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Abstract

The paper studies how parameter variation affects the decision rules of a DSGE
model and structural inference. We provide diagnostics to detect parameter variations
and to ascertain whether they are exogenous or endogenous. Identification and inferen-
tial distortions when a constant parameter model is incorrectly assumed are examined.
Likelihood and VAR-based estimates of the structural dynamics when parameter vari-
ations are neglected are compared. Time variations in the financial frictions of Gertler
and Karadi’s (2010) model are studied.

Key words: Structural model, time varying coefficients, endogenous variations, misspec-
ification.

JEL Classification: C10, E27, E32.

Abstract

Nous étudions 'effet des variations des parametres sur les regles de décisions des
agents et I'inférence structurelle dans les modeles DSGE. Nous proposons une méthode
qui permet de détecter les variations des parametres et d’identifier si elles sont en-
dogenes ou exogenes. Nous montrons que l'identification et l'inférence sont biaisées
lorsqu’un modele DSGE avec parametres constants est utilisé alors que ces mémes
parametres varient dans le temps. Les propriétés de la vraisemblance et des estima-
tions obtenues avec les modeles VAR sont étudiées et comparées. Nous proposons une
application dans le cadre du modele avec frictions financieres de Gertler et Karadi
(2010).

Mot-cles : modeles structurelles, variations temporelles des parametres, variations en-
dogenes, mis-spécification

Code JEL: C10, E27, E32.



1 NON TECHNICAL SUMMARY

In macroeconomics it is standard to study models that are structural in the sense of Hur-
wicz (1962); that is, models where the parameters characterizing the preference and the
constraints of the agents and the technologies to produce goods and services are invariant to
changes in the parameters describing government policies. Such a requirement is crucial to
distinguish structural from reduced form models, and to conduct correctly designed policy
counterfactuals in dynamic stochastic general equilibrium (DSGE) models.

Recently, Dueker et al. (2007), Fernandez Villaverde and Rubio Ramirez (2007), Canova
(2009), Rios Rull and Santaeularia Llopis (2010), Liu et al. (2011), Galvao, et al. (2014),
Vavra (2014), Seoane (2014), and Meier and Sprengler (2015) have shown that DSGE pa-
rameters are not time invariant and that variations display small but persistent patterns.
Parameter variations can not be taken as direct evidence that DSGE models are not struc-
tural. For example, Cogley and Yagihashi (2010), and Chang et al. (2013) showed that
parameter variations may result from the misspecification of a time invariant model, while
Schmitt Grohe and Uribe (2003) indicated that parameter variations may be needed in
certain small open economy models to ensure the existence of a stationary equilibrium.

The approach the DSGE literature has taken to model parameter variations follows the
VAR literature (see Cogley and Sargent, 2005, and Primiceri, 2005): they are assumed to be
exogenously drifting as independent random walks. Many economic questions, however, hint
at the possibility that parameter variations may instead be endogenous. For example, is it
reasonable to assume that a central bank reacts to inflation in the same way in an expansion
or in a contraction? Davig and Leeper (2006) analyze state-dependent monetary policy
rules and describe how this feature affects structural dynamics. Does the propagation of
shocks depend on the state of private and government debt? Do fiscal multipliers depend on
inequality, see e.g. Brinca et al. (2014)7 Are households as risk averse or as impatient when
they are wealthy as when they are poor? Questions of this type are potentially numerous.
Clearly, policy analyses conducted assuming time invariant parameters or an inappropriate
form of time variations may be misleading; comparisons of the welfare costs of business cycles
biased; and growth prescriptions invalid.

This paper has three main goals. First, we want to characterize the decision rules of a
DSGE when parameter variations are either exogenous or endogenous, and in the latter case,
when agents internalize or not the effects that their decisions may have on parameter vari-
ations. Second, we wish to provide diagnostics to detect misspecifications due to neglected
parameter variations. Third, we want to study the consequences in terms of identification,
estimation, and inference of using time invariant models when the DGP features param-
eter variations and compare likelihood-based and SVAR-based estimates of the structural
dynamics when parameter variations are neglected.



2 INTRODUCTION

In macroeconomics it is standard to study models that are structural in the sense of Hur-
wicz (1962); that is, models where the parameters characterizing the preference and the
constraints of the agents and the technologies to produce goods and services are invariant to
changes in the parameters describing government policies. Such a requirement is crucial to
distinguish structural from reduced form models, and to conduct correctly designed policy
counterfactuals in dynamic stochastic general equilibrium (DSGE) models.

