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Abstract

In this study we compare the quality and information content of risk neutral densities
obtained by various methods. We consider a non-structural method based on a mixture of
log-normal densities, the semi-nonparametric ones based on an Hermite approximation of
Abken, Madan, Milne, and Ramamurtie, or based on an Edgeworth expansion of Jarrow and
Rudd. We also consider the structural approaches of Malz respectively Heston who assume
a jump-diffusion or a stochastic volatility model for the underlying process.

We apply those models on FF/DM OTC exchange rate options for various dates ranging
between May 1996 and June 1997 covering the 1997 snap election.

Models differ when important news hit the market (here anticipated elections). The non-
structural model provides a good fit to options prices but is unable to provide as much infor-
mation about market participants expectations than Malz’s jump-diffusion model. Methods
based on polynomial expansions have difficulties to describe the exchange rate data at hand.
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1 Introduction

Much of the literature following the seminal work on option pricing by Black-Scholes (1973)
and Merton (1973) assumed that the asset underlying an option follows a log-normal diffusion
process. Empirical studies of option volatility, such as Rubinstein’s (1994) presidential address,
have shown that exchange rate options out or in the money are associated with a different level
of volatility than at the money options, a feature called the options smile. This finding is in
contradiction with the assumption of a log-normal distribution for the underlying asset and
shows that to correctly price options more general models are required.

Various methods have been suggested to extract out of options’ prices the underlying risk
neutral density (RND). This density is related to market participants’ expectations of the future
price process in a risk neutral environment. As shown by Bahra (1996) and Campa, Chang,
and Reider (1997), once such a density is obtained it is possible to compute moments as well
as confidence intervals. As such, the RND plays an important role as a tool to evaluate the
credibility of the Central Bank. RNDs are also important for an investor, for instance in Risk
Management, who needs to quantify in terms of probability how a market may evolve in the
future. RNDs can also be used to price exotic options.

The contribution of this study is the comparison of the advantages and inconveniences of
various methods which extract risk neutral densities applied to FF'/DM European type exchange
rate options. We were able to obtain a time series of observations of OTC option covering 20
dates ranging between May 1996 and June 1997 covering the 1997 snap election. For each day
we dispose of a set of maturities up to one year. First, we discuss the implementation of the
various methods in a cross sectional framework by focusing on just two dates: May 17th 1996,
a randomly chosen day when the exchange rate markets resulted to be calm, and on April 25th
1997, a few days after the French President Chirac announced dissolution of the parliament
which implied nation-wide elections. ERIC: Please, say more about events occurring in
a time series set-up. Second, we run all methods in a time series context which allows us
to further retain a satisfying model for the exchange rate data at hand. The discussion of the

message contained in a time series of confidence intervals obtained from RNDs illustrates the



usefulness of this type of research.

We first provide a description of a large number of methods which allow construction of
a RND. A first method based on approximating the RND with a mixture of densities, which
could be called non-structural, is advocated by Bahra (1996), Campa, Chang, and Reider (1997).
Melick and Thomas (1997) indicate in addition how to price American options. In a study by
So6derlind and Svensson (1997) it is shown how this mixture of densities method can be applied
to various financial assets asking what can be learnt from the point of view of a policy maker.

We also consider an approach based on the work of Jarrow and Rudd (1982) who developed
a method for option pricing under the assumption that the underlying asset is not log-normally
distributed. They show how the RND can be obtained as an Edgeworth expansion around
a log-normal density. We consider this approach to be of semi-nonparametric nature. Their
approach has been implemented by Corrado and Su (1996) who show that with this method
options can be better priced.

In a similar spirit Madan and Milne (1993) describe the underlying RND with an Hermite
polynomial approximation. Abken, Madan, and Ramamurtie (1996) provide an application and
show how higher moments of the underlying asset are perceived to vary through time.

Bates (1996) or Malz (1996) go one step further and consider a structural model by assuming
that the underlying process follows a jump-diffusion, respectively its Bernoulli version. Thus,
they assume a full specification for the underlying price process. The RND obtained in their
model depends on some parameters which can be estimated from options prices. Such a model
. Their work aims at extracting information concerning market participants expectations out
of options prices.

Further structural models in which the price process of the underlying asset is fully specified
are models of stochastic volatility. Hull and White (1987), Chesney and Scott (1989), Melino
and Turnbull (1990), Ball and Roma (1994), assume that volatility follows a diffusion. To make
their model tractable they have to make simplifying assumptions concerning the correlation
between volatility and the underlying asset’s return. Heston (1993) by assuming a different

process for volatility and by using a different numerical approach provides an almost closed



form solution for option prices for a more general stochastic volatility environment.

The aim of those studies is to provide a pricing tool. Breeden and Litzenberger (1978)
observe that second derivatives of options’ price with respect to the strike price yields the RND.
This observation makes it possible to derive from any option pricing model the underlying
RND. Similar work is by Gesser and Poncet (1997) who exhibit an interesting term structure
of volatility and compare the actual term structure with the ones generated by Hull and White
as well as by Heston. Balou: what exactly do they do

Several other approaches to obtain a RND are possible. Ait-Sahalia and Lo (1995) provide
a non-parametric method based on time series analysis and kernel estimates. Stutzer (1996)
suggests a multistep procedure where the initial step also involves historical prices of the under-
lying asset. Rubinstein (1994) and Jackwerth and Rubinstein (1996) suggest a method based
on binomial trees. We restrict ourselves to models which do not involve trees and where no
history of the underlying asset is required.

Unlike some of the literature which has addressed the question how to price options under
non constant volatility (e.g. Derman and Kani (1994), Dumas, Fleming, and Whaley (1996),
Dupire (1994), Shimko (1993), as well as Stein and Stein (1991)) we address the question what
is the information content in options of various maturities.

In section 2 we review various non-structural, semi-parametric, and structural methods. In
section 3 we introduce the data. Section 4 contains a cross sectional comparison of the methods
with a discussion of the parameters obtained for our structural models and a comparison of
higher moments and confidence intervals. In section 5 we turn to the time series comparison.

Section 6 concludes. Estimation issues are relegated to an appendix.

2 Recovering RNDs

The following section outlines notations and the general paradigm within which we evaluate
RNDs. Several of the methods described below could be adapted to instances were the under-
lying asset is not an exchange rate. Such instances include Black’s (1976) model for options on

futures.



Let Sy be the price at ¢ of a unit of foreign currency in local money.! An European call
option written on S; gives its owner the right to buy the underlying asset for the exercise (also
called strike) price K at the expiration (or maturity) date 7. Since a rational investor will only
exercise his right if he realizes a profit, the payoff for a call is max(S, — K,0).

An European put option written on S; gives his owner the right to sell the underlying asset
for the exercise price K at the expiration date 7. The payoff for a put is max(K — S;,0). For
European options exercise before 7 is not possible.

