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Abstract

In this paper we give a precise definition of long-run causality in a multivariate
non-stationary, possibly cointegrated, framework. A variable is said to be causal
for another in the long run if knowledge of the past of the former improves long-run
predictions of the latter. In a VAR framework, we show that long-run non-causality
can be easily tested with a Wald statistics, conditionnally on the cointegration rank.
The methodology is used to study long-run causal links between US, German, and
French long-term interest rates from January 1990 to June 1997.
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1 Introduction

One of the applications of estimating dynamic systems is to test for causality between sub-
sets of time series. Indeed, causality plays a key role in studying the predictive properties
of multivariate time series models and, more specifically, in testing exogeneity properties
(Engle et alii, 1983). Causality is then defined in the usual Granger (1969) sense.

In a stationary framework, tests for causality are straightforward. In integrated sys-
tems, however, such tests are much more complex, essentially due to the uncertain number
of unit roots in the dynamics. These empirical difficulties have been extensively studied
in the literature (Sims et alii, 1990, Mosconi and Giannini, 1992, Toda and Phillips, 1993,
Toda and Yamamoto, 1995) and practical recommendations are available to implement
causality tests in possibly cointegrated systems. It is worth emphasizing that, in this
strand of literature, causality is then defined as a one-step ahead prediction improvement
property.

Other authors (Stock and Watson, 1989, Liitkepohl, 1990, Liitkepohl and Reimers,
1992) prefer to measure causal effects by estimating confidence bands on dynamic mul-
tipliers. Apart from the well known debate about the orthogonalization of the impulses,
this approach has the advantage of providing a specific measure of persistency of shocks
through the “long-run” dynamic multipliers. Moreover, the estimation of the long-run dy-
namic multipliers is easy to perform, whatever the cointegration properties of the dynam-
ics are, provided that the orthogonalization is achieved by using a Choleski decomposition
(Liitkepohl and Reimers, 1992).

Careful scrutiny of the above mentioned literature reveals two kinds of difficulties.
First, the usual Granger characterization seems to be insufficient to measure persistent
causal links, since the associated prediction improvement properties only deal with one
step-ahead predictions. It should be noted that the error-correction effects are often
associated with long-run causal links in cointegrated system, along the lines suggested by
Granger (1988) and Granger and Lin (1995). However, these effects do not seem to be
related to prediction improvement properties for the levels of the variables. In the same
spirit Toda and Phillips (1993) do not explicitly propose a distinction between short-run
and long-run causalities, even if they focus on sufficient conditions for non-causality that
involve, separately, “short-run” and “long-run” parameters as they are usually denoted
in the Error Correction Model (ECM) framework.

Second, as pointed out by Bruneau and Nicolal (1995), the non-nullity of long-run
dynamic multipliers cannot generally be interpreted in terms of prediction improvement.
Actually, an impulse response analysis is not explicitly aimed at measuring causal links
between time series but rather at identifying “structural shocks” that may account for
the fluctuations of the system. The problem is that certain identification schemes may
exclude any association between the shocks and the initial series (Blanchard and Quah,
1989). Therefore, the effect of these shocks cannot be seen as a causal link between the
series of interest.

In this paper, we give a precise definition of long-run non-causality in a multivariate
context, which can be interpreted in terms of prediction improvement for long-term pre-
dictions: a variable X is not causal for another variable Y in the long-run if and only if
the knowledge of the past of X does not improve the long-run prediction of Y. In a VAR
framework, we prove that long-run non-causality is equivalent to a bilinear constraint on
long-run dynamic multipliers and parameters of the VAR in levels. We show that this



constraint can be easily tested in this framework, conditionally on the long-run properties
of the dynamics, that is, on the cointegration rank.

The remainder of the paper is organized as follows. In Section 2 we define the long-
run causality property and we give a statistical characterization of this property in a
non-stationary VAR framework. Section 3 details the test procedure. Section 4 presents
an illustration of the method, which is used to study the long-run causal links between
US, German, and French long-term interest rates. Section 5 concludes.

2 Unidirectional Long-Run Causality

Granger causality is characterized as a property of prediction improvement. Here, we are
interested in long-run causality from X; to X;. Accordingly, we have to focus on prediction
improvement properties for long-term predictions, and we therefore compare, for an

horizon h, which is “large enough”, the best linear predictions KL (Xk,Hh ‘{Xi,t;i + k,‘}g

and F'L <Xk’t+§J{Xi’t; 1<7< N}), where & denotes, for any 7, 1 < i < N, the set of
past variables X, , k> 0. More precisely, we adopt the following definition:

Definition 1 For the N-dimensional process X = ( Xy - Xp )/, integrated of order
one, X, is satd Lo be not unidirecltional prior causal for Xy in the long-run if and only if,
al any date t, the knowledge of the lagged variables X, p, h > 0, does not improve the
best linear long-run prediction of Xy, according to, Vi > 1:

