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Abstract

Abstract: This paper uses a risk-averse formulation of the uncovered interest rate
parity to determine exchange rates through interest rate differentials, and ultimately
extract currency risk premia. The method proposed consists of developing an affine
Arbitrage-Free class of dynamic Nelson-Siegel term structure models with stochastic
volatility to obtain the domestic and foreign discount rate variations, which in turn
are used to derive a representation of exchange rate depreciations. No-arbitrage re-
strictions allow the endogenous capturing of currency risk premia. Empirical findings
suggest that estimated currency risk premia are able to account for the forward pre-
mium puzzle and their properties are examined.

JEL classification numbers: E43, F31, G15
Keywords: term structure of interest rates; affine; exchange rates; risk premia

Résumé: Cet article se sert de la parité des taux d'intérêt non couverte à aversion
au risque pour déterminer les taux de change à travers des spread de taux d'intérêt
et pour extraire des primes de risque de change. La méthode proposée consiste à la
modélisation affine de la courbe des taux d'intérêt par non-arbitrage, incorporant la
méthode de Nelson-Siegel et de la volatilité stochastique, afin d'obtenir les facteurs
d'escompte stochastique domestique et étranger, qui par leur tour sont utilisés pour
déduire une représentation du taux de variation du cours de change. L'hypothèse
d'absence d'opportunités d'arbitrage permet l'obtention endogène de primes de risque
de change. Les résultats empiriques suggèrent que les primes de risque du taux de
change estimées sont capables d'expliquer les dv́iations de la parité des taux non cou-
verte. Leurs propriétés sont examinées.
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Non-technical summary

Exchange rate fluctuations have substantial implications for the pricing and allocation of

assets. Characterized by seemingly weak links to fundamentals and by a volatile nature, ex-

change rates still remain at the forefront of a multitude of papers. These stylized facts, better

known as the exchange rate determination and excess volatility puzzles, render the modeling

of exchange rate movements and the caption of their volatility increasingly intricate.

A significant strand of the exchange rate literature has long been devoted to tying ex-

change rates to interest rates through the so called covered and uncovered interest rate

parities. Under the validity of perfect asset substitutability and capital mobility, the prin-

ciple of these two parities revolves around the premise of no-arbitrage, whereby low interest

rate countries ought to be compensated by an appreciated currency in order to maintain the

indifference of the global investor. Despite the highly intuitive nature of these theoretical

equilibrium relations, severe deviations from postulated equilibrium levels have, on multiple

occasions, been recorded through empirical tests. The observed divergences are expressed by

the susceptibility of low interest rate countries to currency depreciations and are typically

known as the forward premium puzzle.

A plethora of studies has been dedicated to justifying these deviations. What seems to

be the most convincing interpretation so far is the one proposed by Fama (1984), advocating

the presence of a time-varying risk premium. The latter represents the compensation to the

investor for being exposed to exchange rate risk.

Though unobserved, currency risk premia have the potential to enhance asset allocation

and risk management decisions. This explains why attempts to estimate currency risk premia

are persistently found in the literature.

The purpose of this study is to examine whether a newly established framework for

the term structure of interest rates, the Arbitrage Free Nelson Siegel term structure model

(AFNS) with stochastic volatility, introduced by Christensen, Lopez, and Rudebusch (2010a),

can be further extended to jointly price both the term structure of interest rates of two

countries and exchange rate depreciations. Once the exchange rate depreciation is esti-

mated through the Bilateral Arbitrage-Free Nelson-Siegel model with stochastic volatility

(BAFNS), no-arbitrage conditions allow for the endogenous extraction of the risk premium.
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I. Introduction

Exchange rate fluctuations have substantial implications for the pricing and allocation of

assets. Characterized by seemingly weak links to fundamentals and by a volatile nature, ex-

change rates still remain at the forefront of a multitude of papers. These stylized facts, better

known as the exchange rate determination and excess volatility puzzles, render the modeling

of exchange rate movements and the caption of their volatility increasingly intricate.

A significant strand of the exchange rate literature has long been devoted to tying ex-

change rates to interest rates through the so called covered and uncovered interest rate

parities. Under the validity of perfect asset substitutability and capital mobility, the prin-

ciple of these two parities revolves around the premise of no-arbitrage, whereby low interest

rate countries ought to be compensated by an appreciated currency in order to maintain the

indifference of the global investor. Despite the highly intuitive nature of these theoretical

equilibrium relations, severe deviations from postulated equilibrium levels have, on multiple

occasions, been recorded through empirical tests. The observed divergences are expressed by

the susceptibility of low interest rate countries to currency depreciations and are typically

known as the forward premium puzzle.

A plethora of studies has been dedicated to justifying these deviations. What seems to

be the most convincing interpretation so far is the one proposed by Fama (1984), advocating

the presence of a time-varying risk premium. The latter represents the compensation to the

investor for being exposed to exchange rate risk. Fama (1984) stipulates that currency risk

premia ought to have a greater variance than expected exchange rate variations and that

both variables need to be negatively correlated in order to explain the puzzle. Following

this noteworthy account, many papers have attempted to model a currency risk premium

using statistical methods and conventional asset pricing methods, including consumption

based asset pricing theory, equilibrium models, but with arguably limited success (see, for

example, Frankel and Engel (1984), Domowitz and Hakkio (1985), Mark (1988), Bekaert

(1996) and Lustig and Verdelhan (2011)).

Though unobserved, currency risk premia have the potential to enhance asset allocation

and risk management decisions. This explains why attempts to estimate currency risk pre-

mia are persistently found in the literature. The purpose of this study is to examine whether
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a newly established framework for the term structure of interest rates, the Arbitrage Free

Nelson Siegel term structure model (AFNS) with stochastic volatility, introduced by Chris-

tensen, Lopez, and Rudebusch (2010a), can be further extended to jointly price both the

term structure of interest rates of two countries and exchange rate depreciations. Once the

exchange rate depreciation is estimated through the Bilateral Arbitrage-Free Nelson-Siegel

model with stochastic volatility (BAFNS), no-arbitrage conditions allow for the endogenous

extraction of the risk premium. The above-mentioned approach of exploiting existing affine

term structure models in order to derive risk premia has previously been employed in several

different contexts. In an influential study by Backus, Foresi, and Telmer (2001), the issue

of whether the popular affine term structure model by Duffie and Kan (1996) is capable

of capturing the forward premium anomaly is considered. Similarly, Sarno, Schneider, and

Wagner (2012) derive a multi-currency term structure model that gives rise to the foreign

exchange risk premium, the properties of which are examined. Graveline (2006), examines

the forward premium anomaly using an arbitrage-free model, including options prices. Sim-

ilar methods and applications can be found in Brandt and Santa-Clara (2001), where excess

volatility in an incomplete market setting is examined, in Ahn (2004), Inci and Lu (2004)

and Anderson, Hammond, and Ramezani (2010), who compare the different implications of

local and global factors, and Brennan and Xia (2006), where the volatility of pricing kernels

is tied to exchange rate volatility and risk premia. More recently, term structure models

have been used to obtain equity premia (see Brennan, Wang, and Xia (2004) and Lettau

and Wachter (2011)) and underpin inflation expectations and risk premia (see Christensen,

Lopez, and Rudebusch (2010b) and Chernov and Mueller (2012)).