Under the assumption that the market is arbitrage free, Harrison and Pliska (1981) show
that there exists some probability density for the underlying price process so that the call and
put option price can be written as

+oo
C, = e’TT/S7K(ST—K)a(ST,T;St,tIQ)dST (1)

Sr=K
and P, = eiTT/O (K — S;)a(S:, 7; S, t10)dS, (2)

where 0 is a vector of parameters describing the RND a(-) and where we defined the time to

expiration as T =1 — t.2

2.1 The benchmark case of log-normality: Garman-Kohlhagen
2.1.1 The model

Much of the early research on options has assumed a given price process for S¢. For instance

that S follows a log-normal diffusion such as in
dSt = uStdt + O'Stth (3)

where p, and o represent respectively the instantaneous mean and volatility. W; is a Brownian

motion with respect to some probability measure P.

1For instance for the DM/FF options, S; will represent the number of FF necessary to acquire one unit of
DM.
2 At textbook level this derivation can be found in Duffie (1988) p. 115.



Under such an assumption for the underlying asset, it can be shown that in a risk neutral

world the process 5S¢ can be written as:
dS; = (7‘ — T*)Stdt + aStdI/Vt*, (4)

where W/ is again a Brownian motion with respect to ), an equivalent martingale measure.
r and r* represent the domestic and foreign continuously compounded risk free interest rates.
Under log-normality the RND associated with the future exchange rate can be obtained by the
fact that In(S;) follows a normal with mean In(S;) + (r —r* — 0.5 - 62)T" and variance 027" This

result follows from Ito’s lemma.? Thus, the RND is

o5 J%ULSTGXP{_% (m(ST)—ln(St)U—\/(%_r*_a /2)T> } -

For this situation call and put options can be evaluated as truncated expectations. Garman

and Kohlhagen (1983), following the methodology outlined by Black and Scholes (1973), and

Merton (1973) obtain that

C(Sy, T, K,o,r,7") = e " T8d0(d)) —e "TK®(dy), (6)

P(S;,T,K,o,r,7") = —e " LTS[1 —&(dy)] —e "TK[1 — ®(dy)], (7)
In(S,/K —r* 4+ 1T

4 = n(S¢/K) + (r — 1" + 50%) 7 (8)

ov/T
 In(St/K) +(r—r" — 30T
dy = T . (9)

As a consequence of non-arbitrage, under the risk neutral probability the discounted expectation

of the future price must be equal to the curent price. This translates into the following martingale

*From (4) we obtain dIn(S;) = (r — r* — $0%)dt + 0dW; and hence In(S;) = In(S;) + (r —r* — 26°)T +
o(W} — W{). Since W} — W/ is distributed as a normal random variable with mean 0 and variance T' we can
conclude. We recall that if In(S) ~ A (i, 0?) then the density of S is ¢((In(S) — u)/7)/(cS) and its distribution
function is ®((In(S) — p)/o). In this work ¢ and ® represent always the density and the cumulative density of
the normal distribution.



restriction:
* +Cx>
Sy = e (r=r)T / S,a(S;)dS, (10)
0

2.1.2 The link between deltas and strike prices

OTC options’ quotation is not done in terms of prices for a set of exercise prices but in terms
of volatilities for options of various deltas. Given volatility, the spot exchange rate, the various
interest rates, and time to maturity, there exists as we indicate below, a one to one relation
between deltas and the strike price.

The delta of an option is defined as the derivative of the price with respect to the underlying

value. Hence, for a call, respectively for a put, we have

oC e

8¢ = a—St(St,T7 K,o,r,r*) =¢ " T®(dy)
or R

¥ = (S, T,K,o,r,7*) =¢ " 1®(—d;)
95

where d; is defined in (9). Since 6 is a strictly decreasing function of K, for each & there
corresponds a unique strike price which can be extracted numerically.

Since Furopean calls and puts are related through the put-call parity, if we have the K for
a call then 1 — 6 corresponds to a put with the same volatility and the same K. In other terms,
rather than working with calls and puts we focus only on calls. In practice only in the money
call and put options are quoted. The non-existence of call and put options with a same strike
implies that we cannot back out further information such as an implied spot exchange rate.

Once the strike price K is obtained it is possible to invert the pricing formulas (7) to (9) for

each option and to obtain for each one a price in FF.%

41f prices were quoted in numeraire, then, as the underlying asset changes, it would be necessary to continuously
update the options price. Further, if options were quoted for a given set of exercise prices, as the spot rate moves
it would be necessary to introduce new strike prices.



2.2 A non-structural approach

Focusing on (1), we obtain by applying Leibniz’ rule, as in Breeden and Litzenberger (1976),

that

02C,
OK?

= e "Ta(K,1;S;,t]6). (11)

Thus, a simple computation of second derivatives gives us the actualized RND. This suggests a
first method to extract a RND where the only (yet key) assumption to be made is that there exist
enough strike prices to approximate numerically the density and where we need the assumption
of arbitrage free markets.?

However, numerical derivatives are known to be numerically unstable, and a more fruitful
strategy is to assume that the RND, a(-), takes certain particular expressions. Sherrik, Garcia,
and Tirapattur (1996) assume for a the Burr IIT distribution and Abadir and Rockinger (1997)
fit densities derived from Kummer functions. In this work we do not pursue this road but follow
Bahra (1996), Melick and Thomas (1997), and Soderlind and Svensson (1997) who describe a
as a mixture of log-normal distributions.

Let 1(Sr; ps, 05) (L(Sr; s, 04)) denote the log-normal density (and its associated cdf) with

parameters p; and o; then
M 1o
) = e*TTZaZ-/ (Se = K)I(Sri i, )
i=1 =

will describe the option price as a mixture of M log-normal distributions. The «; are positive and

sum up to 1. This formula can be evaluated easily since the formula for truncated expectations

®Tt should be mentioned that a(-) is the undiscounted RND on which we focus in this study whereas e " Ta(-)
represents an Arrow-Debreu state price. In the literature this state price gets sometimes referred to as the RND.



of log-normals®

/S TS KBSy, 0)dSs — (BIS,|S, > K| — K)Pr[S:|S, > K]

gives us a formula, equivalent, from the point of view numerical complexity, to the Garman-

Kohlhagen formula:

C, = erTiaiexp(/,Li + %O’?T) (ll —® (hl(K)a:jiT_ UfT)] - K [1 ) <m(f)7\/%m>D .

In addition, the martingale constraint can be imposed with

1
—o?T).

M
Sper T = Z a; exp(p; + 271
i1

2.3 A semi-nonparametric approach involving Edgeworth expansions

In the following section we want to outline the method developed by Jarrow and Rudd (1982)
for which a numerical application can be found in Corrado and Su (1996).7 The idea of Jarrow
and Rudd (1982) is to capture deviations from log-normality by an Edgeworth expansion of the
RND a(S-,7; S, t|0) in (11) around the log-normal density.® The obtention of an Edgeworth
expansion is conceptually similar to Taylor expansions but applies to functions. In a conventional
Taylor expansion some function is approximated at a given point by a simpler polynomial. Here,
the RND is approximated by an expansion around a lognormal density. A further difference is
that expansions are usually made to obtain simplifications whereas here the approximation, by
involving parameters which can be varied, allows us to generate more complicated functions.

In the next section we will present an alternative approach given by Madan and Milne (1994).