Jdim BL (X [{Xai 1 S i< N} ) = lim BL (X [{Xas 1 Si< N #j}).
We therefore define causality along the lines suggested by Granger (1969), since we
focus on the prediction performance of the whole past of the assumed causal variable. It
differs from the usual definition of causality, since it deals with infinite horizon predictions.
Now, we focus on a testable condition of long-run non-causality, as defined above.
Suppose that the dynamics of the N-dimensional process X; obeys a non-stationary VAR
model of finite order p:

P (L) Xt = th + Et, Vi Z 1 (1)
where & (L) = Iy—Y" | ®,L*, & (0) = Iy, and {z;},., denotes a white noise process with a
regular covariance matrix equal to ¥. D, is a d-dimensional vector of zero-one dummy vari-

ables. Moreover, suppose that det ® (z) has all its roots outside or at z = 1. Accordingly,
the white noise process {5t}t21 is the process of the canonical innovations of the process

X. It is useful to introduce the (N, N (p+ 1)) matrix & = { In =%, -+ =9, }

Then, long-run non-causality is characterized according to the following proposition:

Proposition 1 Consider the N-dimensional process X = ( Xy oo Xy )/, integrated
of order one, whose dynamics obeys the VAR model (1). Then, X; is not unidirectional
prior causal for Xy in the long-run, if and only if the condition:

{; Cii (1) @y (L) = o}



or, equivalently,

]
is satisfied, where C (L) denoles the canonical moving-average operator of the Wold de-
composition (MA) written for the first differences:

AX, = C (L) (2 + pDy) . 2)

Proof: See Appendix.

It is worth emphasizing that the previous definition holds, whatever the cointegration
rank is. Moreover the characterization of long-run non-causality is not affected by the
introduction of dummy variables. Nevertheless it is obvious that the estimates of the VAR
and MA parameters take into account the effects of these dummies on the dynamics.

Let us note that the “neutrality” condition, {Cy; (1) = 0}, as defined by Stock and
Watson (1989), in an integrated, not cointegrated, bivariate system, appears as a necessary
condition for excluding long-run causality, as shown by the non-causality condition of
Proposition 1.

Moreover, in the bivariate case, the long-run non-causality condition reduces to the
non-causality condition in the usual Granger (1969) sense:

long-run non-causality Granger non-causality
Indeed the following equivalences are true:
{Cy; (1) =0 and Cy (1) @; (L) =0} < {Ck; (1) = 0 and Py, (L) = 0}
and
{Cy; (1) =0 and ®y; (L) =0} & {Dy; (L) = 0}.

The first equivalence results from the non-stationarity of the variables, which excludes
the joint nullity of the long-run multipliers C};(1) and Cix(1). The second equivalence

is obtained by inverting the VAR model: in that case, (1 — L)X, = Mgt where

o(L)
det (P (L)) = ¢ (L) (1 — L) and adj(P (L)) denotes the adjoint of matrix ® (L), and one
obtains Cy; (L) = —%é—?.

By contrast, for higher dimensional systems, the variable X; may be not unidirec-
tionally prior causal for X in the long-run, but prior causal in the usual Granger sense

{®; (L) # 0}. Indeed, the following conditions may jointly hold:

{®; (L) # 0 and ;; (L) # 0} (Granger causality)
and

{Ck; (1) =0 and (Cyx (1) @4, (L) + Cy; (1) @45 (L)) = 0} (long-run non-causality)

As in the bivariate case, neutrality remains a necessary but not sufficient condition
for long-run non-causality. More generally, the neutrality restriction appears to be an
interesting restriction to test for long-run non-causality, although it is not sufficient to be
interpreted as a prediction improvement property for long-run predictions.

It is also interesting to relate the long-run non-causality property to the significance of
the error-correction terms in the ECM representation of the dynamics. Indeed, Granger
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(1988) suggests to analyze “long-run” causality in a bivariate cointegrated system by
focusing on the significance of the error-correction terms. Let us briefly recall the as-
sumptions of the ECM representation which will be used later: this representation can
be written as

P (L) AXt = HXt,1 —I— th —I— Et, (3)
whereI' (L) = Iy—Y 0 | I, LI, Ty = =3P, @i =1,...,p—1,and I = — (Iy — TV, ).
We define the (N, N (p — 1)) matrix I = { ry - I'py } If there are 7 (0 < r < N)

cointegration relationships, we have II = o3, where a and 3 are (N,r) matrices, with
[ defining the cointegration vectors. Since AX; is stationary, I1X, ; must be stationary
too and it must be a linear function of 7, | = ﬂ/Xt,l. Equation (3) can be rewritten as:

