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Résumé

Cet article étudie la contagion trans-frontalière dans le secteur bancaire européen, en faisant usage de
données d’exposition réelles. Sur la base d’un modèle séquentiel de défauts de solvabilité et de liquidité
dans un réseau de banques, nous analysons la propagation géographique des pertes de 2008 à 2012.
Nous étudions la distribution de l’étendue de la contagion après un choc agrégé et le défaut exogène
d’une banque, sur des réseaux d’expositions simulés à partir de vraies données de prêts à court et à long
terme. Nous utilisons une base de données nouvelle et unique de transactions sur le marché monétaire,
estimées à partir des données de paiements TARGET2. Nos résultats montrent l’importance capitale de
la structure sous-jacente des expositions pour la propagation des pertes. Une analyse économétrique des
déterminants de la contagion montre que les expositions des banques aux contreparties les plus risquées
dans le système et la position d’une banque dans le réseau avant le choc sont corréleés de manière
significative avec les événements de défaut, au-delà de l’impact des seuls ratios financiers de la banque.

Codes J.E.L.: G01, G21, G28, F36.

Mots-clés: Contagion, Marché interbancaire, Stress Testing, Liquidité, Risque de contrepartie.

Abstract

This paper studies the scope for cross-border contagion in the European banking sector using true
bilateral exposure data. Using a model of sequential solvency and liquidity cascades in networks, we
analyze geographical patterns of loss propagation from 2008 to 2012. We study the distribution of
contagion outcomes after a common shock and an exogenous bank default over simulated networks of
actual long- and short-term claims. We exploit a novel and unique dataset of money market transactions
estimated from TARGET2 payments data. Our results show the critical impact of the underlying
network structure on the propagation of losses. An econometric analysis of the determinants of contagion
shows that the position of a bank in the network and its exposure to the riskiest counterparties are
significantly correlated with default outcomes, behind its own financial ratios.

J.E.L. Codes: G01, G21, G28, F36.

Keywords: Contagion, Interbank market, Stress Testing, Liquidity Hoarding, Counterparty Risk.



Non-technical summary

This paper investigates the scope for cross-border contagion in Europe using true bilateral exposure
data at a bank level. We analyze geographical patterns of shock propagation between 73 European
banking groups from end-2008 until end-2012. The extent of interbank contagion is assessed relying
on Fourel et al. [2013]’s model. The model features both solvency defaults and liquidity defaults.

The scenarios we simulate include a common market shock on banks’ capital and the exogenous
default of a bank. We construct heat maps to identify both the banking sectors which are the
most “systemic”, in terms of the losses that the failure of one of their banks can impose to foreign
banks, and the banking sectors are the most vulnerable to cross-border contagion from European
counterparties.

We exploit for the first time a unique dataset of interbank money market transactions, with various
maturities, estimated from TARGET2 payments data. We use true bilateral exposure data to
simulate a large number of realistic exposure networks. Based on this simulated data, we conduct
an econometric analysis to identify both bank and network characteristics that make a bank/system
more fragile/resilient to contagion.

We find that both solvency and liquidity contagion are tail risks: losses averaged over stress scenario,
initial bank defaults or simulated networks are rather limited; however, averaging conceals rare
extreme events. We document that losses at the tail of the distribution can reach one third of the
system capital in 2008, and that the resilience of the system improves significantly over time.

Finally, our results show the strong impact on the domestic and cross-border propagation of losses
of heterogeneity and concentration in the structure of interbank exposures. The number of defaults
resulting from our stress scenarios can be up to six times larger than the average number of defaults,
depending on the underlying structure of interbank linkages.
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1 Introduction

The 2007-2008 financial crisis revealed the fragility of financial institutions worldwide and
the major role of interconnectedness among banks in the propagation of financial distress.
Interconnections, in the form of bilateral contractual obligations, as well as exposures to common
risk factors, have grown dramatically in the run-up to the crisis.1 While higher interconnectedness
is a means of efficient risk transfer, it may also lead to contagious default cascades: an initial shock
may propagate throughout the entire banking system via chains of defaults and liquidity shortages.

This paper investigates the scope for cross-border contagion in Europe using true bilateral
exposure data at a bank level. In Europe, cross-border contagion has taken a particular form
during the sovereign debt crisis, in the form of market fragmentation. After the European Banking
Authority’s disclosure of the extent of European banks’ common exposures to stressed sovereigns
in 2011[EBA, 2011a], core banks have been reducing their exposure to banks headquartered in the
periphery of the euro area (see, e.g., Abascal et al. [2013] who measure fragmentation in interbank
market and three other markets).

We analyze geographical patterns of shock propagation between 73 European banking groups
from end-2008 until end-2012. The extent of interbank contagion is assessed relying on Fourel
et al. [2013]’s model. The model features both solvency defaults and liquidity defaults. We focus
on the distribution of simulation outcomes (number of defaults and total losses) resulting from
a common market shock on (listed) banks’ capital, coupled with an exogenous bank default; the
distributions are obtained over a large number of exposure networks simulated from true of long-
and short-term exposure data. We construct heat maps to identify both the banking sectors which
are the most “systemic”, in terms of the losses that the failure of one of their banks can impose
to foreign banks, and the banking sectors are the most vulnerable to cross-border contagion from
European counterparties.

We use a novel database of cross-border interbank exposures. These exposures are generally not
available to researchers. National supervisors can have at best a partial view of the largest long-term
credit claims of supervised banks via credit registers.2 To circumvent the unavailability of accurate
information on domestic and cross-border interbank exposures, and obtain a realistic representation
of how European banks are connected through their long- and short-term claims, we exploit for
the first time a unique dataset of interbank money market transactions, with various maturities,
estimated from TARGET2 payments data (see Arciero et al. [2013]). We use true bilateral exposure
data to simulate a large number of realistic exposure networks, using the methodology proposed
by Halaj and Kok [2013]. Based on this simulated data, we conduct an econometric analysis to
identify both bank and network characteristics that make a bank/system more fragile/resilient to

1Total cross-border banking flows rose several-fold from 1978 to 2007 compared to their long-term average, see
Minoiu and Reyes [2011].

2For instance, the German credit register contains quarterly data on large bilateral exposures - derivative, on- and
off-balance sheet positions - above a threshold of EUR 1.5 m. The French "grands risques" data include individual
banks’ quarterly bilateral exposures that represent an amount higher than 10% of their capital or above EUR 300 m.
Italian banks submit to the Banca d’Italia their end-of-month bilateral exposures to all other banks.
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contagion.

We find that both solvency and liquidity contagion are tail risks: losses averaged over stress-
scenario, initial bank defaults or simulated networks are rather limited; however, averaging conceals
rare extreme events. We document that losses at the tail of the distribution can reach one third of
the system capital in 2008, and that the resilience of the system improves significantly over time.
Under severe equity market stress and following the exogenous default of one bank, significant cross-
border contagion may arise. The overall average losses caused by a foreign bank default, however,
vary remarkably over time and over different banking sectors. A foreign default has on average a
small impact on most banking sectors and this impact has been reducing over time. However, for
some banking systems, a default by a foreign bank may cause a loss as large as 15% of the capital
of the impacted banking sector. Heat maps allow us to discern specific geographical patterns of
cross-border contagion in the European Union, which vary significantly over the years. In general,
the maps for 2009, 2010 and 2012 show that the potential for cross-border contagion has constantly
decreased over time. This is related to a generalized reduction in the share of long-term interbank
loans in bank balance sheets, which can be interpreted as market fragmentation, and to an increase
in banks’ capitalization during these years, as compared to 2008.

Finally, our results show the strong impact on the domestic and cross-border propagation of
losses of heterogeneity and concentration in the structure of interbank exposures. The number of
defaults resulting from our stress scenarios can be up to six times larger than the average number
of defaults, depending on the underlying structure of interbank linkages. This is consistent with
recent models of contagion in financial networks relying on simulated networks of exposures (see,
Georg [2013] and Gai and Kapadia [2010]), and points to the need to account for the evolving
nature of the web of interbank linkages when running contagion scenarios. This is the first paper,
to our knowledge, to document this feature by simulating interbank exposures based on actual
bank-to-bank data.

A large literature exists that relies on counterfactual simulations in networks to estimate the
potential for interbank contagion (see Upper [2011] for a comprehensive survey). Notwithstanding
the increasingly international dimension of contagion, however, these simulations have so far focused
primarily on national banking sectors, estimating their frailty/resilience only at one specific point
in time. Moreover, only very recently have economists started to integrate behavioral foundations
into their modelling frameworks, hence providing different contagion channels.

Our study contributes to this literature by analyzing cross-border contagion at a bank-to-
bank level using realistically simulated networks from true exposure data. Up to now, a handful
of papers have analyzed cross-border contagion using price data such as equity or credit default
swaps, therefore relying on some form of market efficiency and not being able to identify the
structural channels driving the co-movement of prices (see, Gropp et al. [2009]). Other papers
focused their attention on BIS country statistics to study cross-border contagion; but this has the
strong drawback that authors have to assume that the whole or a part of a country’s banking
system defaults and that losses propagate to other country’s banking sectors (see Degryse et al.
[2009] and Espinosa-Vega and Sole [2010]).
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The remainder of this article is structured as follows. In section 2, we present the theoretical
model for the imputation of losses and the liquidity hoarding mechanism. In section 3, we describe
the data. The results of our simulations are presented and commented on in section 4. Section 5
introduces the econometric analysis of the determinants of contagion outcomes. Section 6 concludes.

2 The model

Our model builds on the work by Fourel et al. [2013]. In the following, we expose its main
theoretical blocks as well as some extensions we implement. We refer the reader to Fourel et al.
[2013] for more details.

Let us consider a system of N financial institutions indexed by i. Each of them is characterized
by a stylized balance sheet presented in Table 1. The asset side of bank i is decomposed into several
items: long- and short-term interbank exposures (ELT (i, j) and EST (i, j) for j ∈ [1;N ]), cash and
liquid assets (cash from now on) Ca(i) and other assets OA(i). We denote the total assets by
TA(i). The liability side of bank i consists of equity C(i) (hereafter capital), long- and short-term
interbank exposures (ELT (j, i) and EST (j, i) for j ∈ [1;N ]) and all other liabilities OL(i).

Assets Liabilities
Long Term ELTt (i, 1) ELTt (1, i) Long Term

Interbank
...

... Interbank
Assets ELTt (i,N) ELTt (N, i) Liabilities
Short Term ESTt (i, 1) ESTt (1, i) Short Term

Interbank
...