8Johnson, Kotz, and Balakrishnan (1994), p.241. indicate that if S ~ A (i,0?) then

. 1 5 1-®U—0) _ In(K)—p
E[S|S > K] = exp(p + 50 )71 —5(0) ,where Uy = —

“"Below we adapt their work to the pricing of European foreign exchange options.
8Edgeworth expansions are frequently used in statistical theory to obtain distributions which deviate from the
normal one.



There it is assumed that the RND can be obtained as a multiplicative perturbation of some
given density. This multiplicative error allows for a certain control of higher moments. As
shown further on, both methods can yield numerically similar results but, conceptually, they
are different.

First we will sketch how Edgeworth expansions can be obtained. Let A be the cumulative
distribution function of a random variable X and a its density. Define the characteristic function
of X as &(A,t) = [ €®a(x)dx. If moments of X exist up to order n then there exist cumulants

r;(A) implicitly defined by the expansion
= (it)j n—1
In(§(4,1)) = :f‘éj(A)—j, +o(t" ).
=1 '

If a characteristic function is known, by taking an expansion of its logarithm around ¢ = 0,
it is possible to obtain the cumulants. Between cumulants and moments up to the fourth
order we have r1(A) = B[X], k2(A) = Var[X], r3(4) = E[(X — B[X])3], k4(4) = E[(X —
E[X])*] —3Var|X]. Jarrow and Rudd show that an Edgeworth expansion of the fourth order for
the true probability distribution A around the log-normal distribution L can be written, after

imposing that the first moment of the approximating density and the true probability are equal,

(r1(L) = r1(A)):

ko(A) — ro(L) d?1(s)  (k3(A) — ks(L)) d31(s)

21 ds? 3! ds®
p ) ) ) D )

where [(s) is the log-normal density and e(s) captures terms neglected in the expansion. The
various terms in the expansion correspond to adjustments of the variance, skewness, and kurtosis.
This expression is similar to a Taylor expansion, yet it is not the same since the coefficients of
the terms in d’l/ds’ are parameters and not risen to any power.

Jarrow and Rudd further show that the price of an European call option struck at K can



be written as

—rrk3(A) — ra(L) dUI(K)

—rrt2(A4) — ra(L)

C(A) = C(L) + 51 I(K)—e 3 as-
perr () — D) PN e EE B | )y

Since L stands for the log-normal distribution it follows that C'(L) corresponds to the Garman-
Kohlhagen formula and higher order cumulants can be obtained as functions of elementary

components:

ra(L) = ST k(L) = [k (L)),

k(L) = [m(L)q’ (g +¢%), k(L) = [m1(L)q]*(16¢” +15¢" + 6¢° + ¢°),

where ¢ = (e"QT —1)Y/? and where the first relation follows from risk neutral valuation.
Jarrow and Rudd suggest identification of the second moment by imposing k(L) = ro(A).
This argument is also justified on numerical grounds by Corrado and Su (1996) who notice that
without this condition there will exist a problem of multicolinearity between the second and the
fourth moment. Corrado and Su (1996) rather than estimating the remaining cumulants, (r3(A)
and k4(A)), estimate skewness and kurtosis (written respectively v1(A) and ~2(A4)) through

r3(A)
[r2(A)P/2

r4(A)

71(14) = [%2(14)]2'

Y2(A4) =

Clearly, similar expressions hold of the distribution L. With the assumption concerning equality

of the second cumulants for the approximating and the true distribution it follows that

%3/2

3! dS;
e T (s 4) — (1) 2L U, (13)

Using this expression it is easy to estimate with NLLS the implicit volatility, (02), skewness,

(71(A4)), and kurtosis (v2(A)).

10



The expression of the risk neutral density can be obtained after twice differentiating (13)

with respect to K and then evaluation over S;:

(32 3 12 (S,
a(5:) = 157) ~ on(4) = ()2 T (o) ) DD (1

where the partial derivatives can be computed iteratively using

o <1+ln(ST)—m> 1(S7)
28, o2l Sy
021 In(S;) —m\ 1 8I(S;) 1
= —(2 — — 1(S:),
D82 ( T )ST IS, Sza2< )
2% In(S;) —m\ 1 8%1(S;) 2 9l(S;) 1
— = —(3 — — 1(S:),
283 ( LT )ST S, S202 89S, +S§a3( )
oM <4+ln(ST)—m>i83l(ST) 3 9%(S;) 3 9l(S;) 1 (5.)
a8t o2l S, #S, S22 9S82 T S30% 9S,  Sie?2 T

and where m = In(S;) + (r — r* — 1/202)T. Those computations indicate that the RND in
the Edgeworth case will be a polynomial whose coeflicients directly command the skewness and
kurtosis of the RND. We also notice that the RND involves rather complicated terms involving

derivatives of the log-normal density.

2.4 A semi-parametric approach involving Hermite polynomials

The theoretical foundations of this method are elaborated in Madan and Milne (1994) and
applied in Abken, Madan, and Ramamurtie (1996). Other recent research using Hermite ap-
proximations within an option pricing context is Knight and Satchell (1997).

Their model operates as follows. First, they assume that the underlying asset follows a

lognormal diffusion

dS; = MStdt + 0SedWr, (15)

where W; is a Brownian motion with respect to some abstract reference density ¢(-) assumed

to be Normal with mean zero and variance 1. This implies, when we move to a discretization

11



that
1
Sy = Srexp((p — 502)T +0VT2) (16)

where z ~ N/(0,1).

The key idea of this approach is that the risk neutral density can be obtained through a
multiplicative perturbation, (\), to the normal density so that a(z) = A(z)¢(z). This can be
alternatively viewed as a change in probability. Rather than assuming specific expressions for
A to go from one probability to another as one does under the martingale approach for option
valuation, they assume a parametric structure for A. The main thrust of their work aims at
estimating A\(z).

The key observation of their approach is that the reference measure being a normal one, the
various components involved in the option pricing can be expressed as linear combinations of
Hermite polynomials. Let {hj}7°; be those polynomials. Such polynomials are known to form
an orthogonal basis with respect to the scalar product < f,g >= [ f(2)g(2)é(z)dz.%

Since under the reference measure, ¢(z), the dynamics of the underlying asset are perfectly

defined, Madan and Milne show how it is possible to write any payoff, such as for instance the

payoff of a call option as:

(z—K)t = i aghy(z).

The ay are well defined and their expression depends on u, 0,7, 7.
On the other hand, it is also possible to write A\(z) with respect to the basis as A\(z) =

> 520 bjh;(z). Following (1) and given the orthogonality property of Hermite polynomials, the

k
°The Hermite polynomial of order k is defined by Hy(z) = (—1)* g—z‘gﬁ where ¢ is the mean zero and unit
variance normal density. After standardization of the polynomials H; to unit norm, one obtains that the first

four standardized Hermite polynomials are ho(z) = 1, h1(z) = z, hao(z) = (2 — 1)/\/5, ha(z) = (23 — 3:1:)/\/6_5,
ha(z) = (z* — 622 + 3)/v24.

12



price of a call option can then be written as

00
C = Z AT,
k=0

where the 1, = e "y, are interpreted as the implicit price of polynomial risk h;. Since the
Hermite polynomial of order & will depend on a k-th moment we will also refer to w3 and 74 as
the price of skewness and kurtosis.