P (L) AXt = OéZt,1 —I— th —I— Et. (4)
In the bivariate cointegrated case, equation (4) reduces to, omitting dummy variables:

AXyy = m(D)AXye 1+ 7 (L) AXy 1+ 0121+ e
AXoy = Y1 (L) AXy 1+ 7 (L) AXo 1+ aaZi 1 + 91

where 7, = 51 X1¢+ 2 X9 and it can be proved that (a1, as) # (0,0) (Engle and Granger,
1987). Thus, if the lagged error-correction term Z; ; influences only AXy (oy = 0),
then X, should not be prior causal for X; in the long run (Granger, 1988, Granger and
Lin, 1995). Note that, in Granger and Lin (1995), the condition {a; = 0} is shown to be
equivalent to the nullity of Hosoya’s causality measure computed for frequencies w near
(but different) from zero, indicating something like non-causality in the long run. We
note that condition {ca; = 0} appears as a necessary condition of long-run non-causality
as characterized in Definition 1. Indeed the condition {a; = 0} is equivalent to Ciy(1)
being equal to zero, since C (1) &« = 0. Note however, that, like in the non-cointegrated
case, in bivariate systems, long-run causality and causality in the usual Granger sense are
the same, since condition {®15 (L) = 0} implies {®15 (L) =0 and C5 (1) = 0}.!

Let us consider the trivariate case to illustrate the role plaid by an auxiliary variable in
transmitting the long-run causal links. Suppose that we focus on long-run causality from
X5 to X in the system { X7, X5, X3} whose dynamics has two cointegration relationships.
In that case, C (1) is of rank one. Suppose that C1; (1) = 0. Then C (1) reduces to

00 Cy(1)
C(1)=]0 0 Cyp(1)
0 0 Ci(1)

Accordingly, the following non-causality condition holds:
{012 (1) =0 and A32 (L) = 0}

because (3 (1) cannot be null, according to the non-stationarity of Xj.
First, we notice that, as in the bivariate case, the neutrality is necessary but not
sufficient to exclude long-run causality.

tadj(C(L)) = (1 — L)"*®(L) (see Engle and Granger, 1987), and, for r = 1, adj(C(L)) = ®(L).



Second the vector of error-correction terms

must satisfy:

because they obey:

Q11 Q2
C (1) Qo1 (99 =0
Q31 Q39

The nullity of the error-correction terms appears one more time necessary but not
sufficient to exclude long-run causality. More generally, the error-correction effects are
better related to weak exogeneity properties as pointed out by Johansen (1992) and
Urbain (1992).

Third the non-causality condition highlights the crucial role plaid by Xj5. Indeed
long-run non-causality implies the nullity of Az, (L).

Finally it is worth emphasizing that this condition cannot be expressed as a linear
constraint on the parameters of the VAR in levels or the VECM models.

3 Statistical Analysis of Long-Run Causality

To implement the test for long-run non-causality condition, we have to estimate a function
of the long-run dynamic multipliers C (1). As C (1) cannot be directly estimated, we have
to estimate an auxiliary VAR representation, which is inverted in a second step. In the
cointegrated case, a useful alternative representation of VAR in levels and ECM is the
restricted VAR representation (RVAR) with p lags (Campbell and Shiller, 1988, Mellander
et alii, 1990, Warne, 1993):

B(L)Y: = pD¢ + ne, (5)

where:

SN_» .
E:DL(L)MXMM:{ " ]ﬂlt:M&,P:Mﬂa

/6/
| v 0 | A-L)Iy-, O

D(L>_l 0 (1—L)L,]’DL(L)_[ 0 ]7,]'

The (N —r, N) matrix Sy_, can be chosen such that: Sy_, = { In—r On—rp) }

It is easy to see that if {X;} is cointegrated of order (1,1), with r cointegration rela-
tionships, then the following relation holds between the parameters of the ECM and the
RVAR models:

B(L)= M [T (L) M D (L) - a’L] (6)

where (]\%“V): [ Ow,vr) « }

Given the RVAR representation, long-run dynamic multipliers are deduced by simply
inverting the B(L) matrix of polynomials as:

C(L)=M'D(L)B(L)'M (7)

in which dynamic multipliers Cj, (with C (L) = $7°, C, L") are directly introduced (Mel-
lander et alis, 1990).



3.1 Estimation of the Long-Term Dynamic Multipliers and Test
for Neutrality

The estimation of the long-term dynamic multipliers is based on the RVAR representation.
This allows us to estimate directly these multipliers and not their approximation > C,
obtained for a H large enough, as in Liitkepohl and Reimers (1992) who used the VAR
in levels, estimated from the ECM. Once the matrix M (containing the ECM long-run
parameters), and B (L) (the parameters of the RVAR representation) are estimated, one
can directly deduce the estimators of long-term dynamic multipliers and their asymptotic
distribution. Note that M can be considered as known. This result comes from the rapid
convergence of the long-run parameters (Stock, 1987, and Liitkepohl and Reimers, 1992).