Although Sarno, Schneider, and Wagner (2012)’s analysis appears to be the most com-

plete and well-rounded piece of work to date, it suffers from a cumbersome Bayesian es-

timation procedure. Moreover, an additional step is further required stemming from the

necessity to use rotations in order to interpret the latent factors. In this paper, attention

is drawn towards employing the AFNS model due to the favorable properties it agglomer-

ates. In particular, this model encompasses sound theoretical grounds through no-arbitrage

restrictions, whilst also preserving robust estimation procedures with the imposition of the

Dynamic Nelson Siegel (DNS) structure. Specifically, the imposition of the DNS structure

4



provides a level, slope and curvature interpretation to the latent factors without performing

any rotation. Additionally, the flexibility of the AFNS model allows to extend its use beyond

simple estimation and makes it appealing for forecasting exercises. Furthermore, the AFNS

is found to be successful not only in the blunt determination of the term structure of interest

rates but also in more synthesized problems such as the estimation of inflation expectations;

hence motivating the use of this specific model to estimating currency risk premia. This

paper further shifts its focus towards analyzing the impact of the different assumptions set

on the diffusion of the process (ie. Gaussian or with stochastic volatility) on the properties

acquired by the estimates of the model, namely, the yields, exchange rate variations and

currency risk premia.

A six-factor AFNS model with stochastic volatility is estimated to jointly underpin the

term structure of two countries, whilst exchange rate depreciations and risk premia are

derived endogenously. For robustness purposes, a Gaussian multilateral AFNS model with

twenty one factors (three factors for each country included) is examined in Appendix B of

this paper. Results suggest that the Gaussian AFNS model provides a better fit for interest

rates and allows for a joint multi-currency estimation rather than restricting the model to a

bilateral estimation. On the other hand, the volatility of exchange rate differentials is better

captured using the AFNS model with stochastic volatility rather than the Gaussian version

of the model. Additionally, the risk premium generated from the bilateral AFNS model

with stochastic volatility respects the above mentioned Fama conditions, hence offering a

legitimate explanation for the forward bias puzzle without resorting to departures from

rational expectations. The main drivers of exchange rate depreciations and risk premia are

found to be the two curvature factors whilst currency risk premia display a countercyclical

nature. Finally, Graveline (2006) argues that the use of options helps in fitting the volatility

of exchange rates. In this regard, this paper shows that it is possible to reasonably capture

the volatility of exchange rate depreciations and risk premia without the inclusion of options

in the model. More specifically, this result extends to first and second conditional moments.

The remainder of the paper is structured as follows. Section II consists of a selective

overview of the uncovered interest rate parity, the existing AFNS model with stochastic

volatility, and pricing kernels as the connecting link of interest rates to exchange rates. In
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section III, the BAFNS model is derived with the aim of extrapolating both exchange rate

depreciations and risk premia. Section IV comprises of an empirical study of the performance

of the BAFNS model in determining exchange rate changes and extracting risk premia. This

section also specifies the estimation procedure followed and its substantial benefits. Section

V provides conclusive remarks.

II. Exchange rates and interest rates at a glance

This segment aims to motivate the sections that follow by building a review of the link

between interest rates and exchange rates as well as the affine term structures model that is

utilized to derive exchange rate variations.

A. The uncovered interest rate parity

Let yD(t, T ) and yF (t, T ) denote the zero coupon bond yields with maturity T at time t,

of the domestic and foreign countries, and st and ft,T denote the logarithm of the spot and

T-forward exchange rate, respectively. For the remainder of the paper, the United States

is considered as the domestic country. The United Kingdom represents the foreign country

in the main analysis of the paper, whilst additional foreign countries, including Australia,

Canada, Switzerland, Japan and Sweden are examined in Appendix B. All exchange rates

are denominated in U.S. dollars, and hence represent the price of one unit of foreign currency

in US dollars.

The covered interest rate parity stipulates that, under rational expectations and risk-

neutrality, the expected exchange rate depreciation equals the difference between the forward

and spot exchange rates. By the same token, the uncovered interest rate parity builds an

exact relationship between the expected exchange rate depreciation and the domestic and

foreign interest rate differential. The two relationships are shown in the equations below,

EP [∆st,T |Ft] = ft,T − st (1)

EP [∆st,T |Ft] = yD(t, T )− yF (t, T ) (2)

where EP is the expectation under the data generating probability measure, Ft is the filtration
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and ∆st,T = sT − st. Drawing from equation (1), the forward exchange rate ought to be an

unbiased predictor of the future spot exchange rate. Using the traditional Fama regressions

given below, the validity of the forward rate unbiasedness hypothesis is confirmed if αi = 0,

βi = 1 and ξi;t,T displays no serial correlation, for i = 1, 2.

∆st,T = α1 + β1(ft,T − st) + ξ1;t,T (3)

∆st,T = α2 + β2

[

yD(t, T )− yF (t, T )
)

] + ξ2;t,T (4)

The preponderance of empirical results have, however, disputed the claim of the hypoth-

esis, hence raising theories for the existence of a time-varying risk premium, amongst others.

Conceptually, the existence of a risk premium signifies a departure from risk-neutrality given

it represents a compensation, to the investor, for being exposed to currency risk as well as

interest rate risk. A risk-averse interpretation of the uncovered interest rate parity is given

below,

∆st,T =
[

yD(t, T )− yF (t, T )
]

− ρt,T + ζt,T (5)

with ρt,T representing the risk premium, which varies with time t and maturity T and ζt,T

being the regression residual. The risk premium component bears a negative sign due to

the fact that exchange rates are denominated in US dollars (ie. the domestic currency).

A negative exchange rate depreciation signals an appreciated US currency, hence implying

a higher purchasing power and risk premium. Fama (1984) stipulates that there are two

necessary conditions the risk premium needs to feature in order to ensure its ability to

explain the departures from the levels dictated by the uncovered interest rate parity. These

conditions are stated below,

VP [ρt,T ] > VP
[

EP
t (∆st,T )

]

(6)

CovP
[

ρt,T ,E
P
t (∆st,T )

]

< 0 (7)

where VP and CovP represent the variance and covariance under the physical measure, re-

spectively.

Specifically, omitting the risk premium typically generates a negative slope of the Fama
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regression in equation (4). Fama (1984) shows that if the risk premium admits these two

conditions then the negative bias of the slope is corrected, advocating, hence, in favor of the

risk premium hypothesis as a reasonable correction to the risk neutral uncovered interest

rate parity.

B. THE ARBITRAGE-FREE NELSON-SIEGEL MODEL WITH STOCHASTIC

VOLATILITY

In this segment, the model, used to fit the term structure of interest rates of the domestic

and foreign countries, is presented in its simplest, unilateral form.

One of the most prominent models, empirically, for the term structure of interest rates

is the one developed by Nelson and Siegel (1987). The popularity of this model mainly

stems from its stable estimation and its flexibility in fitting both the cross section and time

series properties of interest rates. Diebold and Li (2006) have extended it to a dynamic

factor model where latent factors bear the level, slope and curvature interpretation, whilst,

Koopman, Mallee, and Van der Wel (2010) have allowed for time-varying parameters and a

non-Gaussian setting. Although empirically these models have been highly praised for their

performance, they have sustained some criticism for their lack of theoretical grounding.

Conversely, affine term structure models imposing no-arbitrage restrictions, such as the

canonical model by Duffie and Kan (1996), have been found challenging in their estimation

due to the difficulty in pinning down the global optimum, (see Joslin, Singleton, and Zhu

(2011) and Duffee and Stanton (2012)), as well as in their empirical success (see Duffee

(2002). Christensen, Diebold, and Rudebusch (2011) develop an affine Arbitrage-Free class of

dynamic Nelson-Siegel term structure models which combine the benefits of the two strands

of models above whilst simultaneously alleviating their disadvantages. However, due to

the Gaussian nature of the model, it is highly unlikely to be able to capture the volatility

displayed by exchange rates. A stochastic version of the AFNS model is hence adopted

following Christensen, Lopez, and Rudebusch (2010a).