For practical purposes the infinite sum can be truncated up to the fourth order. One can
then either estimate mx, k = 1,---,4 or follow Abken, Madan, and Ramamurtie (1996) and

T

impose mg = €™, m = w9 = 0 and estimate p and o. In this case the RND simplifies to

- bs ( s ba a2
a(z) = ¢(2) 1—|—%(2 —3z)+ﬁ( — 62"+ 3)], (17)

where the b; are parameters to be estimated. The parameters b3 and by correspond to the
skewness and kurtosis if z follows a normal distribution. It is important to emphasize that
unlike the Edgeworth case, since a further change of variable from z to S, has to be made, b3
and by will not correspond in general to the skwness and kurtosis of the future exchange rate S..
It is also worth mentioning that the expression given by (17) is sometimes called a Gram-Charlier
expansions which is the basis for other recent research (see Knight and Satchell (1997)).

In the empirical part of this work we will further pin down p by imposing the martingale
restriction (10) and estimate only ¢ and the future value of the third and fourth price of
risk. The actual risk neutral density a(S;) can then be inferred using the change of variable
z = [In(S;) — In(S;) — (r —r* — 02/2)T]/o/T. Careful comparison of this RND with the one
obtained in the previous section shows that, even though both involve a polynomial of the fourth
degree, those polynomials are not equal even though they may yield similar shapes in numerical

applications.

13



2.5 Risk neutral density for a process with jumps

In this section we assume that Sy is a log-normal jump-diffusion hence the sum of a geometric
Brownian motion and a Poisson jump process. Pricing formula for the jump-diffusion can be
found in Cox, Ross (1976), and Bates (1991, 1996a, 1996b). Within this framework Malz (1996)
shows how information can be recovered from options when only very little information is
available.

Under the assumption that the price process is the sum of a geometric Brownian motion

and a jump component we can write that

dSt = uStdt + O'Stth + ]CStdqt

where ¢ is a Poisson counter with average rate of jump occurrence A and jump size k. In a very
general set-up k£ could be assumed to be a random variable.

The price process under the risk neutral probability can be shown to be

dSt = (7“ — 7“* — /\E[]C])Stdt + O'Stth* + ]CStdqt

Ball and Torous (1983,85) and Malz (1997) assume for simplicity that over the horizon of the
option there will be at most one jump of constant size. In this case, referred to as the Bernoulli

version of the jump diffusion, the call and put prices become respectively:

(1 =XD)YC(Se, T, K, o,r, 7" + Xk) + (NT)C(Se(1 4+ k), T, K, 0,1, 1" + \k)

(1 =XDYP(Se, T, K,o,r,7* + A\k) + (NT)P(Se(1 + k), T, K, 0,1, 7" + \E).

In those formulas 1 — AT represents the probability of no jump before maturity. For numerical
purposes, Bates and Malz signal the difficulty to disentangle A and k. For this reason we will
only interpret later on the expected jump size Ak.

We also would like to mention at this stage that we will estimate this structural model for

various dates and maturities. This will yield for each date and maturity a set of estimates.

14



This may appear in contraction with the assumption of constant parameters in the underlying
process, on the other hand this issue is the same as with quoting options in terms of volatilities.
We will follow the literature and interpret the estimates as being those perceived to be valid
at some point of time by market participants till the expiration of the option. It should be
further noticed that the time series of parameters so obtained may correspond to a process of
the underlying asset which has little to do with historically observed processes. One way of
seeing this is to think about an event which has never occurred before.'® Market participants
will have great fears which would translate into a dramatic anticipated price path. Some days
after such an announcement, events may have changed in which case expectations revert. The
eventually observed series of the exchange rate may have little to do with what investors may

have expected at some point. The same caveat also applies to the following structural model.

2.6 Risk neutral density for a model with stochastic volatility

An alternative to assuming jumps is to assume, as in Heston’s (1993) model, that volatility is
stochastic. In the following we recall the formulas for Heston’s model.

The price dynamics is assumed to be given by

dSt = ,uStdt—l—\/U_tStdWLt

dUt = %(0 — Ut)dt + "}/\/U_tdWQ’t

The parameters of Heston’s model represent: 0 the long-run volatility, « the mean-reversion
speed, ~ is the volatility of the volatility diffusion. v, is the instantaneous volatility. A priori
vy is not a parameter to estimate but the realization of a random variable. However, since it is
unobservable, it is fairly natural to estimate it with the true parameters. Lastly, p denotes the

correlation between the two Brownian motions Wy ¢, Wo ;.

10G1ch an example might be Germany announcing suddenly its intention of quitting the EMS.
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Heston shows that the call option price is

C = e"Tsp —e"TKP

po= 1yl /+00Re<exp{—im<K>]fj<x)>dx
™ JOo

1T

where the integrand can be constructed with!!

U = 1/2,u2 = —1/27
a = kKO,
by = k+A=py,
by, = K+
) . 1/2
d; = [(pfywc —b;) — ¥ (2uiz — xQ)}
bj — pyiz +d;
g5 = -
b; — pyix — d;
D — b; — pyviz +d; 1 —exp(d;T)
7 2 1 — gjexp(d,T)
1 — gjexp(d;T
Gy = (r—1")iaT + l(bj — pyiz + d;)T — 21n ( gi exp(d; )ﬂ
v — i

fi = exp(C;j+ Djvy +ixIn(Sy))

where A stands for the price of the volatility risk. The parameters to be estimated are a, by, ba, p, 7, v¢.
Because A is not identifiable we introduce £* = k0/(k+ ) and 0* = k + \. Thus, only 5 param-
eters have to be estimated. Using (11), the RND can be easily inferred. Since the option pricing

formula involves integrals, clearly, the computation of the RND will also involve integrals.

3 The data

The OTC data used was provided by a large French bank. Options are issued on a regular basis

and reach maturity between a few days and one year. Anecdotal evidence suggests that market

14 is the complex number, solution to 12 = —1.
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participants consider this market liquid. We were able to obtain data for 20 irregularly spaced
dates.!? The first one is May 17th 1996 and the last one is June 27th 1997.

As discussed in section 2.1.2 this type of option is quoted in terms of 6. For all dates we have
at least information for options with § taking the values 10, 15, 20, 30, 40, 50 (corresponding to
the at the money option), 60, 70, 80, 85, 90. Between the first date and June 1996 we also have
information for the 5 and 95 delta options. Since options in the extremes were rather illiquid
their quotation was given up at that time. In this study we used data for all possible é.

For all dates we were given bid and ask prices for in the money put and call options. Following
the literature we decided to work with the average between the bid and ask price. Even though
we obtained all results for options with 1, 2, 3, 6, 9, and 12 month to maturity we decided to
report the results for only fewer maturities.®

The interest rates r and r* are the domestic (French) and foreign (German) euro-interest
rates chosen to match the expiration of the options. We transform these rates into their contin-
uously compound equivalents. The spot exchange rate is easily available.

By using a numerical procedure and the methodology outlined in section 2.1.2 we extract
for each option of a given maturity the corresponding strike price. The difference between the

actual data and the delta obtained for the optimal K is in all cases smaller than 0.07% of the

initial delta!