We assume that N time series X = ( Xy oo Xy )/ of length T" and p presample
values are available. We define AX = ( AX, - AX, )/. The parameters of interest
from the ECM are © = { —I —« ], with 6§ =vec(©), but one also has to deal with
U= { Iy -T —« } = { In 0 } in the following, with ¢ =vec(¥). We also define the

(N(Np+7),N(N(p—1)+r)) matrix ( = 2£ = [ Oz v ip-1y4) ] “vec” denotes the
Iivg-1)+r)
column stacking operator.
At a first step, one has to test for the cointegration rank r and to estimate the coin-
tegration vectors (3. For this purpose, one can use the Johansen’s (1988) maximum-
likelihood procedure to estimate the parameters of the ECM representation (3) and

their asymptotic distribution. The asymptotic distribution of @ is given by (Johansen,

1988), by denoting X | = (Xifp X/Tfp )/ and X = ()N(i )N(/T )/ where
Xp=(AXiq o AXy )

VT (0 0) % N (0,%)
with

_ ]N(pfl) 0 -1 ]N(pfl) 0 /
E@—l 0 3 Q 0 3 QX

where .o oo
Q= pliml [ XX ~ XXT00 ]
T | X 1 X' X (X' ,0
and Y is the covariance matrix of «.

At a second step, the estimators of the RVAR parameters and their asymptotic co-
variance matrix are derived from the estimators of the ECM parameters. Accordingly,
one can easily obtain the B(1) parameters from (6). In order to obtain the asymptotic
covariance matrix of B(1), one uses the assumption that long-run parameters, contained
in M, can be treated as known, as pointed out before.

Then from (7), the long-run dynamic multipliers C'(1) are estimated by:

C()=M'DL)BQ) "' M=M'D1)[MT Q)M D)~ Ma*| M

that is:
C(1)=M"1'DQ)[MIG] ' M (8)



Avec(T'(1))

AM71J O(N
where = pr) | A = Q) o
(Npgr,N) [ O, N—r) 1, pn)  ovee® D N
and J = I . €, 1s the (p, 1) vector of ones.
(N.N-r) O, N —r)

Finally, the asymptotic distribution of the long-run dynamic multipliers is given by
the following proposition, by denoting ¢ = vec(C' (1)):

Proposition 2 If X, is a Gaussian process as in (1), the asymptotic distribution of long-
term dynamic multipliers is given by:

VT (6—¢) L N(0,%,) (9)

with
Y= AT\

and

A= (M @M 'D(1)) <((M@G)1)’ ® (M\IJG)1> (G'@ M) .

Proof: The asymptotic covariance matrix of ¢ is given by:

Oc _, Oc
== 0™ a0
with
dc dc dvec [MIG) " dvec [MUG] O
90~ Ovec MUG] ¥ Ovec [MUG] 00 90
such that
% = (M oM D)) (((M@G)l)’ ® (M\IJG)1> (G'® M)

Note the asymptotic distribution of ¢ is also given in Johansen (1995) or in Paruolo
(1997). From this proposition, it is easy to perform tests for neutrality. One has just to
estimate the ECM, derive the RVAR parameters, and apply Proposition 2.

3.2 Testing for Long-Run Non-Causality

Now, if one wants to test for the null hypothesis that X is not prior causal for X}, in the
long-run, one has to estimate the expression: Y | Cy; (1) @4, (L) for j and k, which can
be written as u},C (1) ®v;. The (N, N (p+ 1)) matrix ® contains the parameters of the
VAR in levels. It can be estimated as:

b= |Iy =@ .. =0, |=[Iy I —a|D=uD
where: ) }
In —=In 0 0 0
0 Iy —Iy
0o 0 Iy 0 0
(Np+r,N(p+1)) : : L Iy 0
0 0 0 Iy —In
0 80 0 0




The (N, 1) selection vector u; has unity in the kth element and zero elsewhere, and v; is
the (N (p + 1), p) matrix, the Ith column of which has unity in the (N (I — 1) + j)th row,
for I =1,...,p. Note that v;isa (N (p+1),p) (not (N(p+1),p+ 1)) matrix, because
one constraint is redundant among the p last (N, N) matrices of C (1) ®. This can be
easily seen, since one has:

C®=[CQ) CO)(~Iy-T) COT-Ty) - CAT,2-Tp1) C(HT, ],

where the sum of the (p 4+ 1) matrices is null. This result is due to the fact that the second
matrix, which should be C (1) (—Iy — Ty — af’), reduces to C (1) (—Iy —I';) (because
cointegration implies C'(1)a = 0). So only the p first non-redundant constraints are
tested. Then, we define the estimator of the function:

9r;j (0) = vec (u,C (1) Duy)
which can be rewritten as:
g; (0) = vec (up, [M ' D(1) (MEG) ™ ¥D| ;) = Agyvec [(MTG) ' ¥D|  (10)
where: Ay; =v; @ upM 1D (1).