The details of the three-factor AFNS model with stochastic volatility generated by all

three factors (AFNS3) are provided below. Let Xt = (Lt, St, Ct)
′ denote the latent state

variables, which can be interpreted as level, slope and curvature factors. In addition, assume
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the state vector Xt follows a Cox-Ingersoll-Ross process under the risk neutral Q measure.

κQ is the mean-reversion matrix, θQ the unconditional mean vector and WX,Q
t denotes a

three dimensional Wiener process.

dXt = κQ
[

θQ −Xt

]

dt+ Σdiag[
√

Xt]dW
X,Q
t (8)

Christensen, Diebold, and Rudebusch (2011) show that with no loss of generality, θQ

can be set to zero. The system of stochastic differential equations, under the risk neutral

probability measure, is hence re-written as follows,













dLt

dSt

dCt













= −













ǫ 0 0

0 λ −λ

0 0 λ

























Lt

St

Ct













dt+













σ11 0 0

0 σ22 0

0 0 σ33

























√
Lt 0 0

0
√
St 0

0 0
√
Ct

























dWL,Q
t

dW S,Q
t

dWC,Q
t













(9)

where λ is the mean-reversion parameter and ǫ = 10−6 to have a near unit root behavior

for the level factor. In particular, the level factor typically displays a unit root, implying

that the first element of the mean-reversion matrix ought to be equal to zero. However, the

breach of Gaussianity would prevent the use of the Kalman filter. Setting this element equal

to ǫ, a very small yet non-zero number, allows to preserve a near unit root feature whilst

still allowing the use of the Kalman filter.

As demonstrated by Ang and Piazzesi (2003), nominal zero-coupon bond prices are ex-

ponentially affine functions of the state variables,

P (t, T ) = EQ
t

[

exp

(

−
∫ T

t

rudu

)]

= exp
(

A (t, T ) +B (t, T )′ Xt

)

(10)

where rt denotes the instantaneous risk-free rate and (A (t, T )) and (B (t, T )) are , respec-

tively, the intercept and slope of the affine expression.

Consequently, the representation of zero-coupon yields with maturity T at time t is given

by an affine function of the state variables, as shown below,

y(t, T ) = − 1

T − t
logP (t, T ) = −A (t, T )

T − t
− B (t, T )′

T − t
Xt (11)
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with A (t, T ) and B (t, T ) being the unique solutions to a system of Riccati equations. A (t, T )

is known as the adjustment term, which is added to maintain no-arbitrage conditions, whilst

the factor loadings B (t, T ), retain the interpretation of level, slope and curvature, although

they no longer match the exact form of the Nelson-Siegel factor loadings. The Riccati

differential equations are listed below.



































B1(t,T )
dt

(t, T ) = 1 + ǫB1(t, T )− 1
2
σ2
11B

2
1(t, T )

B2(t,T )
dt

(t, T ) = 1 + λB2(t, T )− 1
2
σ2
22B

2
2(t, T )

B3(t,T )
dt

(t, T ) = −λB2(t, T ) + λB3(t, T )− 1
2
σ2
33B

2
3(t, T )

A(t,T )
dt

(t, T ) = −B(t, T )′κQθQ

(12)

The instantaneous risk-free rate is an affine function of the state variables given by the

sum of the level and slope factors, as stated in equation (13). This representation is justified

by the fact that the level factor affects yields of all maturities, including the short rate,

while the slope factor typically influences yields of short maturities. The curvature factor is

unnecessary in the spectrum of the short rate since it typically influences yields of medium

horizons.

rt = Lt + St (13)

The AFNS model with stochastic volatility is a continuous-time model and Girsanov’s theo-

rem ensures the change from the data generated process measure, also known as the physical

measure, to the risk-neutral measure as such, dWQ
t = dW P

t + Γtdt, where Γt is the market

price of risk and under the extended affine risk premium specification defined in Cheridito,

Filipovic, and Kimmel (2007), it takes the form below:

Γt =













√
Lt 0 0

0
√
St 0

0 0
√
Ct

























γ1,1

γ1,2

γ1,3













+













0 0 0

0 1√
St

0

0 0 1√
Ct

























0 0 0

γ2,21 0 γ2,23

γ2,31 γ2,32 0

























Lt

St

Ct













+













0 0 0

0 1√
St

0

0 0 1√
Ct

























0

γ3,2

γ3,3













(14)
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The extended specification for the market price of risk encompasses the essentially affine

risk premium specification provided by Duffee (2002), which itself is a generalization of the

completely affine formulation of the canonical model by Dai and Singleton (2000). Subtract-

ing Σdiag[
√
Xt]Γtdt from the risk-neutral dynamics and substituting the Brownian motion

under the risk-neutral measure with its physical counterpart allows the extraction of the

latent state variables Xt = (Lt, St, Ct)
′ under the physical measure. The dynamics are given

by the following stochastic differential equation.













dLt

dSt

dCt













=













κP
11 0 0

κP
21 κ

P
22 κ

P
23

κP
31 κ

P
32 κ

P
33





































θL,Pt

θS,Pt

θC,P
t













−













Lt

St

Ct

























dt+













σ11 0 0

0 σ22 0

0 0 σ33

























√
Lt 0 0

0
√
St 0

0 0
√
Ct

























dWL,P
t

dW S,P
t

dWC,P
t













(15)

It is important to note that Feller conditions need to be satisfied in order to prevent

states from hitting the zero-bound, as it would induce the states to remain at zero. These

conditions are:


































κP
21θ

P
1 + κP

22θ
P
2 + κP

23θ
P
3 > 1

2
σ2
22

λθQ2 − λθQ3 > 1
2
σ2
22

κP
31θ

P
1 + κP

32θ
P
2 + κP

33θ
P
3 > 1

2
σ2
33

λθQ3 > 1
2
σ2
33

(16)

There are additional admissibility restrictions that also need to be respected in order to

ensure that the Nelson-Siegel factor loadings are being as feasibly approximated as possible,

as well as for the model to remain free from arbitrage opportunities. These are:



































ǫθQ1 = κP
11θ

P
1

ǫθQ1 > 0, κP
11θ

P
1 > 0

κP
21 ≤ 0, κP

23 ≤ 0, κP
31 ≤ 0, κP

32 ≤ 0

θQ3 =
λθQ2− 1

2
σ2
22

λ
− ǫ

(17)

Further, to ensure stationarity, the eigenvalues of κP have to be strictly positive. Fi-

nally, the latent factor Lt is interpreted as a level factor, which theoretically has a unit root.

However, a unit root in the diffusion process induces complications in the estimation proce-
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dure. An adequate compromise is to settle for a near unit root behavior. Hence, in order

to prevent the latent factor from displaying a unit root, additional restrictions are imposed

on the relevant parameters. More specifically, κP
11 and θP1 are set to be strictly positive and

κQ
11 = ǫ = 10−6, thus ensuring a near unit root behavior.

C. Stochastic discount factors

Let PD
t and P F

t denote the domestic and foreign price at time t of a future payment PD
T and

P F
T , respectively,

PD
t = EP

[

MD
T

MD
t

PD
T

]

(18)

P F
t = EP

[

MF
T

MF
t

P F
T

]

(19)

where MD and MF are the domestic and foreign stochastic discount factors. Stochastic

discount factors, also known as pricing kernels, establish the existence of a risk neutral

probability measure and dictate the price of state-dependent claims. According to Graveline

(2006), there exists a unique minimum variance stochastic discount factor with the following

dynamics,

dMD
t

MD
t

= −rDt dt− ΓD′

t dW P
t (20)

dMF
t

MF
t

= −rFt dt− ΓF ′

t dW P
t (21)

rDt and rFt denote the instantaneous domestic and foreign risk-free rate, respectively, and

W P
t represents a Wiener process. The diffusions of the pricing kernels, ΓD

t and ΓF
t , are the

domestic and foreign prices of risk. The benefits of adopting a no-arbitrage setting come

into play by enforcing a relationship between domestic and foreign bond prices and more

importantly by setting a direct link relating interest rates to exchange rates, as shown below.