... Interbank
Assets ESTt (i,N) ESTt (N, i) Liabilities
Cash Cat(i) OLt(i) Others
Others OAt(i) Cat(i) Capital
Total assets TAt(i) TLt(i) Total liabilities

Table 1: Bank i’s stylized balance sheet at date t

Banks are connected by two types of links: short-term and long-term commitments. The
distinction between these links is important as it makes it possible to define two channels of
contagion (liquidity vs. solvency contagion). Short-term exposures are represented mainly by
short-term loans, e.g. with overnight or one-week maturity, and a link can be easily cut from a
certain day/week to the subsequent one. This property of the link allows banks to hoard liquidity,
i.e. to reduce or to cut their exposures to a counterparty when needed. As explained below,
liquidity contagion propagates through the network of short-term exposures. On the contrary,
long-term exposures represent a more stable source of funding and can not be cut before maturity.
Therefore, only if a bank defaults do its counterparties lose all their long-term exposures to it
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(taking a recovery rate into account). The network of long-term exposures is the main channel for
the propagation of solvency contagion.

The model consists of three parts: (i) a shock with both a common and an idiosyncratic
components, (ii) solvency contagion and (iii) liquidity hoarding behavior. This section provides
the main intuitions and describes the building blocks, while additional technical details can be
found in Appendix A.1.

The shock

The aggregate component of the shock takes the form of a common market shock. In the
absence of national supervisory data allowing to shock various asset classes in bank balance-sheets
(as in Elsinger et al. [2006a], Elsinger et al. [2006b], or in Fourel et al. [2013]), we implement a
common shock directly on all listed banks’ capital using a one-factor model for equity returns (see
details in Appendix A.1). The same shock is consistently applied over the whole time period, 2008-
2012, which allows us to make sure that contagion in the system is driven purely by the change in
the network structure and by changes in banks’ balance sheets. As depicted in figure 2, the shock
represents a loss equal to 5% of bank capital on average over all scenarios but can reach up to 25%
in extreme cases; such orders of magnitude are in line with bank capital losses observed during the
recent crisis (see, e.g., Basel Committee on Banking Supervision [October, 2010] and Strah et al.
[2013]).

The idiosyncratic part of the shock is modeled in a stylized way by assuming that one bank
exogenously defaults. Losses through solvency and liquidity contagion channels are then computed.
The fact that only one banks fails at a time allows us to estimate losses due to the default of each
bank and to rank the banks as more or less systemic.

Solvency contagion

Following Fourel et al. [2013], we define solvency contagion as follows. Let bank i default, then
its counterparts lose all their exposures to this bank. If another bank or some of the banks are
highly exposed to the defaulted bank, they might default as well. A general condition for a bank
to default due to default contagion is as follows:

[C(j)− ε(j)]︸ ︷︷ ︸
Capital after initial shock

−
∑
i

RS(i)E(j, i)︸ ︷︷ ︸
non-recovered exposures

< 0 (2.1)

where (1 − RS(i)) is a recovery rate. To account for all the losses due to solvency contagion,
the Furfine algorithm of iterative default cascade (Furfine [2003]) is used. This algorithm allows
incorporating liquidity hoarding behavior of banks in the same framework with solvency contagion.

Liquidity hoarding

Banks regularly perform liquidity management, estimating their liquidity stock, outflows and
inflows for the next period. In normal times, they can foresee with some certainty how much
liquidity they will need to satisfy reserve requirements or other commitments; to this end they can
borrow from other banks in the interbank market as well as from the central bank (e.g. through
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Figure 1: Liquidity hoarding behaviour.

weekly main refinancing operations). In a well functioning interbank market banks with excess
liquidity can lend it to those who lack short-term funding. This situation can however radically
change during times of increased uncertainty. On the one hand, banks’ assets become much more
volatile, creating liquidity outflows in terms of margin calls and higher haircuts, which are difficult
to foresee. On the other hand, confidence in the market evaporates quickly, counterparty risk rises,
and banks fear both their inability to get liquidity when needed as well as counterparty risk. All
this can lead banks to demand liquidity for precautionary reasons, hence to a hoarding behavior, by
which they reduce lending to each other in order to secure their own liquidity needs and to reduce
exposure to counterparty risk.3

Banks start hoarding liquidity when there is a signal of market malfunctioning or when they
start experiencing problems themselves. For instance, a signal can be a drop in asset prices, high
volatility or unexpectedly large losses. In our simulations we assume that a shock-related capital
loss above a certain threshold represents such a signal. Therefore, banks that were impacted by a
market shock and/or by solvency contagion will start hoarding liquidity, and the higher the loss
they experience, the more they hoard. We assume a function for liquidity hoarding depends linearly
on the capital loss, λ(Loss). The function, Figure 1, has 4 intervals: banks do not hoard liquidity
in intervals 1 and 4, that is, when capital loss is below some threshold A% (no signal of crisis)
or more than 100% (bank is insolvent). Banks hoard less (a%) in interval 2 when the shock is
moderate and more (b%) in interval 3 when the shock is more adverse.

Banks decide how much to hoard based on their own perception of market uncertainty. But
they also have to decide how much and from which counterparty they hoard. A straightforward
assumption is that the riskier the counterparty is, the more a bank hoards liquidity. Provided

3For the UK sterling market, Acharya and Merrouche [2013] document that riskier UK settlement banks held
more reserves relative to expected payment value in the immediate aftermath of 9 August 2007, thus igniting the rise
in interbank rates and the decline in traded volumes. Berrospide [2013] documents evidence for the precautionary
motive of liquidity hoarding for U.S. commercial banks during the recent financial crisis.
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banks have no private information about the riskiness of other banks’ portfolios, they can rely on
leverage µ as a proxy for the riskiness of a counterparty (Das and Sy [2012], Lautenschlager [2013]).
The easiest way for a bank to hoard liquidity is to stop rolling over short-term loans. After all the
banks decide how much to hoard, the following condition has to be satisfied for a bank to be liquid:

[Cash ] + [ToBeRecieved ]− [ToBePaid ] > 0 (2.2)

3 Interbank exposures and network simulation

This section presents the numerical algorithm used to generate a large number of networks
of long- and short-term interbank exposures, as well as the data used to calibrate and run it.
Additional balance sheet items used for the simulations and the econometric analysis are also
presented. The last subsection provides descriptive evidence on the structure of simulated networks
and on the domestic versus cross-border nature of the simulated national banking sectors.

3.1 The algorithm

We apply the algorithm proposed by Halaj and Kok [2013] to simulate a large number of
interbank networks that are used to run the stress scenarios. In the absence of interbank lending
and borrowing data, one common method in the literature relies on their estimation through entropy
maximization (see Sheldon and Maurer [1998], Wells [2004] and Mistrulli [2011] for a comparison of
this methodology with actual exposure data). We adopt an alternative methodology proposed by
Halaj and Kok [2013]. First, one essential drawback of the entropy maximization method is that
the obtained matrix of bilateral exposures is such that strictly positive links are estimated between
any two banks which have a strictly positive aggregate interbank exposure, i.e. the obtained
network is not sparse and does not display the empirically documented core-periphery structure
(averaging bias). When national banking systems are considered, such an undesirable feature
may be neglected, as domestic banks within a country are typically densely interconnected. On
the contrary, applying the same methodology when cross-border exposures are considered would
amount to neglect either a possible home-bias in interbank exposures or the fact that financial
interconnections are net evenly spread, either among banks within a national banking sector or
across different countries’ banking sectors. In other words, preferential banking relationships do
exist, as well as strong geographical patterns. Second, the entropy maximization method yields a
unique solution for the bilateral exposures matrix, and may therefore badly account for the fact
that interbank exposures are likely to change quickly. In addition, performing stress scenarios on
a unique exposure matrix typically fails to obtain a probability distribution over the simulation
outcomes. By contrast, the methodology introduced by Halaj and Kok [2013] addresses these two
issues by enabling the construction of a large number of sparse and concentrated networks that all
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match the aggregate exposure levels. Third, this methodology enables us to make use of additional
information on actual interbank links obtained from TARGET2 payment data.4

The algorithm to simulate bilateral exposure matrices relies on two inputs: (i) a probability
map and (ii) aggregate interbank exposures data at a bank level (i.e. the sum of the exposures of
any bank i to all other banks in the system). Denote Πt a N ×N probability map at date t whose
each element (i, j) is πij ∈ [0; 1] with πii = 0 and

∑
j πij = 1 for all i. πij is the share of funds lent

by any bank i to any bank j and is later used as the probability structure of interbank linkages.

The construction of a large number of exposure matrices at date t relies on the Πt matrix and
on the total interbank loans granted by any bank i to all its counterparties within the network,
denoted Lti. The construction of one particular exposure matrix, i.e. of all bilateral elements Ltij ,
uses an "Accept-Reject" scheme. A pair (i, j) of banks is randomly drawn, with all pairs having
equal probability. This link in the interbank network is kept with a probability πij and, if so, the
absolute value of this exposure, denoted L̃ij , equals Li multiplied by a random number drawn from
a uniform distribution with support [0; 1]. The amount of exposures left to be allocated is thus
reduced. The procedure is repeated until the difference

(
Li −

∑
j L̃ij

)
is below some threshold κ.

3.2 Data and calibration

3.2.1 The sample of banks

We run our contagion analysis using a sample of 73 European banking groups, whose list is
provided in Table 4. Given our focus on the resilience of the European banking system, we select
a subset of the banks that underwent the 2011 stress tests carried out by the European Banking
Authority (EBA). In particular, our sample includes all the banking groups headquartered in Europe
that are part of the list of Global Systemically Important Banks (G-SIBs), while it excludes some
Spanish "cajas" to avoid an over-representation of the Spanish banking sector.5 It is worth noting
that our sample also includes savings and cooperative banks, hence non-listed European institutions.
In contrast with the extant empirical literature on contagion that relies on market data, this allows
us to assess also the impact of a shock hitting relatively smaller market participants.

3.2.2 Simulating European interbank exposures: TARGET2 data and the probability
maps

Long-term interbank exposures. Information on the total interbank loans Li granted by any
bank i to all its counterparties within the network is retrieved via the balance sheet item named

4In 2012 TARGET2 settled 92% of the total large value payments traffic in euro.
5See EBA [2011b]. The latest list of G-SIBs has been published by the Financial Stability Board in November

2012 and is available at http://www.financialstabilityboard.org/publications/r_111104bb.pdf.
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"Net loans to banks" available in SNL Financials.6

The probability map Πt is obtained based on term interbank money market loans settled in
TARGET2 during each year t. The money market dataset we use is the output of the Eurosystem’s
implementation of the Furfine [1999] methodology to TARGET2 payment data (see Arciero et al.
[2013] for more details on the identification methodology).7 More specifically, we use loans with
maturities ranging from one month and up to six months to compute shares of preferential lending.
These percentages are then imputed in the simulation algorithm as prior probabilities about the
existence and size of an interbank linkage.