Proposition 3 If X, is a Gaussian process as in (1), the asymptotic distribution of gy; (0)

18:
VT (915 (0) = 915 (0)) > N (0,%,,) s Yk, j=1,.., Nk #J, (11)
where:
89@ 3gk]
Fon = gy
and 9 9
9ki _ OGkj

with

8gkj 8 -1

Jur — Auggee (M) wD)

= —Ay; ((ID) © Iy) (MIG) " @ (MPG) ) (G @ M)
Ak (Ing 1y © (MEG) 1) (D' @ Iy) .

Proof: This result is obtained from equation (10), which implies that:

OGr; 1
891/) I Ay [%Vec ((M\IJG) @D)]
= Ay l((\IJD)’ ® ]N) 90 ——vec (M\IJG)

+ (Ing 1) © (MEG)~ ) By e (UD)| .

It is now possible to propose a test statistics of long-run non-causality:

9



Proposition 4 If X, is a Gaussian process as in (1), the test of Hy: gy;(0) = 0 is based
on the statistics:

N sa y—1 " , .
& =Tai5 (0) (Zos) 905 (0), Vhj =1, Nk £, (13)
which is distribuled as a x% with p degrees of freedom.

Proof: The asymptotic distribution of &; is directly deduced from equation (10). The
degree of freedom (p) comes from the fact that p non-redundant constraints are tested.

In derivating our test statistic, we use the VAR in levels and the MA representations.
This reference to the MA representation is intended to clarify the presentation, since the
long-run non-causality is defined as C (1) ® (L) = 0. Besides, the neutrality condition,
which appears as a necessary condition to exclude long-run causality, is directly defined
as Cy; (1) = 0. But it is worth noting that the expression of gi; (¢) in equation (10)
essentially depends on the ECM parameters (f). Thus the implementation of our test,
using equation (13)), can be directly derived from the ECM parameters only.

4 TIllustration

By way of illustration, we use the previous definition of causality to analyze international
links between long-term interest rates. Many studies have focused on causal links between
interest rates. For example, Arshanapalli and Doukas (1994) explored common trends
in systems of Eurorates. More specifically, some authors questioned the asymmetric
functioning of the EMS, by testing the existence of causality from German rates toward
other EMS member countries rates (Germany being seen as the leading country of the
EMS). See, e.g., von Hagen and Fratianni (1990), Kirchgéssner and Wolters (1993), and
Henry and Weidmann (1995).

Many authors studied international linkages of long-term interest rates, often from
the US-European connection point of view (for example, Cumby and Mishkin, 1986,
Kirchgassner and Wolters, 1987, Johnson, 1993, Hansen, 1996). Generally these studies
did not take into account the possible long-term relationships between interest rates (with
the exception of Hansen, 1996). To shed some light on international long-run causal links
between long-term interest rates, we analyze a system of US, German, and French long-
term interest rates. The dataset consists of 10-year benchmark interest rates for the
Deutschmark (DEM), the French franc (FRF), and the US dollar (USD). The sample
covers weekly data from January 5, 1990 to June 27, 1997 (Graph 1).2 We aim at
comparing the results obtained from the various approaches commonly used to assess
causal links “in the long run” —that is error-correction terms and neutrality analysis—
and our long-run causality approach.

4.1 Cointegration Analysis

As a first step, augmented Dickey-Fuller tests indicate that the null hypothesis of a unit
root cannot be rejected for each of the interest rate series, but that it is rejected for each

?Data come from Datastream. All the computations were done using GAUSS. Our GAUSS code of
the programm is available upon request by e-mail.
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of the changes in interest rates (the results are reported in Table 1). These results are
confirmed by the multivariate tests for stationarity (based on the estimates of the ECM
using maximum likelihood methodology). We then conclude that 10-year interest rates
are integrated of order one.

The ECM for the joint dynamics of US, German and French rates is estimated using
Johansen’s (1988) maximum likelihood methodology. Tests for the deterministic compo-
nents of the system lead us to allow a constant term in the cointegration relationships. The
optimal lag length, selected by the HQ (Hannan and Quinn, 1979) information criterion®,
is p = 4, whatever the cointegration rank. Lastly, based on the usual maximal eigenvalue
Amaz and trace statistics Ayqee, proposed by Johansen (1988) and Johansen and Juselius
(1990), at the significance level of 5%, we choose one cointegration vector (r = 1) (Table
2). The corresponding estimated cointegration vector can be written, when normalized

with the USD coefficient:
USD, —4.67TDEM, + 3.062FRF, + 3.166 = 2,

which is depicted in Graph 2.