MF
T

MF
t

≡ ST

St

MD
T

MD
t

(22)

The above relationship states that one of the three random variables can be replicated

12



using the remaining two variables. Hence, one of the stochastic processes can be determined

endogenously, assuming that the remaining two dynamics are known. As in Backus, Foresi,

and Telmer (2001), the two pricing kernels are used to endogenously extract the exchange

rate dynamics. This strategy allows the preservation of symmetry between the theoretical

frameworks of the two countries. In particular, this paper aims to extract information from

the term structures of interest rates in order to explain exchange rate movements. Thus, the

two term structures are modeled using exactly the same theoretical model for consistency

purposes.

III. Theoretical framework: a dynamic bilateral asset pricing model

This section builds a bilateral extension for the AFNS model with stochastic volatility gen-

erated by all factors included in the model. The endogenous representations of the exchange

rate depreciation, expected exchange rate return and currency risk premia are then derived.

A. The bilateral arbitrage-free Nelson-Siegel model with stochastic volatility

Extrapolating from the AFNS3 to encompass two countries requires six factors. Let XJ
t =

(

LD
t , S

D
t , C

D
t , LF

t , S
F
t , C

F
t

)′
denote the state vector for the joint model, including the level,

slope and curvature factors for the domestic and foreign countries. An advantage in using

an extension of the AFNS stems from the fact that no additional rotation is necessary

to interpret the latent factors. Under the risk-neutral measure, the state variable XJ
t =

(

XD
t , XF

t

)′
solves the following stochastic differential equation.

dXJ
t = −







κD,Q 0

0 κF,Q













XD
t

XF
t






dt+







ΣD 0

0 ΣF













diag
√

XD
t 0

0 diag
√

XF
t













dWD,Q
t

dW F,Q
t






(23)

where WD,Q
t and W F,Q

t are three dimensional Brownian motions and κD,Q, κF,Q, ΣD and ΣF

are defined as follows.

κD,Q =













ǫ 0 0

0 λD −λD

0 0 λD













; κF,Q =













ǫ 0 0

0 λF −λF

0 0 λF













; ΣD = diag













σD
11

σD
22

σD
33













; ΣF = diag













σF
44

σF
55

σF
66













(24)

13



It is important to note that the off-diagonal elements of the mean-reversion matrix, in equa-

tion (23), are set to zero in order to preserve an independence between the latent factors in

the domestic and foreign economy. Specifically, using the pairwise approach for the analysis

of more than two countries, say n+1 countries including the domestic economy, induces the

domestic economy to have n sets of estimates, one for each pair of currencies; generating

hence a consistency problem. Keeping domestic and foreign latent factors independent alle-

viates this issue and preserves the consistency of the model in a bilateral setting. However,

in a multilateral setting, consistency can be achieved in two ways, either by using a joint

pricing for the n + 1 term structures of interest rates, or by conducting the estimation for

each country on an individual basis.

The instantaneous risk-free rates for the domestic and foreign countries are affine func-

tions of the state variables and are given below.

rDt = LD
t + SD

t (25)

rFt = LF
t + SF

t (26)

Additionally, let y(t, T ) be the column vector of dimension 2Nx1, composed of the con-

catenation of N-maturities of domestic and foreign yields. The representations of domestic

and foreign zero-coupon yields with maturity T at time t are given by an affine function of

the state variables, as shown below,

y(t, T ) =







yD(t, T )

yF (t, T )






= −







AD(t,T )
T−t

AF (t,T )
T−t






−







BD(t,T )′

T−t
0

0 BF (t,T )′

T−t






XJ

t (27)

where AD (t, T ), AF (t, T ), BD (t, T ) and BF (t, T ) are the unique solutions to a system of

Riccati equations which are a natural extension to the system in equation (12). The intercept

terms are the no-arbitrage adjustment terms and the factor loadings capture the level, slope

and curvature interpretations.

Suppose a diffusion process of the form dxt = µ(xt)dt+σ(xt)dWt with µP(xt) and µQ(xt)

denoting the drift terms of the state diffusion process under the physical and risk neutral
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probability measures, respectively. The price of risk is defined as follows.

Γt(xt) = (σ(xt))
−1 [µP(xt)− µQ(xt)

]

(28)

The dynamics of the state vector XJ
t , under the physical probability measure P, are

consequently drawn and given by the following stochastic differential equation,

dXJ
t = κJ,P

[

θJ,P −XJ
t

]

dt+ ΣJdiag[
√

XJ
t ]dW

J,P
t (29)

with κJ,P being set to a diagonal matrix for simplicity1 and W J,P
t being a six dimensional

Brownian motion. The square matrix κJ,P and vectors θJ,P and XJ
t are all six-dimensional.

B. Deriving exchange rate depreciations

In order to derive the exchange rate differences, a formulation for the domestic and foreign

pricing kernels is necessary. Denote by MD and MF the domestic and foreign stochastic

discount factors with the following dynamics,

dMD
t

MD
t

= −rDt dt− ΓD
t (X

J
t )

′dW P
t (30)

dMF
t

MF
t

= −rFt dt− ΓF
t (X

J
t )

′dW P
t (31)

= −rFt dt−
(

ΓD
t (X

J
t )

′ − γ∗ΣJ
√

XJ
t

)

dW P
t (32)

with γ∗ = (0, 0, 0, 1, 1, 1) and W P
t being a six dimensional Wiener process. It is interesting to

note that the foreign stochastic discount factor has two representations given by equations

(31) and (32). The latter is the one used in the extraction of the depreciation of exchange

rates due to its ability to create correlations amongst the domestic and foreign economies

(see Brennan and Xia (2006) and Sarno, Schneider, and Wagner (2012)). In a more general

setting, with n currency pairs, the domestic risk factors act as global risk factors for the

international economy.

1An alternative is to consider a lower-triangular κ
J,P matrix which implies that the foreign economy

relies not only on foreign factors but also on domestic ones (see Jotikasthira, Le, and Lundblad (2015)).
However, a general-to-specific method shows that all off-diagonal elements are insignificant; reinforcing the
idea of independent factors.
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Using equation (22), the dynamics of the exchange rate St are derived. Moreover, using

Ito’s lemma, the dynamics of the logarithm of the exchange rate, denoted by st are also

retrieved. It is interesting to note that the dynamics of the exchange rate are no longer

affine in the state variable.

dSt

St

=

(

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )

)

dt+ γ∗ΣJ
√

XJ
t dW

P
t (33)

dst =

(

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )−

1

2
γ∗ΣJXJ

t Σ
J ′

γ∗′
)

dt+ γ∗ΣJ
√

XJ
t dW

P
t (34)

A clear parallelism is derived between the two equations above and equation (5), keeping in

mind that rDt − rFt is the short rate differential and γ∗ΣJ
√

XJ
t dW

P
t is the disturbance term.

C. Extracting currency risk premia

Having established the endogenous relationship of the variation in the logarithm of exchange

rates implied by the model, the extraction of the risk premium is fairly straight-forward. Us-

ing equation (33), the drift is now composed of two components, the interest rate differentials

and a second component, which englobes the risk premium, as shown below.

rpt = −γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t ) (35)

The risk premium is hence obtained by differencing the expectations of the exchange rate

depreciation under the risk-neutral and physical probability measures. An equivalent repre-

sentation can be derived using the dynamics of the logarithm of the exchange rate.

It is further possible to obtain a representation of the continuously compounded expected

return of exchange rates by taking the expectation, under the physical measure, of equation

(33).