For the last quarter of each year, for each lender, we bundle all term loans and compute the
average amount lent to each borrower; hence based on such average amounts we look at how total
credit was allocated among counterparties. Three details are worth noting in the assumptions we
make to build the probability structure of interbank exposures. First, our computation includes all
the banking groups participating in the interbank euro money market, i.e. not only the 73 banks
belonging to our sample. Subsequently, to form the ‘true’ as well as the simulated networks of
exposures, the shares are normalized to consider only the 73 sample banks.8 Second, we use only
the term market segments in the calculations because it is for unsecured lending at such longer
maturities that preferential interbank lending relationships are more likely to exist and relatively
stronger geographical patterns emerge. This is especially so in periods of heightened uncertainty
about counterparties’ solvency. 9 Third, we consider the average size of a long-term loan traded
between a lender-borrower couple independently of the frequency at which the two banks interact in
the market over the quarter. An undesirable aspect of this choice is that we may turn up assigning
a very high link probability to a lender-borrower couple even if they have interacted only rarely in
the market. Nonetheless, we deem this choice to be the most appropriate in the context of assessing
interbank contagion, since it is the actual size of exposures/links that matters for the propagation
of distress (see Cont et al. [2010]), independently of whether that link was set up every month
rather than just once in the whole quarter.10

6Net loans to banks are defined as Net loans and advances made to banks after deducting any allowance for
impairment. The main difference between this item and "Loans and advances to banks" or "Deposits from banks"
available e.g. in Bankscope, is that the latter also include loans to or from central banks (see Upper [2011]), which
would be a major drawback for our analysis.

7In this version of the paper, we use a dataset with distinction between originators and beneficiaries of TARGET2
transactions (i.e. indirect TARGET2 participants) that has been recently made available. Unlike the previous dataset
where loans made on behalf of customers were attributed to the direct TARGET2 participants (i.e. settler banks),
the new dataset allows us to obtain a more reliable representation of the universe of interbank money market loans
and to estimate true exposures of the banks.

8This enables us to avoid any bias in the results related to the assignment of too large shares of interbank credit
to banks that are in our sample but may represent only a small fraction of the amounts lent by a certain bank to
European counterparties. Note that the 73 sample banks represent on average more than 90% of the overall euro
money market turnover in the various maturity segments.

9See Cocco et al. [2009] and Brauning and Fecht [2012] for evidence of interbank lending relationships in the
Portuguese and German money market, respectively. The second paper finds that during the 2007-08 crisis German
borrowers paid on average lower interest rates to their relationship-lenders than to spot-lenders. The 2010 ECB euro
money market study reports increasing market fragmentation in the euro money market in relation to the euro area
sovereign debt crisis.

10Alternative calibrations, e.g. in which prior probabilities are based on the daily average amount lent to
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Short-term interbank exposures. In the context of our model, liquidity contagion occurs
through liquidity hoarding in the unsecured interbank money market. We take actual interbank
loans, with maturities from overnight to one month, among the 73 sample banks from the dataset of
Arciero et al. [2013]. Notwithstanding the availability of five real networks of short-term interbank
exposures from end-2008 to end-2012, we decided to simulate for each year 200 short-term interbank
networks using the Halaj and Kok algorithm. This allows us to duly capture the evolving nature
of short-term funding linkages and its impact on contagious losses. Moreover, we will use the
large number of simulated long- and short-term networks to analyze the effect of their structural
properties on the propagation of both solvency and liquidity contagion.

3.2.3 Additional balance sheet data

Additional year-end balance sheet information (Cash and cash equivalents, Total assets,
Common equity) is retrieved from SNL Financials.11 Table 5 reports, for each year, a set of
summary statistics of banks’ balance sheet ratios that are relevant for our analysis. On average,
interbank exposures represent about 8% of total assets over the sample period. In 2009 banks
display a reduced aggregate amount of interbank exposures (in percentage of total assets) than
in 2008. The variation in the cross-section is also lower, while the ratio of common equity to
total assets is on average higher, which could possibly result from the recapitalization imposed by
banking supervisors after the EBA stress tests in 2009. In 2010 interbank loans continue decreasing,
whereas bank liquidity deteriorates slightly and bank equity to assets ratio remains constant. In
2011 and 2012 liquidity improves, on average, while the level of common equity to total assets
reduces. In fact, this is related to the negative common equity reported by various Greek and
one Spanish bank for the last two years. Excluding from the sample banks with negative common
equity, we can observe an increase in the average equity to assets ratio from 4.20% to 4.43% in
2011 and from 4.42% to 5% in 2012. 12

counterparties (thus also taking into account the frequency of bank interactions over the quarter), have been used as
a robustness check. Also, note that, as reported in Arciero et al. [2013], the algorithm underestimates longer term
loans at the beginning and at the end of the sample. This possibly affects our construction of the probability map for
2012 as this relies on loans traded in the last quarter of the year. We will be able to account for the underestimation
as soon as new estimates of the loans are available that include TARGET2 transactions in the first months of 2013.

11Data are exceptionally retrieved from Bankscope when not available in SNL. Consistency between the two
databases has been carefully cross-checked.

12In 2011 and 2012 balance sheet data are not available for two Greek banks (Agricultural Bank of Greece, or ATE
Bank, recapitalized in July 2011 after having failed EBA stress tests and subsequently sold to Piraeus Bank in 2012,
and TT Hellenic Postbank, liquidated in August 2012), nor for Bank of Cyprus and Cyprus Popular Bank in 2012.
Additionally, Eurobank Ergasias and Piraeus Bank report negative common equity in 2011 and 2012, while Alpha
Bank, National Bank of Greece, and Bankia have negative common equity in 2012.
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3.2.4 Simulation dates

We repeat our counterfactual simulations at
year-end for five dates, t = {2008, 2009, 2010, 2011, 2012}.13 Repeating the same stress scenario
at multiple points in time allows tracking the evolution both of the financial system resilience to
extreme financial distress and of the relative influence of the different contagion channels over time.

3.3 Descriptive evidence on simulated interbank networks

Table 6 reports summary statistics about the structure of the 200 long-term interbank networks
simulated using the Halaj and Kok’s algorithm and the TARGET2-based probability map. The
topological properties of the average simulated network are similar across the years and consistent
with those observed for real interbank structures.14 For instance, each bank is connected only
with a small subset of other banks in the market (five on average across the years), so that
the degree of connectivity or density of the networks is very small. This notwithstanding, the
average length of intermediation chains is very short, i.e. banks are generally close to each other,
and losses can spread from the bank in difficulty to its direct and indirect counterparties via less
than three exposures, on average, and at most via four. While most of the banks have very few
counterparties, there are some banks who lend to many others. The ratio between the maximum
and the median number of counterparties (the degree), is high and increases over time: in 2012, on
average across 200 networks, the most interconnected bank was about eight times more connected
than half of the others; for one network the ratio between maximum and median degree was as
high as sixteen. This points to an increasing concentration of exposures over the years and to a
core-periphery market structure. Table 7 reports summary statistics for the structure of the 200
short-term interbank networks obtained using the Halaj and Kok algorithm and actual short-term
money market exposures. The topological properties of the average short-term simulated network
are similar to those of the long-term one across the years, however it is twice as dense as long-term
networks.

Table 8 reports summary statistics of cross-country long-term exposures over 200 simulated
interbank networks. The numbers displayed are the average ratios of domestic and cross-border
country-level exposures in percentage of the total capital of the country. In the upper part of the
table, we notice that on average during the five years banks of one country are several times more
exposed to their home counterparties, with domestic exposures reaching 24% of a country’s capital
and foreign exposures being around 3-5%. These average figures conceal a high heterogeneity across
the simulated banking sectors, which shows up clearly looking at the maximum ratios of domestic
and foreign exposures to aggregate capital. The maximum ratios are of similar order and may be
several times higher than national systems’ capital. However, such high ratios of domestic and

13Given that the TARGET2 database for unsecured interbank loans starts as of June 2008, it is not possible to
run the simulation for earlier years.

14See for instance Soramaki et al. [2007] and Iori et al. [2008].
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cross-border interbank exposures relative to a banking sector’s total capital represent very few
observations, and most of the cells in the 73x73 exposure matrix are zeros which corresponds to
low density of these networks.

All in all, this evidence supports our claim about the realism of the exposure networks over
which contagion simulations are run. The methodology we adopt is realistic in terms of the
structural properties being satisfied, but also because it allows capturing the evolving nature of bank
interconnections. The simulated networks can be considered as probabilistic networks; networks
that could be possibly formed in other realizations, however a specific simulated exposure can
differ remarkably from one network to another, as well as from the actual short-term funding loan
observed in the unsecured euro money market via TARGET2.

4 Simulation results

In this section we look at simulation outcomes resulting from several rounds of solvency and
liquidity contagion triggered by 500 different realizations of the 5% worse equity market shocks,
and an exogenous bank default. As widely used in the literature we impose idiosyncratic bank
defaults one by one. For each year, for each shock scenario, simulation results are computed over
200 pairs of simulated networks of long-term and short-term interbank exposures. The parameters
used to calibrate the common market shock and the model are given in Table 3 in Appendix 1. It
is important to keep in mind that the results are three-dimensional: we compute the distributions
of number of bank failures/losses in the European banking system due to an initial default of one
of the 73 banks, over 500 market shock scenarios and 200 network pairs. Thus, in order to describe
the results we aggregate contagion outcomes at the level of market and idiosyncratic shocks (initial
bank defaults).

We start our analysis by looking at the distribution of average and maximum losses caused
by the default of one bank over a set of shock scenarios. Then we compute a Value at Risk-like
indicator of losses in the system, thereby synthesizing tail risks in our three-dimensional simulation
framework. Thereafter, we study the extent of cross-border contagion in the European banking
system and use heatmaps to visualize the more systemic or more fragile national banking sectors.
Similarly, we try to exploit contagion outcomes to rank European banks as most systemic or most
fragile. We conclude by describing changes in simulation results over the years, thus identifying
patterns of increasing or decreasing system resilience.