Exclusion tests (not reported here) indicate that none of the variables can be excluded
from the long-term relationship. The ECM estimates are reported in Table 3. Some
dummy variables have been included in the model to take account of large shocks on

4 Multivariate and univariate misspecification test

German and French interest rates.
statistics are reported in Table 4. Residuals are not serially correlated; they do not
present any ARCH effects, and they satisfy the normality assumption. Graph 3 shows
the residuals.

More information regarding the links between the variables of the system can be
obtained from the ECM estimates. First the error-correction terms are significant in the
three equations, although at a 8 percent significance level only for German rates. Therefore
all rates are causal vis-a-vis each other, and, accordingly, one cannot identify any leading
rate in the long-run, according to the definition proposed by Granger (1988) and Granger
and Lin (1995).”

We then turn to the so-called short-run causality, which involves the first differences
of the variables. This term is not quite appropriate, since it has something to do with
the long-run properties of the series, as indicated by the long-run non-causality condi-
tion (proposition 2). But this condition involves AR parameters and, accordingly, the
parameters of the “short-run dynamics” of the ECM. We notice that the US rate have a
large and significant effect on the German rate; conversely the German rate has a smaller
impact on the US rate. In the short run, the German rate also influences the French rate,
whose lagged changes are never significant.

3The HQ information criterion for a model ¢ is defined as: HQ; = In (det (X;)) + 2p; In (In (7)) /T,
where 3; is the covariance matrix of the residuals of model 7, p; is the number of estimated parameters
in model 7, T is the number of observations.

4The dummy variables are for 92:09:04, 94:06:17, 94:07:29, 94:09:30 and 97:01:17. The first one is
intended to take into account the strong decrease in European rates; we introduce the dummy variables
of 94 to explain the large movements at the end of the period of rising rates; lastly the goal of the 97
dummy variable is to account for the large decrease in French interest rate. It is worth noting that these
dummy variables help to obtain normality of residuals.

5Note that the analysis of the so-called matrix of long-run responses, II, provides the same interpre-
tation, since we just have one cointegration vector.
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To summarize, the analysis of the ECM estimates does not provide us with a clear
identification of the leading rates in the long run: the German or/and US rate? This is
the reason why we turn to neutrality and long-run causality analysis.

4.2 Neutrality and Long-Run Non-Causality Results

Since there is only one cointegration vector, two independent stochastic trends drive the
long-run dynamics of the system. Table 5 reports first the estimates of the orthogonal
complement to o, which indicates the contribution of each normalized residuals to each of
the common trends, as pointed out by Juselius (1996); second the factor loadings, which
describe how each variable is affected by the common trends; lastly the t-statistics for the
neutrality test.

The estimates of the «| suggest that both common trends are determined by the
innovations of each of the rates. Moreover, as indicated by the estimates of the factor
loadings, both trends appear to have an impact on the dynamics of each rate. However,
the results are difficult to interpret because of the well-known problem of the identification
of the common trends.

Now, if we perform neutrality tests, at the significance level of 5%, we obtain the main
following results: the US rate is only influenced by the German rate, and conversely the
German rate only depends on the innovations of the US rate. Lastly, the French rate
is influenced by the German innovations, but not by the US innovations. Accordingly,
we partly confirm the results obtained from the causal analysis performed in the ECM
framework, since the US rate and the German rate appear jointly as causal variables in
the long run. However, the French rate has lost any causal role in the long run, contrary
to the indications given by the analysis of the ECM.

So, the two types of analysis do not give us a clear interpretation of the causal links in
the long run. Actually, as pointed out before, neither the analysis of the error-correction
effects nor the neutrality tests allow to measure the long-run causal links, according to
our definition.

Lastly, we perform the test of long-run non-causality (Table 6). For example, the test
statistic for the long-run causality of the US rate toward the German rate is £&; = 15.818.
Since the test statistic is asymptotically distributed as x? (p), with p = 4, we conclude
that the US rate plays a long-run causal role toward the German rate at a 1 percent
significance level. More generally there is a bidirectional long-run causality between US
and German rates, on the one hand, and, between German and French rates, on the other
hand. However the causal link from the French rate toward the German rate is quite low.
It is worth noting that we identify a small direct long run causal link from the US rate
to the French rate, which is significant at a 10 percent level (Figure 1).