EP
[

Sret
t |Ft

]

= rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t ) (36)

The expected return of exchange rates assumes rational expectations and sets the expecta-

tions of γ∗ΣJ
√

XJ
t dW

P
t , under the data generating process measure, equal to zero.
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IV. Empirical analysis

This section is devoted to the empirical estimation of the bilateral AFNS with stochastic

volatility on domestic and foreign zero-coupon yields. In a first instance, the characteristics

of the data set are studied, sequentially, the estimation method is described and finally, all

empirical results are presented.

A. Data description

The data set consists of monthly nominal yields for the United Kingdom and the United

States, spanning from September 1989 to October 2008 and includes a set of nine maturities

for each country, namely 3, 6, 12, 18, 24, 30, 36, 42 and 48 months. The time period

includes the abandonment of the European Exchange Rate Mechanism in September 2002

by the UK as well as the beginning of the recent financial crisis caused by the burst of

the housing bubble in the US market. The data set’s timespan is specifically selected to

coincide with the timespan of the data set included in Sarno, Schneider, and Wagner (2012),

given it is the most recent paper in this strand of the literature, thus facilitating comparison

of results. However, the use of short and medium term maturities is perfectly warranted

as most violations of the uncovered interest rate parity are reported to occur in the short

run, whilst empirical evidence supports claims of the parity holding in the long run. It is

important to note that the sample conveniently excludes the period of the zero lower bound,

as its inclusion would induce estimation problems. More particularly, during the zero lower

bound, term structure models need to account for non-negative nominal rates that can stay

at zero for a considerable amount of time, without zero being reflecting or absorbing. Such

models include shadow-rate models as well as affine models à la Monfort, Pegoraro, Renne,

and Roussellet (2014).

The data set is kindly made available by Jonathan Wright and can be found on the

following link -http://econ.jhu.edu/directory/jonathan-wright-.

Additionally, the monthly GBP/USD spot exchange rate is obtained through Datas-

tream, and is denominated in US dollars; the same timespan applies, commencing in Septem-

ber 1989 and ending in October 2008.

Table 1 displays the descriptive statistics, namely the mean, standard deviation, skew-

17



ness, kurtosis and first lag autocorrelation, of the level of interest rates for the US and the UK

as well as the level of the exchange rate and logarithm of the exchange rate. The UK yields

are characterized by a positive skew and excess kurtosis, especially at short and medium

term maturities. All variables have a high first autocorrelation, close to unity, indicating

highly persistent behaviors.

[ Table 1 ]

Throughout the paper, differentials of variables are used. Panel A of Table 2 presents

the descriptive statistics for the variables’ differentials. Those are defined as the difference

between domestic and foreign rates for yields at all maturities, and a first lag difference for

exchange rates and the logarithm of exchange rates. Both exchange rate differentials display

strong excess kurtosis. The results for the Fama regression in equation (4) are reported in

Panel B of Table 2. The findings confirm the empirical results found in the majority of

the literature, whereby the intercept of the regressions is statistically insignificant, while the

slope coefficient rejects the null hypothesis of unity at all conventional significance levels.

Additionally, the R squared coefficient displays a very weak goodness of fit. These results

motivate the methodology of incorporating a time-varying risk premium.

[ Table 2 ]

It is common practice to use three factors to fit the term structure of interest rates

of a single country. Additionally, following convention, the level factor affects yields at

all maturities, the slope factor influences short-term yields, whilst the curvature factor is

of importance for medium-term maturities. The maturities used in this empirical section

span from 3 to 48 months, hence justifying the use of three factors per economy. However,

before proceeding to the estimation procedure, a preliminary study is conducted to best

specify the model. A principal component analysis (PCA) is used to determine how many

pricing factors are required to explain the cross-sectional variation of domestic and foreign

yields. The loadings for the six first principal components for the entire set of maturities are

reported on Table 3. The PCA results validate our use of 6 latent factors given the first six

components explain 99.98% of the cross-sectional yield variation.

[ Table 3 ]
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B. Estimation procedure: Kalman filtering

The model, so far presented, naturally adopts a state space representation, with equations

(37) and (38) below being the transition and measurement equations, respectively. The

state-space representation is given below, in its discretized form, with XJ
t =

(

XD
t , XF

t

)′
and

y(t, T ) =
(

y(t, T )D, y(t, T )F
)′
,

XJ
T =

[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))XJ
t + ηt (37)

y(t, T ) = −A(t, T )

T − t
− B(t, T )′

T − t
XJ

t + ǫt (38)

where the measurement errors ηt and ǫt are assumed to be orthogonal and ǫt is i.i.d.

The bilateral AFNS model with spanned volatility is estimated using a quasi-maximum

likelihood method, in the same spirit as in Fisher and Gilles (1996), Jacobs and Karoui (2009)

and Christensen, Lopez, and Rudebusch (2010a). A quasi-maximum likelihood procedure is

straight-forward to implement and requires solely the first and second conditional moments.

The moments conditions are displayed below.

EP
[

XJ
T |Ft

]

=
[

I − exp(−κP(T − t))
]

θP + exp(−κP(T − t))XJ
t (39)

VP
[

XJ
T |Ft

]

=

∫ T

t

exp(−κP(T − s))Σ
√

EP [XJ
s |Ft]

√

EP [XJ
s |Ft]

′
Σ′exp(−κP′

(T − s))ds (40)

The initial conditions for the Kalman filter are set to the unconditional mean and covariance

matrix, given in equation (41) and (42).

X̂J
0 = θP (41)

Σ̂0 =

∫ ∞

0

exp(−κPs)Σ
√
θP
√
θP

′
Σ′exp(−κP′

s)ds (42)

The conditional and unconditional covariance matrix in equation (42) are estimated using

the analytical solutions provided in Jacobs and Karoui (2009).

Finally, to estimate the logarithmic exchange depreciation implied by the model, a dis-
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cretization of equation (34) is used,

∆st+ω =

[

rDt − rFt + γ∗ΣJ
√

XJ
t Γ

D
t (X

J
t )−

1

2
γ∗ΣJXJ

t Σ
J ′

γ∗′
]

ω + γ∗ΣJ
√

XJ
t ∆W P

t+ω (43)

where ∆W P
t+ω is approximated by the following expression.

∆W P
t+ω ≈

[

ΣJ
√

XJ
t

]−1
[

∆XJ
t+ω −

(

κP
(

θP −XJ
t

))

ω
]

(44)

The above expression is derived by re-arranging a discretized version of the state dynamics.

C. Empirical findings

The estimates for the six factor bilateral AFNS model with stochastic volatility are provided

in Table 4. These results are found using solely the US and UK nominal yields with maturities

3, 6, 12, 18, 24, 30, 36, 42 and 48 months. The specification for the mean reversion matrix

κP is set to a diagonal matrix. The results indicate that the first and fourth factor do display

near unit root behaviors. This result is clearer when the discretized states are considered.

The estimates for the unconditional mean θP and diffusion matrix Σ are also displayed. The

two mean reversion parameters, under the risk neutral probability measure, λD and λF are

comparable to the ones found in the literature.

[ Table 4 ]

Table 5 elaborates on the fit of the six factor bilateral AFNS model. Both the mean

and root mean squared error (RMSE) are provided. It is clearly visible that the short

maturities are extremely hard to fit. The shorter the maturity of the first yield in the

sample, the higher the ability of extracting the appropriate cross-section of the yields. The

fact that the shortest maturity used is 3 months, could explain the difficulty in fitting the

short yields appropriately. Using swap and libor rates to bootstrap short rates has the

potential to improve significantly the fit of short term yields, however, this exercise is left for

future research. On the other hand, the fit of yields is successful especially in medium term

maturities. Attention is drawn to Appendix B which contains a robustness check using a

multilateral Gaussian AFNS model. The results for the US, using the bilateral AFNS model
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with stochastic volatility, are comparable to those found in the multilateral Gaussian AFNS,

while the fit for the UK is visibly poorer. This can be explained by the particularity of the

UK term structure of interest rates which has succumbed an inversion of the yield curve.