4.1 Contagion as a tail risk

Table 9 depicts the distribution of losses in the system averaged over the shock scenarios and
over the defaults of an initial bank. The part ’...before liquidity hoarding’ accounts for losses due
to both the common market shock and solvency contagion (excluding the capital loss of the bank
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exogenously set into default); the part ’...after liquidity hoarding & further rounds of contagion’
displays total losses due to all contagion channels. The difference between the two can therefore
be attributed to mere liquidity contagion. We can see that average losses are rather limited in
terms of number of defaulted banks as well as in size of depleted capital (the median is less than
2 and about 6% of system capital, respectively), and that the common shock and the solvency
contagion channel account for most of them. In fact, the summary statistics in table 9 show that
the distributions of losses due to the shock and to solvency contagion are relatively thin-tailed across
the 200 network pairs, suggesting that the underlying long-term interbank networks display only
a mild variation. On the contrary, short-term interbank exposures seem to be more volatile: while
in half of the network pairs average system losses (6% of overall system capital) can be explained
by the initial shocks and by solvency contagion, the heavy tail of the distribution of total losses
captures the variability of liquidity contagion results, with the share of depleted capital after all
contagion channels reaching a maximum value of 14% in 2008 and of 6.74% in 2012 (corresponding
to more than 5 bank failures in 2008 and about 2 banks in 2012).

The relatively low dispersion of these results is easily explained: by averaging over the initial
bank default, we average away the high heterogeneity of a realistic banking system. On the contrary,
European interbank networks are highly heterogenous, with a handful of very large banks and
numerous small ones whose default impact on the system can be markedly different. This can
easily be seen by analyzing the maximum number of bank failures and the maximum share of
depleted capital upon an initial bank default. Table 10 shows that the exogenous default of one
bank (always coupled with a common market shock) can lead to the default of other 15 banks
in 2008 and to a capital loss as large as one third of total system capital. Also in this table the
common shock and solvency contagion account for most of the failures/losses. Notice that upon
the default of the same bank, the maximum amount of losses is larger in 2008 than afterwards.

Figures 3, 4 and 5 allow us to have a more detailed view of how maximum losses (in terms of
capital and number of bank failures) can vary from one network to another. Figure 3 depicts the
share of depleted capital in the system over networks ordered by total losses. We can observe that
losses merely due to liquidity contagion (the difference between the green and blue dots) as well as
total losses (the green dots) indeed vary among the networks. Total losses (due to the market shock
and both contagion channels) can represent from about 11% to 33% of total system capital in all
years. Interestingly, liquidity hoarding plays a very different role from one year to another, and
seems to be more important in years 2008-2010: for some networks, losses due to liquidity contagion
can represent up to half of the total. On figures 4 and 5, we obtain maximum losses/failures resulting
from the market stress coupled with one bank’s default and plot distributions of these values for
different networks. In these figures, we exclude losses due to the market shock. The number of
defaults due to the market shock together with one bank’s default can vary significantly depending
on the underlying structure of interbank linkages: from 8.5% of system’s capital (or 4 banks) in
one network to 35% of capital (or 20 banks) in another. Thus, consistently with recent models
of contagion in financial networks relying on simulated networks of exposures (see, Georg [2013]
and Arinaminpathy et al. [2012]), our results reveal the critical impact of the underlying network
structure on the propagation of financial losses. Importantly, it points to the need to account for
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the evolving nature of the web of interbank linkages when running contagion simulations.

So far, we have looked both at averaged and maximum contagion outcomes over the market
shocks and how different the impact of contagion is with respect to the initial default bank and the
underlying network. We have seen that maximum losses can be sizeable, whereas average losses
are limited. To better investigate the likelihood of such tail risks, we analyze for each year the
distribution of the Value at Risk (V aR) or V aR2(5%) of our banking system. This is defined as
the 95th left percentile of the distribution of losses (as a percentage of system capital) over both
idiosyncratic and market shock scenarios. Figure 6 plots the distribution of V aR(5%) of losses due
to contagion over 200 network pairs. We can see that the 5% worst capital loss stands on average
at 8% and 6.5% over the networks in 2008 and all other years correspondingly, and that the loss
distribution in 2008 has heavier tail. By comparing figure 6 and 4, we observe that losses in the
5% worst cases are almost half smaller than in the worst case, demonstrating the tail nature of
contagion.

4.2 Cross-border contagion

Table 11 allows us to glance at the extent of domestic versus cross-border contagion in the whole
European banking sector. Unlike the heat maps (figures 7 to 11) which cover national banking
sectors with more than two banks, the table summarizes results for all 21 European countries: panel
A. presents the distribution of the losses corresponding to the ones on the main diagonal of the heat
map figures, that is total losses imposed by an average bank in a banking system on its domestic
counterparties; panel B. shows the distribution of the off-diagonal losses, in other words, losses
imposed by an average bank in a banking system on its foreign countparties. We can observe that,
on average, a national banking sector imposes larger losses domestically than across the borders.
However, maximum losses imposed domestically are usually smaller than losses imposed across the
borders, except in 2009.

We plot heat maps in order to analyze the potential for cross-border contagion in the European
banking sector. The cells (A;B) of the map represent with colors the strength of the total capital
loss experienced by country A’s banking sector (as a fraction of its aggregate initial capital) given a
common market shock and the default of a bank in the foreign banking system B. Examining heat
maps in figures from 7 to 11, we can easily identify the most ’systemic’ banking sectors, on the one
hand (i.e. those resulting in a vertical line in which warmer-colors prevail), and the systems which
are the most ’fragile’, on the other (i.e. those resulting in a horizontal line in which warmer colors
dominate). Note that a black in the color-scale of the map corresponds to a maximum country loss
of 14% of the country’s aggregate initial capital, while white cells correspond to no loss at all.15

15Total country capital losses following the market shock and an idiosyncratic foreign bank default are computed on
average over 500 realizations of the market shock; over 200 different pairs of long- and short-term exposure networks;
over the initially defaulting foreign banks. They have been normalized to account for the different number of banks
(and hence of simulations) considered for the various national banking sectors. Heat maps have been anonymized for
data confidentiality reasons, and countries for which less than 3 banks are available in the sample have been removed.
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In 2008 the banking sectors of countries E, H and K appear to be more systemic in terms of
the number of foreign banking sectors that will be impacted by the default of an average bank in
these countries, however losses are limited to around 6%. The systems B and J follow, however the
aggregate losses that the default of an average bank in B imposes on A are much larger. Banks in
country B are also noticeably more exposed to each other with losses reaching 13%. The default of
a bank headquartered in D, F or I does not have a sizeable impact on other European banks. With
regard to the banking sectors that are the most exposed to cross-border contagion, banks from A,
B and K generally seem to experience the highest loss following a foreign default (more numerous
colored cells). It is worth noting that banks in most of the countries are also exposed within the
system, with level of losses comparing to the international.

The 2009 and 2010 maps show that the potential for cross-border contagion changed over time:
on the one hand, the risks increased over time with more national banking systems experiencing
higher losses, but at the same time, less countries became exposed. Interestingly, the risks got
concentrated around several systemic countries, B, E and H. This phenomenon is particularly well
observed for the most fragile banking sectors, A, B and K: in 2008-2009, they were exposed to
the majority of the countries, whereas in 2010, losses from the three banking sectors B, E and
H prevailed. Over time, banks became also more exposed domestically (the diagonal cells appear
more pronounced).

In 2011 and 2012, we observe even more pronounced reduction in exposures with the same
centers of risk concentration. Namely, E and H remained the most systemic banking sectors and
imposed higher cross-border losses in 2011. The situation changed radically in 2012: B was the
most systemic whereas E became the most fragile. At the same time, the prevailing of light colors
in the map reveals a European banking system overall less vulnerable to cross-border contagion.

All in all, we find that the level of losses remains rather stable across the years: the highest
losses suffered by a national banking sector remains within 12-14%; notwithstanding, the cross-
border patterns do vary remarkably. In 2011 and 2012, banks reduce their interbank exposures
(see table 5), and most notably so in the cross-country dimension (see table 8), possibly as a
consequence of continued sovereign-bank financial tensions in Europe. This leads to lower contagion
losses overall concealing, however, a high heterogeneity across countries.

4.3 Systemic and fragile banks

Figure 12 depicts the systemic importance of all banks in each year from 2008 to 2012. We
define a bank as ’systemic’ when its default imposes more than the 85th percentile of the loss
distribution over a given network pair. On the vertical axis we see the number of networks in which
each bank appears to be systemic. Most of the banks are systemic in none or very few networks,
however some banks turn out to be systemic in more than 60% and even 90% of the networks.

Countries are ordered randomly, with the same order over time.
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Similarly, we try to rank banks according to the capital loss that they experience following the
default of all other banks. In particular, we define a bank as ’fragile’ if it suffers losses above the
85th percentile of the loss distribution over the set of shock scenarios. Figure 13 points in all the
years from 2008 to 2010 some of the banks that did experience severe difficulties in 2011-2012.

4.4 Focusing on system resilience over time

As already highlighted, the system vulnerability to contagion differs from one year to another.
The evidence presented so far points to a pattern of increasing (although not uniform) resilience
to contagion from 2008 to 2012. For instance, we have seen in Table 9 and Table 10 that upon
the default of the same bank, the average and maximum amount of losses are significantly larger
in 2008 than in the subsequent years. The larger maximum shares of depleted capital in 2011 and
2012 are possibly related to the disappearance of 4 and 9 banks, respectively, from the sample in
these years due to actual defaults. This determines both a lower total system capital and a lower
diversification of interbank assets, thus resulting in a higher contagion outcome.

Figure 6 demonstrates the evolution of the system resilience to contagion over time. The year
when the system was the most fragile is 2008. In fact, the 2008 loss distribution is characterized
by a statistically significant higher median and a heavier tail than those in the other years. The
overall resilience of the system with respect to solvency contagion gradually improved over time.

The reasons behind increasing system resilience to solvency contagion are threefold. First, banks
became better capitalized: average (max) common equity to total assets ratio increased from 4.18%
(11.13%) in 2008 to 5% (14.82%) in 2012 with a decrease to 4.43% in 2011 (table 5). Second, the
average fraction of ’Net loans to banks’ to total assets gradually fell from 8.31% in 2008 to 6.81%
in 2012 (table 5), and ’Net loans to banks’ is the item used to reconstruct the long-term exposure
networks on which solvency contagion takes place. Third, the network characteristics also changed.
Namely, the network became less connected over the years (the ratio of actual to possible links
reduced from 4% in 2008 to 2% in 2012); more skewed (the ratio of max to average degree jumped
from 5.5 in 2008 to 7.75 in 2012); with increasing average shortest path length (in 2008, the median
distance separating any two banks was of only 3.05 other institutions, whereas it reached 3.39 in
2011, and back to 3.04 in 2012) (table 6).