4 Cross sectional comparison

In this section we are going to present and interpret estimation results for two dates only. In
the next section we will compare the methods within a time series context.

To get a feel for the data at hand, we trace the volatility of an option as a function of the
delta and maturity in Figures 1 and 2. If log-normality held then we should observe one straight
line independent of maturity. For a given maturity, the deviation from the straight line is called

the volatility smile. The shift across maturities is the term structure of volatilities. Here options

12Fven strenuous efforts did not allow us to obtain more dates.
13The full set of estimates for the two dates can be found in a working paper version of this study.
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with low & (high strike prices) are highly valued meaning that the market expects an increase

in the exchange rate (a FI' depreciation).

Insert somewhere here Figures 1 and 2

Those smiles confirm that more complicated models than Garman-Kohlhagen should be
considered for the data at hand. For future comparisons we nonetheless estimated this model,
by using the NLLS procedure outlined in the Appendix. This yielded for each data and maturity
a single volatility estimate. Those volatilites are then used to construct a set of benchmark RNDs
which will be presented later on for comparison purposes.

We also estimated the parameters for the other non structural models. For the mixture of
log-normals the values of the parameter estimates have no obvious explanation but they could
be used to infer the various moments of the mixture density. For the Edgeworth expansion
the parameter indicate by construction the volatility, skewness, and kurtosis of the underlying
density. We decided, however, to compare the moments of all models simultaneously at a later
stage. Before discussing moments we wish to present the parameter estimates for the structural

models of Malz and Heston which have an economic meaning.

4.1 Parameter estimates for structural models
4.1.1 The jump-diffusion case

We first turn to the parameter estimates for the jump-diffusion model of Malz presented in Table
1. Turning to the first date we notice that o increases from 0.0172 to 0.0205. This means that
investors expect a greater uncertainty about price movements in the longer run. The probability
that a jump occurs before maturity, (A\7"), varies from 0.0399 to 0.0699 suggesting that for the
calm date investors do not believe in a great likelihood of a jump occurrence. Turning to the
expected jump size, (Ak), we notice that this measure decreases from 0.0104 down to 0.0058.
This means that what is considered to be a jump in the short run becomes normal in the long

run. To sum up, investors expect that a jump will occur with a higher probability in the long
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run but then only large variations will be considered to be jumps.
Insert somewhere here Table 1

Turning to the second date, when the market was more agitated, we notice that ¢ decreases
across maturities. Further, for the one month to maturity, ¢ is higher for the new date than for
the first one (0.0186 against 0.0172). In the long run instead ¢ is smaller for the new date. Those
results imply that there is higher non-directional uncertainty for the short run after Chirac’s
announcement of a snap election: markets were expected by investors to either move up or
down. In the long run, however, since then fundamental uncertainty, given by o, is now smaller
than for the first date, investors appear to anticipate the creation of a single currency area.
Clearly, for a single currency area one expects ¢ to vanish completely.

The jump probability AT" decreases from 0.0717 to 0.0574 showing that investors attach also
a high probability to a depreciation of the Franc in the short run. When turning to the impact of
a jump on prices, given by Ak, we notice its sharp increase relative to the first date and this for
all maturities. The sign which is always positive for this component suggests that if anything,
the FF was expected to depreciate against the mark. To sum up, Chirac’s announcement lead
to important market turbulences. On April 25th 1997 in an environment of agitated foreign
exchange markets investors expected that a jump of rather large magnitude was expected to

occur in the short run.

4.1.2 Stochastic volatility

After estimating this model for each maturity given the great instability of the parameters across
maturities we decided to also report in Table 2, the estimates for the stochastic volatility model

where for a given date we used all maturities simultaneously.
Insert somewhere here Table 2

We first notice for the first date that the long run volatility (v/@*) increases from 0.0264 to

0.0349 whereas for the second date it decreases from 0.0720 to 0.0038. This variable captures a

14%We are grateful here to Allan Malz for helping us getting the interpretations straight.
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similar message than the diffusion volatlity namely that on a normal, calm day there should be
an upward sloping term structure of volatilities, and a decreasing one (or at least a less steep
one) on a day with agitated markets.

The parameter p captures the skewness of the distribution, i.e. the probability of an asym-
metric event. Its impact on the RND has to be read in combination with ~, the volatility of
volatility. We notice for both dates that v decreases whereas p increases with maturities. Those
findings appear similar to the ones holding for Ak of the jump diffusion model, namely that in
the long run, an event in order to be considered a shock (i.e. to be generating skewness through
p) has to be very large. In other words, in the long run most of the events are considered
normal.®

Some of the parameter estimates display rather large variability. For this reason we also
estimate the model with all maturities simultaneously. We first notice that for the first date
the measure of current volatility, /v, (0.0224), is smaller than for the second date, (0.030).
This shows that the joint estimation is able to capture the increased market uncertainty due to
political risk on the second maturity. The parameter p which captures the slope of the smile
has also increased. The parameter Vor corresponds to the long run volatility. This parameter
takes the value 0.0316 for the first date and 0.0283 for the second one. This decrease in value
confirms what we obtained with the jump-diffusion namely that investors are more confident
on the second date that in the long run market volatility will be small because of a possible
unique Furopean currency. The parameter x*, capturing the speed by which volatility is mean-
reverting, decreases from 4.03 down to 3.282.'¢ This means that for the agitated date investors
expect that it will take longer before the market reverts to normal. This observation is further
corroborated by =, the volatility of volatility. This parameter increases slightly from the first to

the second maturity .

5The situation of normality would correspond to a situation with v = 0.
18%We notice here the large difference in the parameter estimates between the model with all maturities combined
and the others. This illustrates our difficulties to pin down the mean-reversion parameter.
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4.2 Moments for the various models

To further compare the different models we check the statistical properties of the various RNDs
displayed in Table 3. First, we will verify that the first moment of the RNDs is equal to the
forward rate. Second, we check how the constraints imposed by log-normality on the third and
fourth moments can bias the variance estimates. Last, it is tempting to compare the estimates

of the skewness and the kurtosis obtained under the different RNDs.

Insert somewhere here Table 3

Some models (log-normality, Edgeworth expansion and jump diffusion) impose the constraint
that the first non central moment equals the forward rate. For other models, the better the
adjustment, the closer the first moment is to the forward rate. We notice that for the first date,
all the models give a first moment equal to the forward rate. For the second date however, the
Hermite approach gives a small gap for the 3-month maturity (3.3749 instead of 3.3758) and
similar for the 12 month maturity.

As far as volatilities are concerned, we see the bias implied by the log-normality assumption:
the volatility induced by the log-normal model appears systematically smaller than the one
obtained with the other approaches. Otherwise we observe a great homogeneity of the volatilities
given by the other models.