[ Table 5 ]

Table 6 allows to compare the findings of the model’s implied logarithmic exchange rate

depreciations with the actual variation in log exchange rates. The means of the two variables

are significantly similar, while the standard deviation of the model implied depreciation is

lower, which is a major improvement to the findings under the Gaussian AFNS model. The

mean and standard deviation of the implied risk premium and expected exchange rate return

are also reported. The risk premium is comparable to the ones found in similar studies.

[ Table 6 ]

Moreover, Table 7 indicates that the correlation found between the actual and estimated

exchange rate depreciations is equal to 16.03%. This finding might be misinterpreted as

a poor fit, however it is important to note that comparable bilateral studies have found

correlations well below 10% and on some occasions correlations slightly below 0%, thus indi-

cating an improvement in the fit (see Sarno, Schneider, and Wagner (2012)). Additionally,

the implied risk premium does validate the two Fama conditions, hence providing empirical

support to Fama (1984)’s claim and indicating that the model does offer a correction to the

uncovered interest rate parity by incorporating a time-dependent risk premium.

[ Table 7 ]

In addition, Figure 1 displays the actual and estimated exchange rate depreciations’

time series. It is noticeable that the mean is successfully captured, and the variance is

closely matched. It is also clear that interest rate differentials are not the only drivers

of exchange rate changes. The consideration of unspanned volatility and a macro-finance

approach to the model are two interesting extensions of the current study which are left for

future investigation.

[ Figure 1 ]
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Figure 2 plots the estimated expected exchange rate return and exchange rate risk premia.

In recent literature, claims increasingly stipulate that currency risk premia are countercycli-

cal. This graph also supports theories of countercyclicality, the risk premium thus tracking

expected returns. Assuming the foreign country has a lower interest rate than the domes-

tic country, the risk premium tends to be positive given an appreciation of the domestic

currency is denoted by a decrease of the exchange rate. Vice-versa, a foreign country with

historically higher interest rates than the domestic country will mostly display a negative

currency risk premium in order to reflect the appreciation of the foreign currency which is

coupled with an increase of the exchange rate. The more the domestic country is considered

risky vis-a-vis the foreign country, the larger the magnitude of the risk premium. Hence,

the higher the liquidity constraints and economic uncertainty, the more likely the risk pre-

mium is to increase, thus reinforcing arguments of flight-to-liquidity and flight-to-quality.

Moreover, the expected return on the pound fluctuates between -1.07% and 8.75%; whilst

its mean and standard deviation are equal to 3.06% and 2.08%, respectively. The estimation

provides similar results with Graveline (2006)’s findings using options prices. In particular,

Graveline (2006) did a comparative study between two models, with and without options.

He concluded that models that do not use option prices usually display a lot of variability

in currency expected returns. The findings in this paper show that option prices are not

necessary to retrieve expected return on currencies that have a low variance.

[ Figure 2 ]

Figure 3 provides a graphical representation of the contribution of each of the six risk

factors to the risk premium. Interestingly, this figure corroborates Graveline (2006)’s results

by displaying the same low variances in risk premium contributions for risk factors that

have a greater impact on exchange rates. Hence, the domestic and foreign curvature factors

appear to be the key drivers of both exchange rate depreciations and currency risk premia,

whilst they also appear to be the most persistent factors.

[ Figures 3 and 4 ]

Finally, Figure 4 plots the contribution of a carry trade risk factor to the currency risk

premium. The carry trade factor, in this case, is represented by the short interest rate
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differential. Using equation (25) and (26), the carry trade risk factor is easily derived by

summing the fourth and fifth risk factors (ie. level and slope of the foreign economy, which in

this case is the UK) and subtracting the first and second risk factors (ie. level and slope of the

domestic economy, in this case the US). The contribution of the carry trade factor to currency

risk premia, on average, is equal to -1.60%, whilst the integrity of the currency risk premium

is on average equal to -5.66%. It is clear that the carry trade factor is a driver of currency

risk premia, as demonstrated by Lustig, Roussanov, and Verdelhan (2010). However, the

carry trade factor is found not to contain all the information of currency risk premia in its

integrity, hence rendering the two curvature factors particularly important. Moreover, the

carry trade risk factor’s contribution to currency risk premia mainly contains exchange rate

risk in short maturities, whilst it is contaminated by an additional component for interest

rate risk in long maturities. A recent study by Lustig, Stathopoulos, and Verdelhan (2013)

indicates that carry trade risk premia are indicative of temporary shocks and hence their

term structure tends to be downward sloping. This finding is confirmed by the persistence

of curvature factors which do not feature within carry trade factors. On the other hand,

currency risk premia at long horizons seem to be driven by the permanent component of

stochastic discount factors.

V. Conclusion

In conclusion, in this paper a bilateral AFNS model with stochastic volatility for the joint

pricing of the term structure of interest rates for both the domestic and foreign countries that

is further able to derive exchange rate variations is developed. The model proposed benefits

from the Nelson-Siegel factor loadings yielding a robust and tractable estimation procedure.

The no-arbitrage restrictions enhance the theoretical grounds whilst simultaneously allowing

the extraction of currency risk premia.

This paper compares the effect of the different assumptions set on the diffusion of the

process (ie. Gaussian or with stochastic volatility) on the properties adopted by the estimates

of the yields, exchange rate variations and currency risk premia. To summarize, the use of a

stochastic volatility version rather than a Gaussian take of the AFNS model comes with the

detriment of having an inferior fit for the yields. However, the very inclusion of stochastic
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volatility endows the model with the capacity to capture to some extent the volatility of

exchange rate depreciations and successfully derive a risk premium that respects the two

Fama conditions. The model’s implied risk premium provides, thus, an adaptation of the

uncovered interest rate parity that alleviates the recorded puzzle in the literature whilst

solely assuming a departure from risk neutrality. On the other hand, a Gaussian AFNS

model allows a better fit for the yields, whilst the variance of exchange rate fluctuations is

not fully captured. It is interesting to note that the Gaussian AFNS is easily extended to

a multi-currency model which not only benefits from an elegant estimation procedure, but

also takes advantage of the fact that currency portfolios tend to be more predictable than

individual exchange rates.

Finally, the extension of the stochastic volatility AFNS model to a multi-currency frame-

work is left for future research.
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Appendix A: Bilateral AFNS model with stochastic volatility

Table 1: Descriptive statistics of the level of interest rates and exchange rates

Panel A: Domestic Country -United States-

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

3 months 0.0405 0.0178 -0.1129 2.4204 0.9716

6 months 0.0434 0.0184 -0.1388 2.3578 0.9761

12 months 0.0449 0.0183 -0.1729 2.3694 0.9735

18 months 0.0464 0.0179 -0.1604 2.4065 0.9710

24 months 0.0476 0.0174 -0.1286 2.4320 0.9689

30 months 0.0488 0.0170 -0.0874 2.4381 0.9675

36 months 0.0498 0.0165 -0.0415 2.4270 0.9667

42 months 0.0508 0.0162 0.0061 2.4036 0.9664

48 months 0.0517 0.0158 0.0533 2.3731 0.9666

Panel B: Foreign Country -United Kingdom-

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

3 months 0.0666 0.0289 1.7187 5.1836 0.9790

6 months 0.0632 0.0270 1.7349 5.3003 0.9759

12 months 0.0624 0.0244 1.5979 5.0414 0.9711

18 months 0.0626 0.0233 1.4388 4.5814 0.9708

24 months 0.0630 0.0226 1.2987 4.1433 0.9717

30 months 0.0634 0.0222 1.1902 3.7899 0.9730

36 months 0.0637 0.0219 1.1094 3.5196 0.9745

42 months 0.0640 0.0217 1.0496 3.3161 0.9758

48 months 0.0642 0.0216 1.0046 3.1617 0.9771

Panel C: Exchange rate and logarithm of the exchange rate

Maturity Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

St 1.6778 0.1685 0.5156 2.2601 0.9602

st 0.5126 0.0987 0.3673 2.1500 0.9608

NOTE: The descriptive statistics for the level of domestic and foreign yields at all the maturity set and

the exchange rate and logarithmic exchange rate are given. The data comprises of monthly nominal zero

coupon bond yields for the US and the UK and the GBP/USD exchange rate denominated in US dollars, from

September 1989 to October 2008.