The intuition for the relationships between network measures and the results of contagion
propagation goes as follows. First, less connected networks are less fragile because there are less
links through which contagion may propagate. Second, more skewed networks may be more resilient
to contagion, on average, since most of the banks have only few exposures, so that their default
has little impact on the system. However, in those rare scenarios when a highly connected bank
defaults, losses can be sizeable. This is consistent with the observation that although the system
is on overage safer in 2012 than in 2008, in some extreme cases losses can reach 22% of the total
system capital. Third, a higher average shortest path length has a direct explanation for the ease
of losses propagation: the lower the average length of intermediation chains, the more easily losses
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may reach any other bank.

4.5 Robustness checks

We perform a number of robustness checks to test how different model parameters impact our
results. We document that changes in all the model parameters - recovery rate, availability of cash
and liquidity hoarding specifications - drive our results in the expected direction. More specifically,
lower recovery rates increase impact of both contagion channels, less cash as well as more aggressive
liquidity hoarding drive up losses due to funding issues. The levels of the impact, though, remain
perfectly reasonable, with average increase of initial losses by 10-15%.

5 Econometric analysis

In order to shed light on the relationship between simulation results, banks’ financial ratios
and network characteristics, we conduct an econometric analysis of the determinants of contagion.
First, we analyze the determinants of bank-level contagion. In later subsections, we study contagion
outcomes at a system level and at a country level.

5.1 Econometric specification

As explained below, all our dependent variables are bounded below (by zero) and above (by the
number of banks in the system, or by the capital in the system) and both boundary values are likely
to be observed in the data. The estimation of such a model cannot rely on OLS. A convenient way
of overcoming this difficulty is by normalizing the dependent variables so that they take values on
[0; 1]. For instance, rather than using the average number of times that a bank defaults following a
set of shock scenarios, we focus on the average frequency with which it defaults; rather than using
the loss amount suffered by a bank, we use the average proportion of its capital that gets depleted
following the shock scenarios. The estimation of models with fractional response variables relies
on the methodology proposed by Papke and Woolridge [1996]. It uses the generalized linear model
(GLM) developed by Nelder and Wedderburn [1972] and McCullagh and Nelder [1989].

Let Y be the dependent variable. It is assumed to be generated from a distribution in the
exponential family, whose mean µ depends on the independent variables X through:

E [Y ] = µ = Γ−1 (Xβ) (5.3)

where β is a vector of unknown parameters and Γ the p.d.f. of the link function. Furthermore, the
variance of Y is a function of the mean, so that:

19



Var [Y ] = Var
[
Γ−1 (Xβ)

]
(5.4)

In order to model proportions, a convenient specification is that by Papke and Woolridge [1996]
who assume that the dependent variable can be modeled by a binomial distribution, in combination
with a logit link function Γ. The vector of parameters β is estimated by maximum likelihood.

5.2 Bank-level determinants of contagion

This section explains the determinants of bank fragility or vulnerability with both balance sheet
and exposure characteristics.

5.2.1 Default outcomes

This section estimates the determinants of both bank fragility (i.e. average number of defaults
and average amount of losses suffered following a set of shock scenarios) and bank systemicity (i.e.
the average number of defaults and average amount of losses caused by the initial default of a bank,
over a set of shock scenarios). Thus, dependent variables in the various specifications of the default
model are related to default outcomes, whereas independent variables are network, exposure and
balance sheet characteristics.

More specifically, for each year of results we estimate the following specification:

Y (i, n, t) = g−1(β0 + β1 ∗X(i, n, t)) + ε(i, n, t), (5.5)

where Y (i, n, t) denotes the various fragility or systemicity default outcomes for simulated (pair of)
network n in year t. The vector of regressors X(i, n, t) is composed of variables related to financial
ratios, network position pre-shock, exposures to the weakest banks and control variables described
below.

5.2.2 Explanatory variables and expected effects

The following regressors have been used to estimate equation 5.5 :

Financial ratios. Solvency ratio: Common equity / Total assets; Liquidity ratio: Short −
term funding / Total assets. 16 Everything else equal, we expect banks that are more capitalised
and more liquid to be less vulnerable to contagion due to their long and short term interbank
exposures. The effect of higher financial ratios on bank systemicity is less obvious. Nonetheless,

16The ratio of long term exposures to common equity has also been tested as proxy for bank solvability. The
ratio of short term to long term funding and the so called "interbank ratio" (interbank assets divided by interbank
liabilities) have been tested as proxies for bank liquidity.
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the mechanics of the model suggests that removing well capitalised and liquid banks from the
system would result in a more fragile banking sector overall. Therefore, we can expect that being
more leveraged and illiquid results in higher bank systemicity.

(Long-term) Network position pre-shock. Closeness, betweenness or eigenvector centrality in the
network of long-term interbank exposures have been alternatively tested as explanatory variables.17

Recent literature has shown that the position occupied by a financial institution in the network
of interbank connections can explain e.g. its capacity to access interbank liquidity after a shock
(see Abbassi et al. [2013]), the price at which it can fund itself in the money market (see Gabrieli
[2012]), or its daily liquidity holdings as a participant in a large value payment system (see Bech
et al. [2010]). Based on this evidence, we expect (i) banks occupying a more central position in the
interbank network in terms of being directly exposed to many counterparties (i.e. banks that are
closer to all banks), (ii) banks that are more central in that they interpose themselves on many
intermediation chains in the interbank network (i.e. banks with higher betweenness), (iii) banks
occupying a central position because of their exposures to highly central counterparties (i.e. banks
with higher eigenvector centrality) to be more systemic. The effect of higher centrality on bank
fragility is less clear cut. On the one hand, one could expect more central banks (in terms of the
three measures described) to be more exposed, hence more vulnerable, to contagion. On the other,
banks that are direct lenders to many counterparties are also more diverisified in the asset side of
their balance sheet, hence potentially more resilient to the propagation of interbank losses.

Exposures to/from weakest banks. For each bank and year, we construct the share of bank i long-
term interbank lending directed to the three "riskiest" banks in the system. The latter are identified
as the three (i) most leveraged, (ii) least liquid, (iii) most interconnected, (iv) most indebted
European banks at the end of year t. Exposures to the "riskiest" counterparties are computed for
the fragility regressions, since beyond the importance of a bank’s own financial ratios, exposures to
risky counterparties can have a negative effect on banks’ resilience to adverse shocks. In general,
we expect a bank’s fragility to be higher the higher the share of its interbank loans granted to risky
(more leveraged, less liquid, more indebted) counterparties. The effect of being largely exposed
to very interconnected banks, however, is less straightforward. As in the case of banks with high
eigenvector centrality, being exposed to banks with many counterparties in the long-term exposures
network might actually lower bank fragility, because of the higher resilience of very connected (hence
more diversified) counterparties. At the same time, however, exposures to banks that are highly
interconnected in the short term (liquidity) networks could increase bank frailty, because a very
connected counterparty could be subject to more contemporaneous liquidity withdrawals. For a
bank being systemic, it is more important what types of banks are exposed to it, therefore we
compute the share of bank i long-term interbank borrowing from the three "riskiest" banks in the
system. If banks exposed to the defaulted peer are already risky, e.g. more leveraged, they may
fail more easily.

17Refer to Abbassi et al. [2013] for a description of network centrality indicators and their economic interpretation.
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Control variables. To clearly identify the effect of the regressors of interest on the contagion-
dependent variables, we control for the structural features of the simulated long- and short- term
networks. These are notably: network clustering, reflecting the extent to which banks lending to
each other tend to have a third common counterparty; average shortest path length, reflecting the
length of intermediation chains; the ratio of maximum to mean degree, indicating to what extent
the distribution of the number of bank counterparties is heavy tailed, with few (core) banks that are
very highly interconnected, and most (peripheral) banks that have links only to few counterparties.

5.2.3 Results

Bank fragility. Table 12 shows the results for Y (i, n, t) being successively the average number of
defaults and average amount of losses suffered by bank i in network (pair) n in t = 2008 over a set
of 500 shock scenarios. The results show that balance sheet ratios (for both solvency and liquidity)
are significantly correlated to banks’ vulnerability to contagion, especially in terms of the number
of times that a bank defaults. The coefficient capturing the role of a bank position in the network
before the shock is also significant. Banks that are highly interconnected are more likely to default
following a shock scenario and to suffer larger losses. The coefficients of the shares of interbank
lending directed to the riskiest banks in the system confirm our intuition that being exposed to
the most leveraged and least liquid banks increases both the likelihood of bank failure and the
amount of losses experienced. These "exposure metrics" are however less important than banks’
own financial ratios in economic terms. Being exposed to a larger banks, however, reduces both the
probability of default and the losses suffered since they are more stable and less likely to default
themselves. Finally, it is interesting to note that structural network characteristics do not explain
different degrees of bank vulnerability. The two exceptions are clustering coefficient and average
shortest path in long-term networks. More specifically, a system with longer intermediation chains
and less triangles seems to be more resilient to the propagation of interbank losses.
Results are consistent across years with minor differences.

Bank systemicity. Table 13 shows the results for Y (i, n, t) being successively the average number
of defaults and average amount of losses caused by the failure of bank i in network (pair) n in
t = 2008 over a set of 500 shock scenarios. Similarly to the results for bank fragility, a bank’s own
financial ratios appear to be significantly correlated with its contagious impact. The magnitude of
estimated coefficients is, however, lower than in the previous tables both for the average proportion
of bank defaults and the average amount of losses. As one would expect being big explains being
systemic in both terms, imposing more defaults and more losses. Eigenvector centrality turns out
to increase a bank systemicity: the more connected a bank due to its numerous direct and indirect
lending exposures, the higher the proportion of banks failing and the proportion of capital lost in
the banking network following the propagation of a shock. As for the fragility regressions, these
tables show that when the riskiest counterparties, more leveraged, more exposed, larger and with
higher beta, are exposed to a bank, it increases the bank’s systemic importance.
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6 Conclusion

This paper investigates the scope for cross-border contagion in Europe based on true exposure
data at a bank-to-bank level in a joint framework of solvency and liquidity contagion. We analyze
geographical patterns of shock propagation between 73 European banking groups from end-2008
until end-2012.