The estimations of skewness and kurtosis are much more contrasted, since at this level the
specificities of the different models can be observed. The log-normal model is less interesting
from this point of view, since on theoretical grounds it does not allow for asymmetry nor fat
tails. First, we observe that skewness as well as kurtosis are generally far from the one obtained
under log-normality: for the first date for instance, skewness is between 0.68 and 1.48 and
excess kurtosis is between 2.74 and 4.39. The skewness obtained from semi-parametric models
are systematically lower than the ones obtained with other models, even if this difference seems
to remain small. Nonetheless, concerning kurtosis, we notice pronounced differences between
models: the log-normal mixture model and the stochastic volatility model give generally very

large excess kurtosis (especially for the second date).
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Insert somewhere here Figures 3, 4, 5, and 6

The graphs of the RND further corroborate our earlier findings. All RNDs differ significantly
from the benchmark one. Further, we notice that the RND for the Hermite and Edgeworth ex-
pansion are very close. Those two approaches have the unfortunate drawback to yield negative
densities. The reason for this is that only a limited range of skewness-kurtosis pairs are compat-
ible with positive aproximations.'” Going back to Table 3 we see that for those approximations
skewness and kurtosis are always smallest: the reason is that those methods have difficulties
to accommodate higher moments beyond a certain range. Those models seem unfortunately
unable to capture the high skewness of exchange rate data.

When we inspect Figures 3 to 6 we realize that the model with stochastic volatility distin-
guishes itself by a curvature which is less pronounced than the other models. This means that
this type of model has difficulties in capturing the strong skewness which appears in the data.
When going back to Table 3 we notice that the model with stochastic volatility always has
smaller values of skewness but some time the largest kurtosis. This suggests that the stochastic
volatility model is unable to capture the asymmetry in the data and suggests as a substitute for
skewness a higher kurtosis. In a situation where fears are directional (such as for a devaluation)
this feature seems to be somewhat beside the point.

To summarize, we notice a great deal of homogeneity for the different models as far as the
first and the second moments are concerned. What really differentiates the models is their
ability to capture the third and fourth moment.

and, to a certain extent, the third moments are concerned.

4.3 The use of RNDs

An important point to check in the comparison of the various methods is whether they give
similar confidence intervals. This point is of particular interest for policy makers, since the

bandwidth of confidence intervals can be seen as an indicator of credibility of the monetary

17Qee also Barton and Dennis (1952).
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policy. As it is well known, it is not possible to extract directly forecasts from option prices,
since the underlying distributions are based on the assumption of risk neutrality of market
participants. It might be argued that this type of analysis is misleading since one assumes
risk neutrality. However, Rubinstein (1994, p. 804) using a numerical example is lead to the
statement: ... despite warnings to the contrary we can justifiably suppose a rough similarity
between the risk-neutral probabilities implied in option prices and subjective beliefs. For this
reason we follow Campa, Chang and Reider (1997) and construct RNDs which are based on
the forward rate. In that case, confidence intervals are not interpreted in levels, because it is
misleading to read floor and ceiling of an interval in FF/DM, but one can analyze the relative
intervals and the relative bandwidths expressed as a percentage of the forward rate.

Thus, we estimate, for each maturity and each method, two confidence intervals: the bands
of minimum width such that market participants put a 90% (and a 95%) probability on the fact
that the FF'/DM will be inside the band at the end of the period. As the RNDs are centered on
the forward rate, we define the bandwidth as half the difference between the floor and ceiling

expressed as a percentage of the forward rate.

Insert somewhere here Table 4

Table 4 reports the estimates of the floor, the ceiling and the bandwidth. Several points
are worth noting: first, we clearly observe the asymmetry of the RNDs for all methods and all
maturities since the forward to floor ratio is always smaller than the ceiling to forward ratio.
For instance for the bandwidth containing 90% of the distribution for May 17th 1996 for the
1-month maturity, the former is about 0.85% whereas the latter is about 1.4%. For more distant
maturities, the gap is even larger.

In the same way, we notice that the asymmetry increases for the second date, since the
ceiling to forward ratio is at least twice the forward to floor ratio. This result clearly shows that
the uncertainty in April 1997 was unfavorable to the FF.

Second, the excess kurtosis can be measured to a certain extent from the bandwidth. As

it clearly appears, for a given probability, the bandwidth of the log-normal model is always

23



narrower than the ones of the other approaches. This means that, for a given bandwidth, the
more sophisticated methods (which allow for fat tails) will give a higher probability outside the
bandwidth than the log-normal model.

The comparison of the various methods is also interesting. The log-normal model shows no
asymmetry since the forward to floor ratio and the ceiling to forward ratio are almost the same.
Other approaches are much more homogeneous, except perhaps for Heston’s model. Indeed
this model seems less asymmetrical than the other ones. More precisely, in many cases, the
ceiling is nearer the forward rate. This result can be explained by the already mentioned fact
that the stochastic volatility model is unable to generate a hump (as the Malz approach is) and
thus it has to compensate the lack of flexibility with a less rapidly decreasing density (see also
figures 5 and 6). Accordingly we note for instance for the I-month maturity on April 25th 1997
an important gap between confidence intervals evaluated by Heston’s model and by the other
approaches: the bandwidth containing 95% of the distribution is 1.40-2.28 for Heston’s model

and about 1.03-2.61 for the other models.

5 Time series comparison

In this section we wish to compare the performance of the various models and to show how they
can be used to read information contained in the data.
5.1 Relative performance

As a preliminary remark we have to mention that we decided in the time series context to drop
the model with stochastic volatility. The reason for this is the obvious difficulty of that model

to capture the large skewness which appears to reside in the data at hand.'®
Insert somewhere here Tables 5 and 6

Those remarks being made we display in Tables 5 and 6 the absolute relative errors for the

various dates and models. We notice in Table 5 that for the short maturity for most of the

18We did not experiment with this model on other data for which it might well be optimal.
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cases the mixture of lognormals is the best model. For the short maturity we notice further
that the jump diffusion model does also quite well. Table 6 shows that for the longer maturity
option Malz’ model is the best except for one date. For practical purposes, this suggests that
one should use for short run options the mixture of log-normals model and the jump-diffusion

model in the longer run.

5.2 The message contained in confidence intervals

ERIC: Up to you to tell more why intervals evolve just as they do...

As an illustration we display in Figure 7 the evolution over the 20 dates for which we have
information of the 90% confidence interval. We have chosen as method the mixture of lognormals
which appears to be an adequate method for the short run.

We notice various shifts in the confidence interval. In the summer of 1996 we observe a
strong widening and an upward shift of the interval. This is related to Bill Clinton purchasing

his dog. Later on towards December of 1996 there is another widening

6 Conclusion

In this paper we implement several methods to extract risk neutral densities. The methods
range form the non-structural (given by a mixture of lognormals) to the fully structural model
(a jump-diffusion and a stochastic volatility model). We also implement methods based on
Gram-Charlier and Edgeworth expansions.

First, we compare those various methods for two dates. The first date is rather calm whereas
the second date corresponds to an agitated market. We find that all models yield RNDs which
differ significantly from the lognormal benchmark. Concerning stability and speed of estimation
we found that the mixture of lognormals and the stochastic volatility model require fixing some
parameters on a grid while estimating the remaining ones. This obviously results in a rather
slow procedure. The other methods converge quickly and yield rather stable results.

We further find that models differ in their ability to capture the large skewness existing in

the foreign exchange data at hand. In particular polynomial approximations and the stochastic
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volatility model have difficulties at this level.