Recently, Dueker et al. (2007), Fernandez Villaverde and Rubio Ramirez (2007), Canova
(2009), Rios Rull and Santaeularia Llopis (2010), Liu et al. (2011), Galvao, et al. (2014),
Vavra (2014), Seoane (2014), and Meier and Sprengler (2015) have shown that DSGE pa-
rameters are not time invariant and that variations display small but persistent patterns.
Parameter variations can not be taken as direct evidence that DSGE models are not struc-
tural. For example, Cogley and Yagihashi (2010), and Chang et al. (2013) showed that
parameter variations may result from the misspecification of a time invariant model, while
Schmitt Grohe and Uribe (2003) indicated that parameter variations may be needed in
certain small open economy models to ensure the existence of a stationary equilibrium.

The approach the DSGE literature has taken to model parameter variations follows the
VAR literature (see Cogley and Sargent, 2005, and Primiceri, 2005): they are assumed to be
exogenously drifting as independent random walks. Many economic questions, however, hint
at the possibility that parameter variations may instead be endogenous. For example, is it
reasonable to assume that a central bank reacts to inflation in the same way in an expansion
or in a contraction? Davig and Leeper (2006) analyze state-dependent monetary policy
rules and describe how this feature affects structural dynamics. Does the propagation of
shocks depend on the state of private and government debt? Do fiscal multipliers depend on
inequality, see e.g. Brinca et al. (2014)7 Are households as risk averse or as impatient when
they are wealthy as when they are poor? Questions of this type are potentially numerous.
Clearly, policy analyses conducted assuming time invariant parameters or an inappropriate
form of time variations may be misleading; comparisons of the welfare costs of business cycles
biased; and growth prescriptions invalid.

This paper has three main goals. First, we want to characterize the decision rules of a
DSGE when parameter variations are either exogenous or endogenous, and in the latter case,
when agents internalize or not the effects that their decisions may have on parameter vari-
ations. Second, we wish to provide diagnostics to detect misspecifications due to neglected
parameter variations. Third, we want to study the consequences in terms of identification,
estimation, and inference of using time invariant models when the DGP features param-
eter variations and compare likelihood-based and SVAR-based estimates of the structural
dynamics when parameter variations are neglected.

The existing literature is generally silent on these issues. Seoane (2014) uses parameter
variations as a respecification tool. Kulish and Pagan (2014) characterize the decision rules
of a DSGE model when predictable structural breaks occur. Magnusson and Mavroedis
(2014) and Huang (2014) examine how variations in the certain parameters may affect the
identification of other structural parameters and the asymptotic theory of maximum likeli-



hood estimators. Fernandez Villaverde et al. (2013) investigate to what extent variations in
shock volatility matter for real variables. Ireland (2007) assumes that trend inflation in a
standard New Keynesian model is driven by structural shocks; Ascari and Sbordone (2014)
highlight that it may be a function of policy decisions.

The next section characterizes the decision rules in a general setup where both exoge-
nous and endogenous variations in the parameters regulating preferences, technologies, and
constraints are possible. We consider both first order and higher order perturbed approxi-
mations. We present a simple RBC example to provide intuition for the results we obtain.
We show that if parameter variations are exogenous, structural dynamics are the same as
in a model with no parameter variations. Thus, if one correctly identifies structural distur-
bances, she would make no mistakes in characterizing structural impulse responses, even if
she employs a constant coefficient model. Clearly, variance and historical decompositions
exercises will be distorted, since some sources of disturbances will be omitted. If parame-
ter variations are instead endogenous, structural dynamics may be different from those of
a constant coefficient model. Differences exist because the income and substitution effects
present in the constant coefficient model are altered. These conclusions do not necessarily
hold when higher order approximations are used.

Section 3 provides diagnostics to detect misspecification induced by neglecting parameter
variations and to distinguish exogenous vs. endogenous parameter variations. In the context
of a Monte Carlo exercise, we show that they are able to detect the true DGP with high
probability. In section 4 we are interested in measuring the identification repercussions that
neglected time variations may have for time invariant parameters. Since the likelihood is
constructed using forecast errors, which are generally misspecified when parameter variations
are neglected, one expects the likelihood shape to be both flattened and distorted. In the
context of the RBC example, we show that indeed both pathologies occur; we also show that
weakly identified (time invariant) parameters do not become better identified when time
variations in other parameters exist.

Section 5 considers structural estimation of a time invariant model when the data is
generated by models with time varying parameters. We expect distortions because the
dynamics assumed by the constant coefficient model are generally incorrect and because
shock misaggregation is present. Indeed, important biases in parameter estimates are present,
occur primarily in parameters controlling income and substitution effects, and do not die
away as sample size increase. Estimated impulse responses differ from the true ones both in
quantitative and qualitative sense.