We exploit for the first time a unique dataset of interbank money market transactions, with
various maturities, estimated from TARGET2 payment data to obtain a realistic representation
of how European banks are connected through their long- and short-term claims. We rely on the
money market database to construct realistic probability maps of interbank exposures. These maps,
together with the amount of individual banks’ aggregate loans to other banks, are used to simulate
a large number of long- and short-term exposure matrices through a novel methodology proposed
by Halaj and Kok [2013].

Simulation of multiple networks from real data probability maps with significant heterogeneity
among them allows us to analyze not only the vulnerability of one particular network realization
retrieved from the real data, but of a large number of potential realistic networks. We find that
both solvency and liquidity contagion are tail risks: losses averaged over stress-scenarios, initial
bank defaults or simulated networks are rather limited; however, averaging conceals rare extreme
events. We document that losses at the tail of the distributions can reach one third of the system
capital in 2008, and that the resilience of the system improves significantly over time.

We find that, under extreme equity market stress and following the exogenous default of one
bank, cross-border contagion can materialize in the European banking system. The average and
maximum losses caused by a foreign bank’s default, however, varies remarkably over time. In
particular, in 2009 and 2010 the European banking system seems to have significantly increased
its capacity to withstand the same kind of adverse financial conditions that it had to face after
the default of Lehman Brothers. In 2011-2012, banks reduce their interbank positions, and most
notably so cross-country, possibly as a consequence of continued sovereign-bank financial tensions
in Europe. This leads to lower contagion losses overall, concealing however a high heterogeneity
across-countries.

Finally, we document a strong impact on the cross-border propagation of losses of heterogeneity
and concentration in the structure of interbank exposures. Moreover, the number of defaults
resulting from extreme market stress coupled with one bank’s default can be more than three
times larger depending on the underlying structure of interbank linkages. This is consistent with
recent models of contagion in financial networks relying on simulated networks of exposures (see,
Georg [2013] and Arinaminpathy et al. [2012]), and points to the need to account for the evolving
nature of the web of interbank linkages when running contagion analysis. Furthermore, we exploit
this heterogeneity in order to investigate the determinants of bank fragility or systemicity that
drive contagion outcomes with both banks’ balance sheet and exposure characteristics. We also
analyze the determinants of system-wide and country-level contagion by exploiting within-year
cross-network heterogeneity.
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A Appendix

A.1 The model

A.1.1 Common market shock

We model a shock with both a common component and an idiosyncratic component. First, a
market shock hits all listed banks’ capital. As mentioned by Upper [2011], contagion is more likely
with such a shock. Second, a bank is exogenously assumed to fail.

The market shock is modeled using a one-factor model for equity returns. The principal factor
and loading coefficients for all listed banks18 in our sample (42 institutions) are computed using
daily equity returns over a period spanning from January 1999 to December 2008. The first factor
is fitted to a Student t distribution, from which 100,000 simulations are drawn. The 500 left-tail
realizations of the first principal component are kept, corresponding to approximatively 5% tail
shocks. The impact on each bank’s capital is recovered through the factor loadings.

We keep the same market shock for each year in order to make sure about the change in fragility
of the system to contagion during these five years.

Simultaneously, one bank is forced to default. One advantage of such a shock is that it enables
analyzing the systemic importance of each institution, even though it abstracts from actual bank
probabilities of default. Losses through solvency and liquidity channels are then computed.
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Figure 2: Distribution of the shocks to individual banks over 500 shock scenarios, measured as percentage
of banks’ capital

18Non-listed banks are assumed to face no market shock, as their equity value is assumed not to be correlated with
market prices.
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Table 2: Distribution of the idiosyncratic and market shocks to the whole system measured as percentage
of total system capital

Min Mean Median Max

Idiosyncratic shock 0,04% 1,37% 0,70% 6,64%
Market shock 1,94% 3,38% 2,66% 16,17%

A.1.2 Solvency contagion

We closely follow the model by Fourel et al. [2013]. At time t = 1, banks are hit by a shock ε
according to the methodology previously described. If the initial losses are higher than the capital
of a bank, the latter goes into bankruptcy. We can therefore define the set of all banks defaulting
due to a market shock, named "fundamental defaults", as

FD(C) =

i ∈ N : C0(i) + ε(i)︸︷︷︸
initial shock

≤ 0


= {i ∈ N : C1(i) = 0} ,

(A.6)

where C1(i) = (C0(i) + ε(i))+ is the capital of bank i just after the initial shock.

From this situation, we can define a solvency default cascade (in Amini et al.’s terminology) as
a sequence of capital levels (Ck2 (i), i ∈ N)k≥0 (where k represents the algorithmic step) occurring
at time t = 2 and corresponding to the defaults due to insolvency: C0

2 (i) = C1(i)
Ck2 (i) = max(C0

2 (i)−
∑
{j, Ck−1

2 (j)=0}(1−R
S)× E0(i, j); 0), for k ≥ 1,

(A.7)

where RS is an exogenous recovery rate for solvency contagion.

The sequence is converging (in at most n steps) since (Ck2 )k is a component-wise decreasing
sequence of positive real numbers. Note that subscripts are used for periods of time and superscripts
for rounds of cascades. By "period", we mean the sequential spread of losses through different
channels. This should not be interpreted stricto sensu: we rather consider a sequence of events
that can concomitantly occur in a short period of time, e.g. within one week.

Comparison of the banks initially in default (that is FD(C)) and the banks in default at the
end of t = 2 corresponds to the set of institutions that defaulted only due to solvency default
contagion. We label this set S2.

A.1.3 Liquidity hoarding

In the liquidly hoarding section of our contagion simulations we employ a different functional
form than in Fourel et al. [2013]. We closely follow their model in the remaining sections.
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Decision on how much to hoard

To know how much liquidity a bank hoards in total, and how much it hoards from each
counterparty, we make some assumptions. First of all, the total amount of liquidity withdrawn
depends on the size of the shock to the bank’s capital: the bigger the losses due to the market
shock, the more the bank hoards liquidity. The proportion of liquidity to be hoarded by bank
i is λ(i) ∈ [0; 1]. It is assumed to depend on the capital loss Loss(i): at time t, we denote
λt(i) = aLoss(i)1[A;B] + b Loss(i)1[B;100], where 1 is an indicator function19. We assume that
bank i curtails its positions in the short-term interbank money market by stopping rolling over
debt for a total amount λt(i)ESTt (i) where ESTt (i) =

∑
j∈St−1 E

ST
t−1(i, j) and St−1 is the set of

non-defaulted banks at the end of period t− 1.

How much to hoard from each counterparty

Second, the amount of liquidity the bank hoards from each counterparty depends on the
generalized market perception of its credit risk, for which the leverage ratio can be used as a
proxy. The higher the leverage, the riskier a bank is perceived, the more its counterparties will
hoard from it. Defining µt(j) as µt(j) = 1− Ct(j)/TAt(j), we can decompose the total amount of
liquidity hoarded by bank i from its counterparties as follows:

λt(i)EST,k−1
t (i) = λt(i)EST,k−1

t (i)
∑

j,Ck−1
t (j)≥0

µt(j)EST,k−1
t (i, j)

Σhµt(k)EST,k−1
t (i, h)︸ ︷︷ ︸

=1

. (A.8)

Liquidity condition

When a bank hoards liquidity, it improves its short-term funding position, whereas liquidity
withdrawals by its counterparties deteriorate it. The following liquidity condition must hold:

Cat(i)︸ ︷︷ ︸
cash

+ λt(i)EST,k−1
t (i)︸ ︷︷ ︸

hoarding inflows

−
∑

j,Ck−1
t (j)≥0

λt(j)EST,k−1
t (j) µt(i)EST,k−1

t (j, i)
Σlµt(l)EST,k−1

t (j, l)︸ ︷︷ ︸
hoarding outflows

> 0. (A.9)

That is, bank i needs to have enough liquid assets, either interbank or non-interbank, to pay its
short-term debt.

In line with the solvency contagion algorithm, we state that a bank is in default when its capital
has been fully wiped out (solvency condition) or when it can not satisfy its short-term commitments
(liquidity condition).

Update of the algorithm to account for the losses due to solvency and liquidity contagion
19We test a range of parameters value in order to check the robustness of our results.
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

C0
t (i) = Ct−1(i)
for k ≥ 1,
Solvency condition:
C ′kt (i) = C0

t (i)−
∑
{j, Ck−1

t (j)=0}(1−R
L)ESTt (i, j)

Liquidity condition:

C ′′kt (i) =


0 if Cat(i) + λt(i)EST,k−1

t (i)−∑
h,Ck−1

t (h)≥0 λt(h)EST,k−1
t (h) µt(i)EST,k−1

t (h,i)
Σlµt(l)EST,k−1

t (h,l)
< 0

C ′jt (i) otherwise
Updating equation:
Ckt (i) = max(C ′kt (i);C ′′kt (i); 0)

(A.10)

At the end of period t, the algorithm provides the status of each bank (alive or in default), its
capital level and short-term exposures. Some banks may have defaulted during period t, thus some
non-defaulted banks have recorded losses on their capital level. If the capital is then lower than
their economic one, another round of liquidity hoarding treated in period t+ 1 will take place.

A.1.4 Model calibration

The following exogenous values are used to calibrate the model.