25



Table 2: Stylized facts of interest rates and exchange rates differentials

Panel A: Descriptive Statistics on variable differentials

Variable Mean Standard

Deviation

Skewness Kurtosis Autocorrelation

yD3 − yF3 -0.0260 0.0214 -1.0106 3.0320 0.9747

yD6 − yF6 -0.0198 0.0194 -0.9846 3.1179 0.9796

yD12 − yF12 -0.0175 0.0165 -0.8513 2.9694 0.9726

yD18 − yF18 -0.0163 0.0148 -0.8185 3.0088 0.9695

yD24 − yF24 -0.0154 0.0135 -0.7860 3.0647 0.9668

yD30 − yF30 -0.0146 0.0126 -0.7493 3.1037 0.9644

yD36 − yF36 -0.0139 0.0118 -0.7096 3.1137 0.9623

yD42 − yF42 -0.0132 0.0113 -0.6698 3.0963 0.9606

yD48 − yF48 -0.0134 0.0113 -0.5359 2.9016 0.9627

St − St−1 0.0009 0.0466 -1.3608 8.5506 0.1267

st − st−1 0.0005 0.0270 -1.1966 7.6103 0.1219

Panel B: Fama Regression

Variable α β t[β = 1] R2

-0.0003 -0.0313 -12.2090 0.0006

(0.0028) (0.0845)

NOTE: The descriptive statistics for the differentials of domestic and foreign yields at all the maturity

set and the exchange rate and logarithmic exchange rate are given in Panel A. The results of the Fama

regression are provided in Panel B. The numbers in parenthesis are the standard errors of the estimates.

The data comprises of monthly nominal zero coupon bond yields for the US and the UK and the GBP/USD

exchange rate denominated in US dollars, from September 1989 to October 2008.
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Table 3: First three principal components in nominal yields

Maturity First PC Second PC Third PC Fourth PC Fifth PC Sixth PC

yD3 0.1801 0.3175 0.2843 0.4628 0.0661 0.6147

yD6 0.1862 0.3433 0.2584 0.3217 0.1315 -0.2112

yD12 0.1895 0.3340 0.1353 0.1071 0.0349 -0.3551

yD18 0.1895 0.3101 0.0381 -0.0449 -0.0320 -0.2756

yD24 0.1880 0.2817 -0.0379 -0.1512 -0.0599 -0.1437

yD30 0.1858 0.2527 -0.0979 -0.2266 -0.0584 -0.0110

yD36 0.1833 0.2249 -0.1458 -0.2810 -0.0379 0.1066

yD42 0.1806 0.1988 -0.1844 -0.3212 -0.0059 0.2053

yD48 0.1778 0.1747 -0.2159 -0.3511 0.0323 0.2860

yF3 0.3251 -0.3049 0.4696 -0.3411 0.5749 -0.1615

yF6 0.3106 -0.2494 0.3475 -0.1346 -0.1926 0.3827

yF12 0.2863 -0.1885 0.1653 0.0071 -0.4419 -0.0901

yF18 0.2760 -0.1594 0.0107 0.0729 -0.3792 -0.1258

yF24 0.2679 -0.1442 -0.1083 0.1183 -0.2355 -0.1100

yF30 0.2617 -0.1370 -0.1977 0.1507 -0.0735 -0.0743

yF36 0.2569 -0.1342 -0.2656 0.1750 0.0854 -0.0297

yF42 0.2533 -0.1339 -0.3178 0.1943 0.2339 0.0175

yF48 0.2504 -0.1350 -0.3588 0.2104 0.3702 0.0637

% explained 87.83 97.46 99.61 99.83 99.94 99.98

NOTE: The loadings of the yields of the set of maturities on the first six principal components are given.

The percentage of all bond yields’ cross-sectional variation accounted for by each component is displayed on

the final row. The data comprises of monthly zero coupon bonds from September 1989 to October 2008 for

the United States and the United Kingdom.
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Table 4: 6 factor BAFNS estimates for domestic and foreign rates

κP
i,i θP Σi,i

0.1000 0.0099 0.0163

(0.000032) (0.000034) (0.000120)

0.1996 0.0243 0.0583

(0.000032) (0.000058) (0.001229)

0.4997 0.0328 0.0325

(0.000032) (0.000077) (0.000216)

0.0991 0.0100 0.0319

(0.000048) (0.000068) (0.008248)

0.1985 0.0396 0.0841

(0.000077) (0.000901) (0.030020)

0.4995 0.0264 0.0442

(0.000041) (0.000625) (0.024991)

NOTE: The estimated parameters of the κP matrix, θP vector, and diagonal diffusion matrix Σi,i are given for

the six-factor bilateral AFNS model for domestic and foreign yields. The estimated value of λD is 0.4974 with

standard deviation of 0.000045 and λF is 0.4965 with standard deviation of 0.000156. The numbers in parentheses

are the standard deviations of the estimated parameters. The log likelihood is equal to 10290.1208.
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Table 5: Measures of fit for the bilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

yD3 17.1459 36.9274

yD6 -1.9856 16.1301

yD12 -0.7299 5.5918

yD18 -0.2130 1.6230

yD24 0.0060 0.0382

yD30 -0.0479 1.0435

yD36 -0.4106 2.3444

yD42 -1.0902 3.9866

yD48 -2.0643 5.8888

yF3 -14.7128 47.0974

yF6 9.6541 18.0715

yF12 6.5452 8.6486

yF18 0.6465 4.6115

yF24 -1.1010 1.3787

yF30 0.9950 3.3367

yF36 6.0909 6.8855

yF42 13.3451 9.7477

yF48 22.0650 16.1391

NOTE: The mean and RMSE of fitted errors of the six-factor bilateral AFNS model with stochastic volatility

for domestic and foreign yields are given. All values are measured in basis points. The nominal yields span

from September 1989 to October 2008.
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Table 6: Model implied findings

Variable ∆st+1
ˆ∆st+1 ˆrpt EP

[

ˆSret
t |Ft

]

Mean 0.0005 0.0006 -0.0566 0.0306

Standard deviation 0.0270 0.0172 0.0224 0.0203

NOTE: The mean and standard deviation of the implied exchange rate depreciation, risk premium and exchange

rate expected return are provided. The actual depreciation exchange rate mean and standard deviation are

also included to facilitate the comparison with the estimates. The exchange rates span from September 1989

to October 2008.
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Table 7: Analysis of the model implied exchange rate depreciation and risk premium

Panel A: model implied exchange rate depreciation

corr(∆st+1, ˆ∆st+1) 0.1603

Panel B: Fama conditions

V R = ˆrpt
∆ ˆst+1

1.7017

corr(∆ ˆst+1, ˆrpt) -0.0718

NOTE: Panel A displays the correlation between the actual and model implied exchange rate depreciations.