Section 6 studies whether a less structural time invariant SVARs model can capture the
dynamics induced by structural shocks. We show that the performance is comparable if not
superior to the one of structural models. The performance of SVARs worsens when shocks
to the parameters account for a considerable portion of the variability of the endogenous
variables but the deterioration is not as large as with likelihood -based approaches.

Section 7 estimates the parameters of Gertler and Karadi’s (2010) model of unconven-
tional monetary policy, applies the diagnostics to detect parameter variations, and estimates
versions of the model where the bank’s moral hazard parameter is allowed to vary over time.



We find that a fixed coefficient model is misspecified, that making parameter variations en-
dogenous function of net worth is preferable, and that the dynamic effects of capital quality
shocks on the spread and on bank net worth can be more persistent than previously thought.
Section 8 concludes.

3 THE SETUP

The optimality conditions of a DSGE model can be represented as:
By [f(Xeq1, Xo, Xoo1, Zig1, Z4,0441,04)] = 0 (1)

where X, is an n, x 1 vector of endogenous variables, Z; is an n, x 1 vector of strictly
exogenous variables, ©; = [©1;, ©y], vector of possibly time varying structural parameters,
where Oy; is a ng,n,, x 1 vector, n, > n,,, appearing in the case agents internalize the
effects that their decisions have on the parameters and O;; is an ng, x 1 vector, while f
is a continuous function, assumed to be differentiable up to order q, mapping onto a R™*
space. Since the distinction between variables and parameters is blurred when we allow
for parameter variations, we use the convention that parameters are those variables that
typically assumed to be constant by economists.
The law of motion of the exogenous variables is:

Zi1 = V(Zy,05€,,) (2)

where W is a continuous function, assumed to be differentiable up to order q, mapping onto a
R": space; €7, is a n. x 1 vector of i.i.d. structural disturbances with mean zero and identity
covariance matrix,n, > n.; 0 > 0 is an auxiliary scalar; Y, is a knownn, X n, matrix. The
law of motion of the structural parameters is:

Orr1 = (0, X, Upya) (3)

where ® is a continuous function, assumed to be differentiable up to order q, mapping onto
the R™ space; U, is a n, x 1 vector of exogenous disturbances, ng = ng, (1 + n,, ) > n,;© is
a vector of constants. The law of motion of U4 is:

U1 = Q(Utaagudﬁrl) (4)

where €2 is continuous and differentiable up to order g, mapping onto the R"™ space; €}
is a n, X 1 vector of i.i.d. disturbances, with mean zero and identity covariance matrix,
uncorrelated with the €7, and 3, is a known n, x n, matrix.

The decision rule is assumed to be of the form:

X = h(Xt—la Wi, 0%€41, @) (5)

where h is a continuous function, assumed to be differentiable up to order ¢, and mapping
onto a R™ space, €41 = [/}, €/14]", & = diag[¥., X,), W, = [Z,, U]]".
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Few features of the setup need some discussion. First, ©; will be serially correlated if U,
or X, or both are serially correlated. Second, the vector of structural disturbances €7, ; may
be smaller than the vector of exogenous variables and the dimension of €}',; may be smaller
than the dimension of the structural parameters. Thus, there may be common patterns of
variations in Z; ., and U, ;. Third, we allow for time variations in the parameters regulating
preferences, technologies, and constraints, but we do not consider variations in the auxiliary
parameters regulating the law of motion of Z; and Uy, as we are not interested in stochastic
volatility, GARCH, or rare events phenomena (as in e.g. Andreasan, 2012), nor in time
variations driven by evolving persistence of the exogenous processes.

3.1 FIRST ORDER APPROXIMATE DECISION RULE

We start by studying the implications of structural parameters variation for the optimal
decision rule when a first order approximate solution is considered. Taking a linear expansion
of (1) around the steady states leads to

0= Et [F.TtJrl + GIt + H:L’tfl + LZtJrl + MZt + N9t+1 + Oﬁt] (6)

where F' = 0f/0X,y1, G = 0f/0X,, H = 0f/0X,_1, L = 0f/0Zyn , M = O0f/0Z,,
N = 0f/00:11 O = 0f /00y, all evaluated at the steady states values of (X, Z;, ©;) and

lower case letters indicate deviations from the steady states. Linear expanding (5) leads to:
Ty = Pl't_l + ta + Rut (7)
where P = 0h/0X;_1, Q = Oh/0Z;, R = Oh/OU;, all evaluated at steady state values.