Table 3: Parameters used to calibrate the model

Values of exogenous parameters

Recovery rate (RS) 0,4
First hoarding threshold (A) 0

Amount hoarding (a) 1
Second hoarding threshold (B) 0,2

Amount hoarding (b) 1
Proportion of free cash 0,4
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A.2 The sample

Table 4: The sample

Country Bank Name Country Bank Name

AT Erste Group Bank GR Alpha Bank**
AT Raiffeisen Bank International GR ATE Bank*
AT Oesterreichische Volksbanken GR Eurobank Ergasias*
BE Dexia GR National Bank of Greece**
BE KBC Groep GR Piraeus Bank*
CH Credit Suisse Group GR TT Hellenic Postbank*
CH UBS HU OTP Bank Nyrt
CY Bank of Cyprus Public** IE Allied Irish Banks
CY Cyprus Popular Bank Public** IE Bank of Ireland
DE Bayerische Landesbank IT Banca Monte dei Paschi di Siena
DE Commerzbank IT Banca Popolare dell’Emilia Romagna
DE DekaBank IT Banco Popolare Società Cooperativa
DE Deutsche Bank IT Intesa SanPaolo
DE HSH Nordbank IT Unicredit
DE Hypo Real Estate Holding IT Unione di Banche Italiane
DE Landesbank Baden-Württemberg MT Bank of Valletta
DE Landesbank Berlin Holding NL ABN AMRO Group
DE Landesbank Hessen-Thueringen NL ING Bank
DE Norddeutsche Landesbank NL Rabobank Group
DE Westdeutsche Genossenschafts-Zentralbank NL SNS Bank
DK Danske Bank NO DnB ASA
DK Jyske Bank PL Powszechna Kasa Oszczednosci
DK Nykredit Realkredit PT Banco BPI
DK Sydbank PT Banco Comercial Português
ES Banco Bilbao Vizcaya Argentaria PT Caixa Geral de Depositos
ES Banco de Sabadell PT Espirito Santo Financial Group
ES Banco Popular Espanol SE Nordea Bank
ES Banco Santander SE Skandinavinska Enskilda Banken
ES Bankinter SE Svenska Handelsbanken
ES Caja de Ahorros y Monte de Piedad de Madrid** SE Swedbank
ES Caja de Ahorros y Pensiones de Barcelona SI Nova Ljubljanska Banka
FI Op-Pohjola Group UK Barclays
FR BNP Paribas UK Lloyds Banking Group
FR BPCE UK HSBC Holdings
FR Crédit Agricole UK Royal Bank of Scotland
FR Crédit Mutuel UK Standard Chartered
FR Société Générale

This table provides the sample of 73 banks used for the default simulations and the econometric analysis, as well as
their domestic country. It is a subset of the list of banks that underwent the 2011 stress tests carried out by the
European Banking Authority (EBA [2011b]). The * and ** indicate banks which are not included in the 2011 and
2012 sample, respectively, due either to failures or to unavailable data. The country abbreviations are as follows:
AT = Austria, BE = Belgium, CH = Switzerland, CY = Cyprus, DE = Germany, DK = Denmark, ES = Spain, FI
= Finland, FR = France, GR = Greece, HU = Hungary, IE = Ireland, IT = Italy, MT = Malta, NL = Netherlands,
NO = Norway, PL = Poland, PT = Portugal, SE = Sweden, SI = Slovenia, UK = United Kingdom.
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A.3 Descriptive statistics

Table 5: Descriptive statistics of sample banks’ balance sheet ratios

Year

2008 2009 2010 2011 2012
Cash and cash Equivalents / Total Assets

Average 9.96% 9.54% 8.68% 9.64% 9.68%
Minimum 1.44% 1.45% 1.03% 1.09% 0.99%
Median 8.70% 8.49% 7.71% 8.38% 8.34%

Maximum 32.78% 29.35% 30.64% 29.88% 27.53%
Standard deviation 5.94% 5.19% 5.20% 5.48% 5.10%

Common Equity / Total Assets
Average 4.18% 4.73% 4.73% 4.20%* 4.42%*

Minimum 0.62% 1.05% 0.08% -5.72% -4.54%
Median 3.90% 4.40% 4.55% 3.76% 4.33%

Maximum 11.13% 13.06% 13.32% 13.85% 14.92%
Standard deviation 2.25% 2.35% 2.42% 2.76% 2.99%

Net Loans to Banks / Total Assets
Average 8.31% 7.93% 7.19% 7.24% 6.81%

Minimum 0.88% 0.88% 0.68% 0.64% 0.54%
Median 7.09% 6.61% 5.60% 5.49% 4.70%

Maximum 31.73% 29.14% 30.17% 29.61% 26.28%
Standard deviation 6.01% 5.55% 5.50% 5.65% 5.73%

* Excluding from the sample banks with negative common equity, we can observe an increase in the average leverage
ratio from 4.20% to 4.43% in 2011 and from 4.42% to 5% in 2012. Source: SNL Financials and own calculations.
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Table 6: Descriptive statistics of the 200 networks of long-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok [2013]. The probability map has
been obtained from data on actual euro money market loans with maturities from one to six months.

Year
2008 2009 2010 2011 2012

Number of links
Minimum 180,00 223,00 194,00 146,00 100,00
Median 201,00 242,00 210,50 165,00 111,00

Maximum 216,00 264,00 226,00 181,00 122,00
Standard deviation 6,13 7,34 6,19 6,08 4,18

Density
Minimum 0,03 0,04 0,04 0,03 0,02
Median 0,04 0,05 0,04 0,03 0,02

Maximum 0,04 0,05 0,04 0,03 0,02
Standard deviation 0,001 0,001 0,001 0,001 0,001

Average shortest path
Minimum 2,82 2,79 2,97 3,10 2,45
Median 3,05 3,08 3,27 3,39 3,04

Maximum 3,93 3,45 3,70 3,72 4,09
Standard deviation 0,133 0,115 0,124 0,122 0,259

Max / Median degree
Minimum 3,80 2,71 3,40 4,50 6,50
Median 5,50 3,33 5,00 5,33 7,75

Maximum 7,67 4,33 6,50 8,50 16,00
Standard deviation 0,73 0,32 0,64 0,63 3,57
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Table 7: Descriptive statistics of the 200 networks of short-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok [2013]. The probability map has
been obtained from data on actual euro money market loans with maturities up to one month.

2008 2009 2010 2011 2012

Number of links
Minimum 396 433 454 356 193
Median 428 465 486 389 213

Maximum 469 491 523 426 230
Standard deviation 12,34 12,65 14,14 12,24 6,44

Density
Minimum 0,08 0,08 0,09 0,07 0,04
Median 0,08 0,09 0,09 0,07 0,04

Maximum 0,09 0,09 0,10 0,08 0,04
Standard deviation 0,002 0,002 0,003 0,002 0,001

Average shortest path
Minimum 2,34 2,41 2,45 2,52 2,94
Median 2,55 2,63 2,65 2,80 3,48

Maximum 2,79 2,96 3,01 3,28 4,31
Standard deviation 0,09 0,08 0,10 0,16 0,25

Max / Median degree
Minimum 2,67 2,46 2,92 3,40 3,60
Median 3,36 3,29 3,67 4,22 5,00

Maximum 4,33 4,27 4,73 5,25 6,25
Standard deviation 0,35 0,34 0,30 0,36 0,62
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Table 8: Descriptive statistics of domestic and cross-country exposures in the 200 long-term interbank
networks.
The probability map has been obtained from data on actual euro money market loans with maturities from one to six
months. Table A. shows statistics of total exposures of banks to their domestic counterparties over the total capital
of the system. Table B. shows statistics of exposures of banks to their foreign counterparties (by country) divided by
the total capital of the system.

Year

2008 2009 2010 2011 2012
A. Domestic interbank exposures
(country level, % of country’s capital)

Mean 24% 22% 15% 18% 12%
Min 0% 0% 0% 0% 0%

Median 0% 0% 0% 0% 0%
Max 306% 232% 166% 157% 136%

Std dev 66% 53% 36% 39% 33%
B. Cross-border interbank exposures
(country level, % of country’s capital)

Mean 3.44% 3.20% 3.00% 5.07% 1.74%
Min 0% 0% 0% 0% 0%

Median 0% 0% 0% 0% 0%
Max 97% 177% 103% 942%* 89%

Std dev 10% 11% 10% 46% 8%

* This outlier value somehow confuses statistics. Without it,

the maximum value is equal to 130% and the mean value to 2.93%.
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A.4 Simulation results

Table 9: Summary statistics of simulation results averaged over 500 shock scenarios and the defaults of an
initial bank.
Distribution of default outcomes over 200 pairs of networks. Default outcomes are averaged over the shock scenarios
and over the defaults of an initial bank. Default outcomes are reported in terms of number of bank failures triggered
by the default of an initial bank and of losses as a proportion of total system capital (i.e. of depleted capital). All the
losses due to the common market shock and to solvency contagion are accounted for in ’... before hoarding’, whereas
total losses are accounted for in ’... after hoarding’. Thus the difference between the two is attributed to liquidity
contagion

2008 2009 2010 2011 2012

Number of defaults before hoarding
Min 1,28 1,27 1,17 1,22 1,18
Median 1,53 1,51 1,31 1,44 1,33
75th percentile 1,67 1,61 1,37 1,53 1,40
Max 2,18 2,16 1,68 1,84 1,77

Share of depleted capital before hoarding
Min 5,62% 5,66% 5,62% 5,61% 5,65%
Median 6,02% 5,95% 5,85% 5,84% 5,96%
75th percentile 6,20% 6,10% 5,97% 5,95% 6,13%
Max 7,32% 6,69% 6,68% 6,77% 6,72%

Number of defaults after hoarding
Min 1,30 1,29 1,19 1,29 1,18
Median 1,63 1,59 1,40 1,51 1,33
75th percentile 1,82 1,75 1,56 1,63 1,41
Max 5,55 5,28 3,12 3,67 1,79

Share of depleted capital after hoarding
Min 5,64% 5,67% 5,65% 5,63% 5,67%
Median 6,09% 6,01% 5,94% 5,90% 5,97%
75th percentile 6,41% 6,22% 6,13% 6,07% 6,14%
Max 14,00% 10,89% 8,91% 7,32% 6,74%
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Table 10: Summary statistics of simulation results: maximum losses over 500 shock scenarios and the
defaults of an initial bank.
Distribution of maximum default outcomes over 200 pairs of networks. Maximum default outcomes are measured in
terms of maximum number of bank failures triggered by the default of an initial bank and of losses as a proportion
of total system capital (i.e. of depleted capital). All the losses due to the common market shock and to solvency
contagion are accounted for in ’... before hoarding’, whereas total losses are accounted for in ’... after hoarding’. Thus
the difference between the two is attributed to liquidity contagion

2008 2009 2010 2011 2012

Number of defaults before hoarding
Min 5,00 3,05 3,00 4,00 3,00
Median 8,07 8,00 6,00 7,00 6,26
75th percentile 9,72 9,07 7,00 9,00 8,01
Max 15,00 13,09 11,16 14,00 11,00

Share of depleted capital before hoarding
Min 11,74% 11,19% 11,66% 11,09% 10,97%
Median 17,59% 16,29% 15,93% 17,05% 16,23%
75th percentile 20,66% 18,63% 17,67% 19,24% 18,60%
Max 32,57% 30,98% 27,56% 32,03% 29,33%

Number of defaults after hoarding
Min 5,00 3,24 3,00 4,00 3,05
Median 9,00 8,06 6,08 8,00 6,50
75th percentile 10,05 10,00 8,00 9,00 8,04
Max 15,00 13,09 12,12 15,00 11,00

Share of depleted capital after hoarding
Min 11,77% 11,69% 11,69% 11,46% 10,97%
Median 18,57% 16,79% 16,84% 17,33% 16,23%
75th percentile 21,54% 19,17% 18,77% 19,75% 18,60%
Max 32,57% 32,02% 27,56% 32,03% 29,33%

37



Table 11: Summary statistics of simulation results: domestic and cross-country losses averaged over 500
schock scenarios and the defaults of an initial bank.
Table A. presents by-country distributions of average losses (over 200 network pairs) imposed by a bank on its
domestic counterparties over the total capital of the system. Table B. presents by-country distributions of average
losses (over 200 network pairs) imposed by a bank on its foreign counterparties over the total capital of the system.