Figure 1: long-term causal links between 10-year interest rates

USD

e N
DEM — FRF

We verify that neutrality is necessary but not sufficient to exclude long-run causality.
First, neutrality tests indicate that the innovations in the French rate do not influence
the German rate. On the contrary, according to long-run non-causality tests, we cannot
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reject long-run causality from the French rate toward the German rate. Second, we also
obtain a long-run causality from the US rate toward the French rate, whereas we do not
reject the neutrality condition.

Our illustration shows that interpreting separately error-correction terms as well as
neutrality properties can be misleading in identifying long-run causal links. When they are
jointly investigated, they can even lead to opposite conclusions regarding these links. By
contrast, tests for long-run non-causality shed light on causal links between the long-term
interest rates under study, which are clearly defined, well identified and, lastly, plausible.

5 Conclusion

In this paper, we give a definition for long-run non-causality in terms of long-run prediction
improvement for long-term predictions. We prove that non-causality in that sense can be
easily characterized for integrated and possibly cointegrated VAR dynamics. Indeed, the
non-causality condition can be expressed as the nullity of a function of long-run dynamic
multipliers and the parameters of the VAR in levels. This result shows that the properties
which are usually related to long-run causality (error-correction effects, neutrality) are not
sufficient to be interpreted as long-run prediction properties.

From an empirical point of view, the test procedure can be easily implemented once
the long-run features (stationarity, cointegration) of the dynamics have been identified:
non-causality can be tested by a standard Wald test, distributed as a chi-square.

By way of illustration, we performed an analysis of long-run causal links between US,
German, and French long-term interest rates and presented evidence that there exists
reciprocal long-run causality between the US rate and the German rate as well as between
the German rate and the French rate. Beyond the application, the concepts and statistical
tools developed in this paper should be useful to characterize more precisely the long-run
properties of multivariate systems.
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Table 1: Test for non-stationarity of interest rates

ADF tests Multivariate tests
currency first
level difference r=1 r =2
USD —1.98 —846 ¢ 18.67 ¢ 10.04 ¢
DEM —0.62 —18.97 ¢ 1829 ¢ 959 ¢
FRF —-1.29 —-556 ¢ 17.86 ¢ 944 ¢

Note: The ADF statistics are based on the following regression: Az; =
a+br, 1+ 22:1 ¢;Axy_; +uy, where x; is the interest rate, u; is the error term.
The order of the autoregressive process, [, is selected in order to whiten the
residuals. The critical values are from Fuller (1976). The multivariate tests
are based on the Johansen’s methodology. They are based on a constant term
in the cointegration relations, p = 4 lags and conditional to the cointegration
rank r. The test statistics have a chi-squared distribution with p — r degrees
of freedom.

For all tables, the sample goes from January 5, 1990 to June 27, 1997. ¢, ® and
¢ indicate that the statistics are significant at a 1%, 5% and 10% significance
level.

Table 2: Tests for the cointegration rank

N—7r A )\ma:c )\trace
1 0.008  3.290 3.290

2 0.030 11.888 15.178
3

0.058 23.325 ' 38.503 °

Note: The estimation is performed with a constant term in the cointegration
relations and p = 4. N is the number of variables, r is the cointegration rank.
A contains the eigenvalues of the system. A4, and As.q.. are the cointegration
test statistics proposed by Johansen (1988). The critical values for A4, and
Atrace are from Osterwald-Lenum (1992, Table 2*).
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Table 3: Estimates of the ECM

USD eq. DEMeq. FRF eq.

o -0.014 0.010 -0.020
(error-corr. term) (1.964) (1.735) (4.122)
I’y
USD, -0.094 0.099 -0.014
(1.850)  (2.512) (0.400)
DFEM, 0.043 0.050 0.022
(0.672)  (1.001) (0.511)
FRF, 0.078 0.057 -0.100
(1.091)  (1.038) (2.056)
Iy
USD, 0.021 0.096 0.055
(0.409)  (2.402) (1.554)
DEM, 0.147 -0.032 0.682
(2.313)  (0.656)  (15.832)
FRF, -0.017 -0.049 0.001
(0.314)  (L157)  (0.018)
I's
USD, 0.037 0.064 -0.033
(0.723)  (L.634)  (0.942)
DFEM, 0.082 0.023 0.173
(1.034)  (0.383) (3.233)
FRF, -0.005 -0.067 -0.002
(0.098)  (1.565) (0.064)
fo -0.249 -0.331 -0.098
(92:09:04) (1.986)  (3.425)  (L.147)
0y 0.107  0.066 0.292
(94:06:17) (0.828)  (0.670) (3.346)
o -0.171 0.446 -0.053
(94:07:29) (1.353)  (4.575) (0.621)
Py 0.018 -0.388 -0.088
(94:09:30) (0.145)  (3.979) (1.025)
Ps 0.066  -0.150 -0.354
(97:01:17) (0.519)  (L547)  (4.139)

Note: « denotes the error-correction vector; I';, 2 = 1, 2, 3, denotes the matrix
containing the estimates of the parameters associated to lagi. p;,i =1, ..., 5,
denotes the matrix containing the estimates of the parameters associated to
dummy variable 7. Numbers in parentheses indicate t-statistics.
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Table 4: Misspecification tests

Multivariate tests

Residual autocorrelation statistic p-value
LB: x?(36) 337.832  (0.15)
LM;: x?(9) 4.607 (0.87)

JB: x? (6) 12.818 (0.05)

Univariate tests ARCH(4) Norm(2) R?