In panel B, the variance ratio of the implied risk premium and actual exchange rate depreciations are provided.

The correlation of the implied risk premium and actual exchange rate depreciations are also displayed. If

the variance ratio figure is above 1 and the correlation is below 0 then the Fama conditions are verified. The

exchange rates span from September 1989 to October 2008.
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Figure 1: Actual and model implied log exchange rate depreciations
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NOTE: Comparison of the actual and model implied log GBP/USD exchange

depreciations across time. The exchange rates span from September 1989 to October

2008.
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Figure 2: Expected exchange rate return and exchange rate risk premium
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NOTE: Comparison of the expected exchange rate return and exchange rate risk

premium across time, with exchange rates spanning from September 1989 to October

2008.
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Figure 3: Contribution of risk factors to risk premium
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NOTE: Comparison of the contribution of each risk factor to the risk premium.

The six risk factors considered are namely the domestic and foreign level, slope and

curvature factors.
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Figure 4: Contribution of the carry trade factor to risk premium
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NOTE: Contribution of a carry trade risk factor to the risk premium. The carry

trade factor is computed by summing the foreign-UK level and slope factors and

deducting the domestic-US level and slope factors.
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Appendix B: Multilateral Gaussian AFNS model

This appendix segment is dedicated to conducting a robustness check with a different speci-

fication for the model. The empirical exercise, for this section, consists of an analysis of the

Gaussian AFNS model extended to a multi-currency setting. Specifically, the United States

is preserved as the domestic country and six more countries, including the United Kingdom,

are treated as foreign countries. The model investigated includes twenty one latent factors;

three factors for each country in the sample.

The data set consists of monthly nominal yields for the United States, the United King-

dom, Australia, Canada, Switzerland, Japan and Sweden spanning from January 1995 to

May 2009 and includes a set of six maturities for each country, namely 3, 6, 12, 24, 36 and

48 months. The yields are available in Jonathan Wright’s homepage.

Moreover, the monthly GBP/USD, AUD/USD, CAD/USD, CHF/USD, JPY/USD

and SEK/USD spot exchange rates are obtained through Datastream, using a denomination

in US dollars. The same timespan applies, commencing in January 1995 and ending in May

2009. The data set is comprised of a balanced panel and is truncated vis a vis to the empirical

analysis’ data set due to unavailability of data.

It is important to note that the model is Gaussian, which allows the uncontested use of

the Kalman filter to obtain the maximum likelihood estimates.

Table 8 reports the fit of the yields for all seven countries across the entire set of matu-

rities. The mean and Root Mean Squared Error (RMSE) indicate that with the exception

of the three month yield for the US and the UK, all remaining yields are strikingly well

captured.

[ Table 8 ]

Figures 5 to 10 display the comparison between the actual and the model implied logarithmic

exchange rate depreciations for all the six pairs of currencies. The mean of the exchange

rate depreciations seems to be appropriately captured, however their variance is clearly

underestimated. The correlation between the two time series above mentioned tend to be

significantly lower than in the setting of the bilateral AFNS model.

As a final note, the fit of the yields is superior under the Gaussian multilateral AFNS
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rather than the bilateral AFNS with stochastic volatility. However, there seems to be an

obvious trade-off between fitting yields and capturing the exchange rate depreciation prop-

erties. As Sarno, Schneider, and Wagner (2012) suggest, selecting between two extensions

of a given model, in this case between the bilateral AFNS with stochastic volatility and

the multilateral Gaussian AFNS model, will depend entirely on the purpose of the exercise,

hence by whether the objective of the analysis is to fit yields or exchange rates.

[ Figures 5 to 10 ]
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Table 8: Measures of fit for the multilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

Panel A: Fit for domestic yields - US

yD3 23.2560 35.2626

yD6 0.5516 7.3573

yD12 -0.0003 0.0086

yD24 -0.3060 1.1311

yD36 0.0000 0.0000

yD48 -0.9072 2.1180

Panel B: Fit for foreign yields - UK

yF3 -30.9604 46.0448

yF6 -3.2131 8.6486

yF12 0.1757 0.6775

yF24 0.0587 0.3522

yF36 -0.0001 0.0003

yF48 0.3937 0.9682

Panel C: Fit for foreign yields - Australia

yF3 -0.1564 5.3435

yF6 0.0000 0.0000

yF12 -0.0984 2.2626

yF24 0.0000 0.0000

yF36 0.0000 0.0000

yF48 -0.5561 2.2206

Panel D: Fit for foreign yields - Canada

yF3 -1.2376 7.6264

yF6 0.0000 0.0000

yF12 0.0033 3.1487

yF24 -0.0643 0.1456

yF36 0.5218 0.8229

yF48 -1.2093 2.1356

NOTE: The mean and RMSE of fitted errors of the multilateral Gaussian AFNS model for domestic and

foreign yields are given. Panel A displays the fit for the US (domestic) yields, panel B for the UK (foreign),

panel C for Australia (foreign), panel D for Canada (foreign), panel E for Switzerland (foreign), panel F

for Japan (foreign) and panel G for Sweden (foreign). All values are measured in basis points. The nominal

yields span from from September 1989 to October 2008.
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Table 8 Continued: Measures of fit for the multilateral AFNS model

Maturity in months Mean(in bp) RMSE(in bp)

Panel E: Fit for foreign yields - Switzerland

yF3 6.6244 13.1451

yF6 0.0531 0.6131

yF12 -2.8266 5.4623

yF24 -0.7319 2.5425

yF36 0.1603 0.2882

yF48 -0.8433 1.9154

Panel F: Fit for foreign yields - Japan

yF3 0.2589 0.5446

yF6 0.0000 0.0000

yF12 0.0000 0.0001

yF24 0.4940 0.8120

yF36 0.0000 0.0000

yF48 -2.1471 3.0299

Panel G: Fit for foreign yields - Sweden

yF3 -0.9590 5.9960

yF6 0.0003 0.0006

yF12 -0.4138 2.1575

yF24 -0.0026 0.0082

yF36 0.2150 0.4063

yF48 -0.9196 1.8548

NOTE: The mean and RMSE of fitted errors of the multilateral Gaussian AFNS model for domestic and

foreign yields are given. Panel A displays the fit for the US (domestic) yields, panel B for the UK (foreign),

panel C for Australia (foreign), panel D for Canada (foreign), panel E for Switzerland (foreign), panel F

for Japan (foreign) and panel G for Sweden (foreign). All values are measured in basis points. The nominal

yields span from from September 1989 to October 2008.
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Figure 5: Actual and model implied log exchange rate depreciations for the GBP/USD
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NOTE: Comparison of the actual and model implied log GBP/USD exchange

depreciations across time.
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Figure 6: Actual and model implied log exchange rate depreciations for the AUD/USD
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NOTE: Comparison of the actual and model implied log AUD/USD exchange

depreciations across time.
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Figure 7: Actual and model implied log exchange rate depreciations for the CAD/USD
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NOTE: Comparison of the actual and model implied log CAD/USD exchange

depreciations across time.
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Figure 8: Actual and model implied log exchange rate depreciations for the CHF/USD

1995 1995.5 1996 1996.5 1997 1997.5 1998 1998.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

 

 

actual
model

NOTE: Comparison of the actual and model implied log CHF/USD exchange

depreciations across time.
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Figure 9: Actual and model implied log exchange rate depreciations for the JPY/USD
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NOTE: Comparison of the actual and model implied log JPY/USD exchange de-

preciations across time.

44



Figure 10: Actual and model implied log exchange rate depreciations for the
SEK/USD
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NOTE: Comparison of the actual and model implied log SEK/USD exchange de-

preciations across time.
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