Year

2008 2009 2010 2011 2012
A. Losses imposed on home banks

Mean 1,96% 2,45% 2,46% 1,77% 1,53%
Min 0,00% 0,00% 0,00% 0,00% 0,00%
Median 1,06% 1,15% 1,60% 0,03% 0,03%
Max 13,03% 15,34% 10,89% 13,21% 10,90%
Std dev 3,18% 3,93% 2,99% 3,24% 2,84%
B. Individual Losses imposed on foreign banks
Mean 1,21% 0,90% 0,82% 0,60% 0,43%
Min 0,00% 0,00% 0,00% 0,00% 0,00%
Median 0,31% 0,28% 0,26% 0,03% 0,00%
Max 34,56% 12,80% 25,22% 36,15% 15,64%
Std dev 2,81% 1,77% 1,94% 2,12% 1,28%
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l Share of depleted capital, year 2011 (max over banks)
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After default contagion
After liquidity hoarding (and subsequent contagion rounds)

Figure 3: Share of interbank losses -before and after liquidity hoarding- ordered by the size of
total losses (as % of total system capital)
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Figure 4: Distribution of losses due to both solvency and liquidity contagion (as % of total
system capital)

Figure 5: Distribution of maximum number of failures due to both solvency and liquidity
contagion
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Figure 6: Distribution of the 5% worst losses due to both solvency and liquidity contagion
over 500 shock scenarios and 200 network pairs (as % of total system capital)
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Figure 7: Total cross-border contagion in 2008
The cells (A; B) of the map represent with colors the strength of the total capital loss experienced by country A’s
banking sector (as a fraction of its aggregate initial capital) given a common market shock and the default of a
bank in the foreign banking system B. Total country capital losses are computed on average over 500 realizations
of the market shock and 200 different pairs of long- and short-term exposure networks. They have been normalized
to account for the different number of banks (and hence of simulations) considered for the various national banking
sectors. Heatmaps have been anonymized for data confidentiality reasons; countries for which less than 3 sample
banks are available have been removed from the charts. Countries are ordered randomly, but the order is the same
across years.

Figure 8: Total cross-border contagion in 2009
See caption in Figure 7.
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Figure 9: Total cross-border contagion in 2010
See caption in Figure 7.

Figure 10: Total cross-border contagion in 2011
See caption in Figure 7. Note that one additional country has been removed from the 2011 heat map because of data
unavailability for sample banks from this country in 2011.
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Figure 11: Total cross-border contagion in 2012
See caption in Figure 7. Note that one additional country has been removed from the 2012 heat map because of data
unavailability for sample banks from this country in 2012.
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Figure 12: Systemic banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is systemic. Most of the banks are either never
systemic or rarely systemic, whereas some are systemic in almost all 200 simulated networks. We define a bank to
be systemic, when losses (through both channels of contagion) imposed on the system by its default exceed 85th
percentile of loss distribution.
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Figure 13: Fragile banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is fragile. Most of the banks are either never fragile or
rarely fragile, whereas some are fragile in more than half of 200 simulated networks. We define a bank to be fragile,
when it defaults due to an initial default more frequently that 85% of other banks.
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A.5 Econometrics

(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Capital ratio -94.39∗∗∗ -94.40∗∗∗ -94.39∗∗∗ -9.614∗∗∗ -9.613∗∗∗ -9.613∗∗∗

(-31.96) (-31.95) (-31.95) (-36.31) (-36.34) (-36.35)

Log LT Interbank assets 0.160∗∗∗ 0.161∗∗∗ 0.161∗∗∗ 0.0797∗∗∗ 0.0797∗∗∗ 0.0797∗∗∗

(7.46) (7.48) (7.49) (31.57) (31.55) (31.57)

ST funding / Assets 25.91∗∗∗ 26.04∗∗∗ 25.88∗∗∗ 3.475∗∗∗ 3.484∗∗∗ 3.470∗∗∗

(15.64) (15.55) (15.29) (6.75) (6.76) (6.73)

Eigenvector centrality 0.361∗∗∗ 0.361∗∗∗ 0.364∗∗∗ 0.136∗∗∗ 0.136∗∗∗ 0.136∗∗∗

(4.15) (4.14) (4.17) (5.19) (5.19) (5.20)

EXP. low ST funding / Assets 0.384∗∗∗ 0.385∗∗∗ 0.390∗∗∗ 0.0113 0.0123 0.0137
(2.89) (2.90) (2.92) (0.38) (0.42) (0.46)

EXP. low Capital 1.093∗∗∗ 1.090∗∗∗ 1.074∗∗∗ 0.434∗∗∗ 0.435∗∗∗ 0.432∗∗∗

(6.46) (6.47) (6.40) (7.13) (7.17) (7.14)

EXP. larger banks -0.535∗∗∗ -0.536∗∗∗ -0.533∗∗∗ -0.0595∗∗ -0.0591∗∗ -0.0587∗∗

(-3.10) (-3.10) (-3.08) (-2.15) (-2.14) (-2.12)

LT clustering -3.203∗∗ -3.362∗∗ -0.831∗∗ -0.868∗∗

(-2.02) (-2.11) (-2.45) (-2.56)

LT Avg. Path length 0.296∗∗ 0.314∗∗ 0.0578∗ 0.0625∗

(2.00) (2.08) (1.78) (1.89)

LT Max / Mean degree -0.0573 -0.0805 -0.00259 -0.00890
(-1.12) (-1.50) (-0.24) (-0.79)

ST clustering 2.290 0.519
(1.18) (1.33)

ST Avg. Path length -0.305 -0.0835
(-1.04) (-1.35)

ST Max / Mean degree 0.0635 0.0189
(0.70) (0.99)

Constant -4.747∗∗∗ -4.682∗∗∗ -4.726∗∗∗ -3.557∗∗∗ -3.530∗∗∗ -3.515∗∗∗

(-12.10) (-6.73) (-3.61) (-77.11) (-25.98) (-13.30)
Observations 11000 11000 11000 11000 11000 11000
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Explaining bank fragility.
The dependent variable in columns (1), (2) and (3) is the frequency of defaults of bank i, for each network n, following
the default of another bank j, j 6= i. The dependent variable in columns (4), (5) and (6) is the share of losses suffered
by bank i, for each network n, following the default of another bank j, j 6= i. EXP. variables are computed as
exposures of the bank in question to the riskiest banks.
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(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Log Total Assets 0.303∗∗∗ 0.303∗∗∗ 0.304∗∗∗ 0.105∗∗∗ 0.105∗∗∗ 0.105∗∗∗

(16.70) (16.72) (16.74) (31.85) (31.86) (31.89)

LT liabilities / Assets 1.632∗∗∗ 1.643∗∗∗ 1.643∗∗∗ 0.330∗∗∗ 0.331∗∗∗ 0.333∗∗∗

(13.99) (14.11) (14.10) (9.43) (9.46) (9.54)

Capital ratio -21.99∗∗∗ -22.00∗∗∗ -21.99∗∗∗ -2.279∗∗∗ -2.279∗∗∗ -2.279∗∗∗

(-14.11) (-14.12) (-14.11) (-11.40) (-11.40) (-11.41)

ST funding / Assets 9.334∗∗∗ 9.327∗∗∗ 9.255∗∗∗ 3.185∗∗∗ 3.185∗∗∗ 3.162∗∗∗

(6.34) (6.34) (6.31) (9.17) (9.17) (9.09)

Eigenvector centrality 0.497∗∗∗ 0.495∗∗∗ 0.496∗∗∗ 0.220∗∗∗ 0.220∗∗∗ 0.220∗∗∗

(7.26) (7.22) (7.22) (9.29) (9.30) (9.34)

EXP. low Capital 0.904∗∗∗ 0.900∗∗∗ 0.897∗∗∗ 0.283∗∗∗ 0.283∗∗∗ 0.282∗∗∗

(8.38) (8.35) (8.30) (6.41) (6.41) (6.41)

EXP. more Exposed 0.713∗∗∗ 0.706∗∗∗ 0.696∗∗∗ 0.339∗∗∗ 0.338∗∗∗ 0.338∗∗∗

(3.32) (3.28) (3.23) (4.44) (4.43) (4.42)

EXP. larger Banks 0.715∗∗∗ 0.714∗∗∗ 0.713∗∗∗ 0.593∗∗∗ 0.593∗∗∗ 0.593∗∗∗

(4.55) (4.55) (4.56) (9.70) (9.71) (9.71)

EXP. higher Beta 0.330 0.331 0.331 0.603∗∗∗ 0.603∗∗∗ 0.603∗∗∗

(1.39) (1.40) (1.40) (7.59) (7.59) (7.60)

LT clustering -2.062∗ -2.241∗ -0.409 -0.406
(-1.75) (-1.89) (-1.64) (-1.62)

LT Avg. Path length 0.248∗∗ 0.275∗∗ 0.0395 0.0485∗

(1.99) (2.18) (1.45) (1.77)

LT Max / Mean degree -0.0608 -0.0920∗∗ 0.00505 -0.00224
(-1.37) (-2.00) (0.54) (-0.23)

ST clustering 2.550∗ -0.207
(1.85) (-0.72)

ST Avg. Path length -0.461∗∗ -0.176∗∗∗

(-2.08) (-3.71)

LT Max / Mean degree 0.0710 0.0109
(0.93) (0.64)

Constant -10.01∗∗∗ -10.04∗∗∗ -9.782∗∗∗ -4.702∗∗∗ -4.748∗∗∗ -4.266∗∗∗

(-25.81) (-16.02) (-10.14) (-71.11) (-38.58) (-21.14)
Observations 14600 14600 14600 14600 14600 14600
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Explaining bank systemicity.
The dependent variable in columns (1), (2) and (3) is the frequency of failures imposed by the default of bank i, for
each network n. The dependent variable in columns (4), (5) and (6) is the share of losses imposed by the default of
bank i, for each network n. EXP. variables are computed as exposures of the riskiest banks to the bank in question.
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