USD 3.928 4.550 0.083

DEM 8.468°¢ 3.665 0.157

FRF 3.419 4.602 0.517

Note: LB is the Ljung-Box statistic for residual autocorrelation up to order
36. LM; is the Lagrange Multiplier statistic for first order residual autocor-
relation. JB is the Jarque-Bera statistic testing for normality. ARCH is the
Lagrange Multiplier statistic for squared residual autocorrelation up to order
4. Norm is the univariate Jarque-Bera statistic testing for normality.

18



Table 5: Analysis of common trends and test for neutrality

Panel A: Analysis of common trends

o factor loadings
USD 0.546 —0.411 0.186  0.794
DEM —0.083 —0.894 0.246  0.064
FRF —0.834 —0.180 0.315 —0.161
Panel B: Test statistics for Cy; (1) =0
from: to: USD DEM FRF
USD 0.980 * 0.310 * 0.154
DEM 0632 * 0.897 ¢ 1.164 ¢
FRF -0.387 0.211 0.449 °©

Note: « denotes the orthogonal complement to . The second part of the
Table reports test statistics for Cy; (1) = 0, which are asymptotically normally
distributed. Numbers in parentheses indicate t-statistics.

Table 6: Tests for long-run non-causality

Test statistics for (C' (1) ® (L))kj =0

from: to: UsD DEM FRE
USD — 15.810 @ 9423 ¢
DEM 11.725 ° — 83.787 ¢
FRF 4.090 8.101 ° —

Note: The test statistics for (C(1)®(L)),; = 0 are asymptotically x? distrib-
uted with p degrees of freedom under the null hypothesis of long-run non-
causality. 15.810 is the test statistics for the null of long-run non-causality

from the US rate to the German rate.
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Appendix: Proof of Proposition 1.

Let us suppose that X; is not unidirectionally prior causal for Xj in the long run.
Then, we have, for any date t > 1, the equality:

lim BL(Xpm |[{Xig1 <i <N}) = lim BL(Xpon|[{Xis1 <i < Ni#5}).

H—+oc0 H—+4co

In other words, the variables X, ..., X;; must not enter the limit:

Xioo = lim BL(Xppn [{ X1 <i <N},

H—+o00

So one has to make sure that the relevant coefficients disappear.

i) Let us first focus on the simple case where the order of the VAR is equal to one
(p = 1). Then we find the equations:

AX, =af X, | +z,
and the results:
BL(Xpin [{ X 1 <i < N}) = (Iv + o) X,
Accordingly, the best linear prediction:
BEL(Xypn |[{Xin 1 i< N}) =8 (Iy + )" X,

has to tend to 0, when H tends to infinity.
Moreover, we must have:

o BL (Xppyn |[{Xigy 1 i < N}) = o (Iv+ap)" X,

= OélXt.

Finally, the best linear prediction tXHH =FL (XR,HH H&, 1 <1< N}), which can
be written as:
. 1 . oA
Xevw = B\ B1) o KXoy +a(fa)  BiXyw
has to tend to C'X; with C' defined as:

= ﬂL(alﬂL)*lal.

In this case, if one does not want the limit expression for th,oo to depend on X, one
clearly needs: Cy; = 0.

ii) In the general case, where p > 1, we just have to consider the equation:
p—1
AXy=af X1 + Z FhAX p + &y,
h=1

in companion form:

AXt = dﬂN/thl + &
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with X, = (X} - X[, ).
So, we find that:

Go= (A 8

a o= ( o =Ty v —d/\ Ty, )
& L = &) (]N -3 Ph) B
h—1
" - e N1
C = B (a.p) a.

Hence, the best linear limit prediction X can be written as:

p—1
Koo = O [ X, S TWAX,,
h=—1
so that, if one wants th,oo to be independent of X1, ..., X, one needs the conditions:

(CTh)y,; = 0, for any R

or, equivalently:

(Cq)(L))kj =0

that is, exactly, the condition given in the proposition:

; Cri(1) ; d,;(L) = 0.
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Graph 3a: US Rate Residuals
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