Second, we compare the various methods on time series data using as criterion the absolute
relative error. We see that the mixture of lognormals model performs well on short maturity
options and that the jump diffusion model outperforms all models for longer maturities. The
construction of confidence intervals reveals interesting patterns and shows their usefulness for
policy makers or for investors who need to know what other market-participants anticipate

about a market’s future.
APPENDIX

Here we describe how we implemented the non-linear least squares (NLLS) estimation. We first
introduce some notations, then discuss the traditional NLLS estimation. Eventually we explain
how we estimated parameters in more difficult situations.

For a given date, we consider N options characterized by subscript 2. The 2th option has
strike price K; and maturity 7. The market price, written C2L, is given. Last, let C:5.(0) be the
theoretical price for the ith strike price and maturity 1" where 6 is a parameter vector describing
the RND associated with model X.

NLLS consists in finding the solution to the program!®

min (Cir = Cir(0))?

€0, 1T N

where O is the domain to which € can belong.

For some of the models the parameter estimation turned out to be difficult. In particular,
if parameters need to be obtained in a systematic way such as in the time series framework, it
becomes necessary to make sure that the algorithm does not diverge. In most cases what did
the tric was, first, to restrict parameters to lay in certain intervals (such a restriction can be
obtained by using a logistic transform) and, second, to force certain parameters to take values

on a grid whereas the other parameters were obtained without restrictions. When a parameter

19This type of program can be easily implemented within Gauss using the OPTMUM module.
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was running on a grid we eventually ran an unconstrained estimation using as starting values
the estimates obtained over the grid with minimal error.

We encountered difficulties in the following cases: For the mixture of lognormals case we
noticed that we often obtained parameter estimates where all the weight was put on one density
and yielding a degenerate density (with zero variance) for the density with no weight. Further
experiments with this method revealed the existence of multiple minimum. To mitigate this
problem we decided to take the weight over a grid starting close to 0 and ending close to 1 and
to estimate for each of the weights optimal parameters. We also decided to constrain, by using
a logistic transform, the means of the various densities in a range deemed to be reasonable.

We also encountered similar difficulties in estimating the stochastic volatility model. For this
case we forced the A parameter on a grid taking values between two bounds chosen sufficiently

wide apart to cover a reasonable range of values. All other methods tended to be fast and stable.
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CAPTIONS

Table 1 presents the parameter estimates for the Bernoulli version of a jump-diffusion. o is
the diffusion volatility. The jump will occur with probability A within one year. Its size is k.
AT represents the probability of a jump to occur before the maturity of the option. Ak is the
annualized impact of a possible jump. Parameters are always estimated using non-linear least
squares as further explained in the appendix. All options are European. For 17.05.96 (25.04.97)
we have options for 13 (11) deltas. The first date corresponds to a calm market whareas the
second one to an agitated market.

Table 2 presents the results for Heston’s stochastic volatility model described by

dSy = pSidl +\/vedWy

dvy = %(0 — Ut)dt + 7\/U7tdW2’t

where Wy, Wy, are two Brownian motions with possible correlation p. v is the volatility of
volatility. /v is a measure of instantaneous volatility. # and /0 represent the intensity of mean
reversion and long run volatility. If A is the risk premium then x* = k0/(k+ ) and 0* = K+ .
We estimated parameters in two stages, first running x* on a grid between 2 and 5 and then
running an estimation with £* free using as starting value the optimal one from the first stage.
The last column combines all maturities for a given date.

Table 3 displays a comparison of various moments for the RNDs. For 17.05.96 (25.04.97) the
actual forward prices for the 1, 3, and 12 month options are 3.3989, 3.3933, and 3.4131 (3.3740,
3.3758, and 3.3820).

Table 4 displays 90 and 95 percent confidence intervals for the 1,3, and 12 month options.
Actual forward prices are as in Table 3.

Table 5 presents the absolute relative errors (ARE) for the various models for the 1 month to
maturity options. The % marks the model with the smallest error for a given day. The mnemonics
Bench, Mix, HE, ED, JD stand respectively for the benchmark, mixture of lognormals, hermite

approximation, edgeworth expansion, and jump-diffusion model.
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Table 6 is similar to Table 5 but fur the 12 month to maturity options.
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17.05.96
1 month 3 month 6 month 12 month
o 0.0172 0.0178 0.0193 0.0205
AT 0.0399 0.0621 0.0655 0.0699
Ak 0.0104 0.0095 0.0075 0.0058

25.04.97
1 month 3 month 6 month 12 month
o 0.0186 0.0176 0.0160 0.0165
AT 0.0717 0.0608 0.0600 0.0574
Ak 0.0230 0.0128 0.0089 0.0063
Table 1: Estimates of the Bernoulli version of the jump-diffusion model.

17.05.96
1 month 3 month 6 month 12 month Combined
K* 3.2556 3.3781 3.4815 2.2940 4.0300
Vor  0.0264 0.0362 0.0386 0.0349 0.0316
~ 0.1562 0.1423 0.1596 0.1064 0.1500
0
N

0.4497 0.5727 0.5434 0.5968 0.5430
0.0221 0.0190 0.0020 0.0167 0.0224

25.04.97
1 month 3 month 6 month 12 month Combined
K* 3.2514 3.3687 3.4267 3.8023 3.2820
Vor  0.0720 0.0432 0.0184 0.0038 0.0283
¥ 0.3068 0.1837 0.1332 0.1430 0.1570
0 0.5176 0.6269 0.6226 0.6537 0.6170
Ve 0.0185 0.0208 0.0367 0.0587 0.0300

Table 2: Parameter estimates of the stochastic volatility model.
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Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Log-normal
Log-normal mixture
Hermite approximation
Edgeworth expansion
Jump-diffusion
Stochastic-volatility

Table 3: Moments of the risk neutral density.

forward

3.3898
3.3898
3.3898
3.3898
3.3898
3.3899

3.3933
3.3933
3.3935
3.3933
3.3933
3.3932

3.4131
3.4130
3.4132
3.4131
3.4131
3.4132

forward

3.3740
3.3740
3.3741
3.3740
3.3740
3.3738

3.3758
3.3758
3.3749
3.3758
3.3758
3.3757

3.3820
3.3801
3.3787
3.3820
3.3820
3.3§]0

17.05.96

volat.

skew.

1-month

0.0202
0.0225
0.0224
0.0224
0.0219
0.0215

0.0179
0.9096
0.7127
0.6898
1.2932
1.1647

3-month

0.0227
0.0253
0.0248
0.0251
0.0249
0.0244

0.0348
1.3548
1.1410
1.0211
1.3715
1.3375

12-month

0.0267
0.0292
0.0289
0.0291
0.0289
0.0284

0.0813
1.3369
1.1495
1.0215
1.2982
1.4897

25.04.97

volat.

skew.

1-month

0.0257
0.0300
0.0291
0.0294
0.0291
0.0284

0.0228
1.8572
1.4135
1.3080
1.6362
1.4149

3-month

0.0248
0.0307
0.0307
0.0299
0.0296
0.0274

0.0382
2.3917
1.3105
1.3830
2.0354
1.7039

12-month

0.0241
0.0290
0.0315
0.0303
0.0297
0.0271

0.0741
2.5141
1.3475
1.3888
2.2992
1.8602

kurt.

