

−
}

denotes the orthants of IRn.

We have :
g(C∗(z)) = C(z), (a.4)

where C(z) is the cone generated by the truncated cones C(z).
The proof of Proposition 1 is based on Theorem 1 in Gourieroux, Laffont,
Monfort (1981), given below in our framework.

Theorem 1 : The following properties are equivalent :

i) Function g is one-to-one from IRn to IRn ;

ii) det[Id−Q(z)], z varying, have the same sign ;

iii)
⋃
z C(z) = IRn ;

iv) the cones C(z), z varying, do not overlap.

i) First note that the truncated cones are non degenerate, i.e. reduced to
{0}, and that they do not overlap iff their extensions C(z) do not overlap.
By Theorem 1, we deduce that a necessary and sufficient condition for the
uniqueness of the liquidation equilibrium is : ”det[Id−Q(z)], z varying, have
the same sign”.

ii) Then, we have to check that the equivalent condition
⋃
z C(z) = IRn

implies the condition for existence :⋃
z

C(z) ⊃ −Ax∗ + (IR+)n,

with Ax∗ = (Id− Γ)L∗. Since
⋃
z C(z) = IRn, the previous condition can be

written : ⋃
z C(z) ⊃

(⋃
z C(z)

)
∩
(
− Ax∗ + (IR+)n

)
⊃
⋃
z

(
C(z) ∩ (− Ax∗ + (IR+)n)

)
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which is equivalent to :

C(z) ⊃ C(z) ∩ (− Ax∗ + (IR+)n), ∀z,

(since C(z) ⊂ C(z) and the C(z) do no overlap). If we denote by M(z) the
point in IRn with ith coordinate 0 if zi = 0 and −L∗i if zi = 1, we get :

C(z) = C(z) ∩
(

[Id−Q(z)][M(z) + (IR+)n]
)
.

Moreover [Id−Q(z)](IR+)n ⊃ (IR+)n since any point y of (IR+)n is the image
by Id−Q(z) of [Id−Q(z)]−1y = y +Q(z)y +Q2(z)y + ... which belongs to
(IR+)n, and we get

C(z) ⊃ C(z) ∩
(

[Id−Q(z)]M(z) + (IR+)n
)
.

We now have to check that C(z) ∩
(

[Id − Q(z)]M(z) + (IR+)n
)
⊃ C(z) ∩

( − Ax∗ + (IR+)n) for any z. For instance, for z = (1, ..., 1)′ = e, we have
[Id−Q(e)]M(e) = −Ax∗ and the result holds.

iii) Finally, from Lemma A.1 above, the determinants of Id−Q(z) have
the same positive sign under the assumptions of Proposition 1 and the results
of this proposition follow.
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Appendix 3

Proof of Proposition 2

The equilibrium values

(
Y
−∆L

)
can be written as :

(
Y
−∆L

)
=

(
Y

L− L∗
)

= Σz{D∗(z)(Ax− Ax∗)1lAx−Ax∗∈Cz}, (a.5)

where D∗(z) is a (2n × n) matrix built as follows : for the first n rows, the
ith row is null if zi = 1, for the last n rows, the ith row is null if zi = 0

and the nonzero rows are exactly the rows of D(z)−1. Since,

(
Y
−∆L

)
is

a continuous piecewise linear function of Ax, we have just to check that the
function is nondecreasing in each regime Cz

After an appropriate permutation of variables, the nonzero block of the
D∗(z) matrix has the form [Id − Q(z)]−1, say, where Q(z) is a matrix with
nonnegative coefficients, which sum to a value strictly smaller than 1 per
column. As an illustration the Q(z) matrices for the case of two banks n = 2
are :

regime of no default : Q(0, 0) = Π,

regime of joint default : Q(1, 1) = Γ,

regime of default of bank 1 : Q(1, 0) =

 γ1,1 π1,2

γ2,1 π2,2

 .

and a similar expression for the regime of default of bank 2:

Q(0, 1) =

 π1,1 γ1,2

π2,1 γ2,2

 . It is easily checked that the eigenvalues of Q(z),

equal to the eigenvalues of Q′(z), have a modulus strictly smaller than one
by Perron-Froebenius theorem (see Lemma A.1 in Appendix 1), and, using
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the expansion :

[Id−Q(z)]−1 =
∞∑
h=0

[Q(z)h],

we deduce that this inverse matrix has nonnegative elements, since the ele-
ments of Q(z)h are nonnegative for any h.
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Appendix 4

Merton’s Model

Merton (1974) presents a stylized approach for evaluating credit risk of a
single firm. Let us summarize and discuss the main features of this paper.

a) Merton’s model
The firm has the following simple balance sheet :

Asset Liability
Ax L∗

Ax includes all the assets of the firm while its nominal debt is L∗. Be-
sides, Merton identifies two types of stakeholders : the shareholders and the
debtors. The shareholders own the value of the firm Y while the debtors
hold its debt L of nominal value L∗.
Based on these elements, Merton derives the pricing of those components
with the respect to the status of the firm : either default, or alive. The
status is triggered by the relative value of asset Ax over nominal debt L∗.
We get : {

Y = (Ax− L∗)+,
L = min(Ax,L∗).

(a.6)

b) Equilibrium conditions and solutions
Let us now consider the system :{

Y = (Ax− L)+

L = min(Ax,L∗)

where Y and L are simultaneously defined. The equilibrium solution of this
new system is exactly the quantity given in (a.8).
Therefore, the standard Merton’s model is a special system with a single
bank and no self-holding of both stocks and lendings.

c) Interpretation in terms of options
A standard interpretation of Merton’s model is to consider that shareholders
buy a call on Ax with strike L∗, whereas debtors sell a portfolio including a
put on Ax with strike L∗ and risk free asset. This interpretation is summa-
rized in the following table :
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Stakeholder
Status Shareholder Debtor
Ax > L∗ Y = Ax− L∗ L = L∗

Ax ≤ L∗ Y = 0 L = Ax
Y = (Ax− L∗)+ L = min(Ax,L∗)

buying a call selling a put

d) Convexity property
L is concave in Ax. Since Y is convex in Ax, −Y is concave in Ax.

e) Impulse response
Consider an initial situation where Ax = Ax0. We plot below the evolutions
of L and Y as Ax decreases through a factor δ down to zero value. They
show the convexity (resp. concavity) property of Y (resp. L) as a function
of δ.

δ

L∗

Ax0

Ax

L∗

L

δ

L

Ax0 − L∗
Y

δ

Y
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