0.0006
4.3917
3.2319
3.2137
3.5955
3.4252

0.0022
4.1869
2.7441
2.9609
3.0700
3.6976

0.0118
3.6170
2.5381
2.7068
2.6747
4.3789

kurt.

0.0009
6.1805
3.4687
3.6579
3.5315
4.7203

0.0026
9.4481
4.6650
4.8034
5.2717
4.9168

0.0098
9.2247
5.2982
5.6886
6.4565
5.6927



17.05.96

95 % boundaries ‘ 90 % boundaries
1 month
fwd/floor ceil/fwd bandwith | fwd/floor ceil/fwd bandwith
Log-normal 1.1950 1.1850 1.1830 0.9719 1.0030 0.9828
Log-normal mixture 1.1950 1.7310 1.4559 0.8606 1.2214 1.0374

Hermite approximation 1.0833 1.8402 1.4559 0.8236 1.4398 1.1284
Edgeworth expansion 1.0461 1.8038 1.4195 0.8236 1.4034 1.1102

Jump-diffusion 1.0461 1.8766 1.4559 0.8977 1.0394 0.9646

Stochastic-volatility 1.0833 1.6218 1.3467 0.8606 1.2214 1.0374
3 month

Log-normal 2.3179 2.2798 2.2726 1.9386 1.9161 1.9089

Log-normal mixture 1.9764 3.5524 2.7452 1.6372 2.5706 2.0907

Hermite approximation 1.8631 3.5524 2.6907 1.5997 2.8979 2.2362
Edgeworth expansion 1.8631 3.5524 2.6907 1.5997 2.8979 2.2362

Jump-diffusion 1.9764 3.7706 2.8543 1.6748 2.7888 2.2180

Stochastic-volatility 1.9764 3.2615 2.5998 1.5997 2.3888 1.9817
12 month

Log-normal 5.5041 5.4113 5.3141 4.5866 4.5075 4.4465

Log-normal mixture 4.6658 8.0502 6.2540 3.8797 5.9174 4.8261

Hermite approximation  4.5076 8.1225 6.2179 3.8407 6.5319 5.1153
Edgeworth expansion 4.3106 8.0502 6.0913 3.7239 6.4596 5.0249

Jump-diffusion 4.6658 8.4117 6.4348 3.9578 6.4235 5.1153
Stochastic-volatility 4.5076 7.5803 5.9467 3.7239 5.4836 4.5369
25.04.97
1 month
fwd/floor ceil/fwd bandwith | fwd/floor ceil/fwd bandwith
Log-normal 1.5095 1.4887 1.4879 1.2716 1.2573 1.2564
Log-normal mixture 1.2377 2.6129 1.9177 1.0347 1.8194 1.4218

Hermite approximation 1.1361 2.5137 1.8185 1.0010 2.1169 1.5540
Edgeworth expansion 1.1361 2.5468 1.8351 1.0010 2.1169 1.5540

Jump-diffusion 1.2377 2.6460 1.9342 1.0685 2.1500 1.6036

Stochastic-volatility 1.4074 2.2823 1.8351 1.1023 1.6210 1.3556
3 month

Log-normal 2.5296 2.5227 2.4949 2.1144 2.0931 2.0819

Log-normal mixture 2.0111 4.8690 3.4202 1.7026 3.0845 2.3793

Hermite approximation 1.9768 4.7037 3.3211 1.7368 3.9767 2.8419
Edgeworth expansion 1.8052 4.6046 3.1889 1.6001 3.9106 2.7428

Jump-diffusion 2.0111 5.0672 3.5194 1.7368 4.0098 2.8584

Stochastic-volatility 2.1144 4.1750 3.1228 1.7026 2.8862 2.2801
12 month

Log-normal 4.9931 4.9421 4.8489 4.1634 4.1175 4.0572

Log-normal mixture 3.8779 10.0878 6.9105 3.3115 5.9646 4.5850

Hermite approximation  3.9491 9.7910 6.7950 3.4525 8.2736 5.8054

Edgeworth expansion 3.3115 9.4611 6.3332 3.0306 8.0427 5.4921

Jump-diffusion 3.9135 10.6156 7.1908 3.3819 8.2736 5.7725

Stochastic-volatility 3.9847 8.1417 5.9869 3.3115 5.5358 4.3706
Table 4: 95 and 90 percent confidence intervals.
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date
17.05.96
31.05.96
14.06.96
28.06.96
5.07.96
26.07.96
23.08.96
6.09.96
4.10.96
31.10.96
8.11.96
4.12.96
27.12.96
30.01.97
28.2.97
3.04.97
25.04.97
2.06.97
28.06.97

Bench
157.168
169.834
164.191
186.198
177.835
176.727
203.223
198.543
161.028
170.431
170.431
197.480
168.213
168.217
228.196
251.562
229.733
237.059
283.858

Mix
16.834
17.695*
17.284*
38.823*
26.208*
17.410
10.548
10.189
13.723*
16.270*
16.277*
24.942
15.368
15.372
29.606
22.192*
7.734*
16.900*
15.231*

HE
11.925*
21.909
17.376
72.850
75.016
14.344
28.258
25.635
18.941
28.076
28.076
30.579
12.680
12.679
35.285
56.416
18.155
27.901
53.130

ED
13.922
23.334
18.656
71.874
73.909

13.098*
28.692
26.200
20.000
20.476
29.202
30.486
13.113
13.114
35.237
55.709
17.831
27.432
51.707

JD
36.260
37.281
36.895
40.947
37.268
39.891
9.283*
9.540*
31.611
22.907
22.923
16.212*

8.278
8.276*
26.843*
33.403
8.955
21.176
22.162

Table 5: AREs for 1 month to maturity options.

date
17.05.96
31.05.96
14.06.96
28.06.96
5.07.96
26.07.96
23.08.96
6.09.96
4.10.96
31.10.96
8.11.96
4.12.96
27.12.96
30.01.97
28.2.97
3.04.97
25.04.97
2.06.97
28.06.97
Table 6:

Bench
176.747
186.032
191.256
185.231
200.735
204.238
215.753
215.862
168.531
185.067
177.486
222.621
232.423
232.434
251.202
255.440
248.672
256.277
291.310

Mix
32.930
41.181

33.007*
24.795
56.325
63.751
24.484
32.244
37.457
41.579
41.652
34.087
38.671
38.743
35.277
47.828
41.034
35.634
63.565

HE
40.432
52.648
64.557
47.709
81.774
42.407
28.366
36.051
30.615
38.035
36.035
28.767
42.990
42.982
58.668
63.055
38.826
45.607
81.166

ED
39.437
51.178
64.634
46.682
81.302
42.400
28.349
36.254
32.494
39.915
37.010
28.179
41.428
41.437
56.635
60.506
37.143
43.402
77.084

JD
23.238*
32.722%

34.589
18.800*
47.909*
19.539*
15.502*
24.515*
19.109*
21.904*
17.371*
11.270*
14.013*
14.016*
23.769*
15.203*
16.694*
19.789*
34.425*

AREs for the 12 month to maturity options.
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