Proposition 1 The matrices P, @), R satisfy:
e P solves FP? + (G + N¢,)P + (H 4+ O¢,) = 0.
o Given P, Q solves VQ = —vec(Lp, + M) andV =Y. @ F +1,, ® (FP+ G+ N¢,).
o Given P, R solves WR = —vec(N ¢pywy,+O¢,) where W = W, @ F+1,,(FP+G+N¢,)

where ¢, = 0P/OU 1, ¢ = 0P/0Xy, 0, = OV /07y, w,, = 0Q/OUy, vec denotes the column-
wise vectorization, and where we assume that all the eigenvalues of 1, and of w, are strictly
less than one in absolute value.

Proof. The proof is straightforward. Substituting (7) into (6), we obtain

0=[FP*+ (G+ N¢,)P+ (H+ O¢,)]xi-1 + [(FP+ G+ No,)Q + FQi, + Lip, + Mz
+ [(FP+ G+ N¢,)R + FRw, + N¢yw, + Od,]u,

Since the solution must hold for every realization of x;_1, z;, u;, we need to equate their
coefficient to zero and the result obtains. m



Corollary 2 If ¢, = 0, the dynamics in response to the structural shocks z; are identical
to those obtained when parameters are time invariant. Variations in the j-th parameter
have instantaneous impact on the endogenous variables z;, if and only if the ™ column of

Ny, + Ody 0.

Corollary 3 If ¢, = 0 and the matrices N, and O¢, are zero, parameter variations have
no effects on the endogenous variables x;.

Proposition 2.1 indicates that the first order approximate decision rule will, as in a
constant coefficient setup, be a VARMA(1,1) but with an additional set of disturbances.
Corollaries 2.2 and 2.3 give conditions under which parameter variations alter the dynamics
induced by structural disturbances. If parameter variations are purely exogenous, ¢, = 0,
the P and QQ matrices are identical to those of a constant coefficient model. Thus, param-
eter variation adds variability to the endogenous variables without altering the dynamics
produced by structural disturbances. In other words, suppose an economy is perturbed by
technology shocks. Then, the dynamics induced by these shocks do not depend on whether
the discount factor is constant or time varying, provided technological innovations are ex-
ogenous and unrelated to the innovations in the discount factor.

This result implies that if one is able to identify the structural disturbances €; from a
time invariant version of the model, she would make no mistakes in characterizing structural
dynamics. Clearly, variance or historical decomposition exercises will be distorted, since
certain sources of variations (the €} disturbances) are omitted. One interesting question is
whether standard procedures allow a researcher employing a time invariant model to recover
€; from the data when the DGP features time varying structural parameters. If not, one
would like to know which structural disturbance absorbs the missing shocks. Sections 5 and
6 study these issues in a practical example.

On the other hand, if parameter variations are purely endogenous, ¢, = 0, the dynamics
in response to structural shocks may be altered. To know if distortions are present; one
needs to check whether the columns of the matrices N¢, and O¢, are equal to zero. If they
are not, a researcher employing a time invariant model is likely to incorrectly characterize
both the structural dynamics and the relative importance of different sources of disturbances
for the variability of the endogenous variables.

The equilibrium dynamics, as encoded in the P matrix, can thus help us to distinguish
between models with endogenous time variation featuring different laws of motion for the pa-
rameters (i.e. the ¢, matrix). Distinguishing between models with exogenous time variation
that differ in how the parameters respond to exogenous disturbances (i.e. the ¢, matrix) is
possible if the cross equation restrictions present in R are different across models.

3.2 HIGHER ORDER APPROXIMATE DECISION RULE

Are the conclusions maintained when higher order approximations are considered? In the
second order approximation, the first order terms are the same as in the linear approximation.



To examine whether quadratic terms will be affected by the presence of time variations insert
(5) in the optimality conditions so that (1) is
0= Et[F(Xt, Wt, O'Eﬁt+1, @)] (8)
The second order approximation of (8) is
Et[(Facxt—l + Fwwt + FUU) + 0-5(Fac;t(xt—1 & xt—l) + Fww(wt & wt) + FO'O'O-Q) +
F:vw<~xt71 X wt) + anxtflo- + Fwawta] = 0 (9)
Note that F,o, Fi,xi 10, Fyewio are all zero, see Schmitt Grohe and Uribe (2004). The
second order expansion of (5) is
Ty = hxxt—l + hwwt + 0~5(hxx(xt—1 & xt—l) + hww(wt ® wt) + haooj)
+ ha:w(xt—l ® wt) + hzaxt—lg + hwawtg (10)
It is hard to make general statements about the properties of second order solutions of
models with time varying coefficients. Aslong as F,., Fiw, Fuw: are not affected by parameter
variations, as is the case when variations are exogenous, second order approximations in time
varying coefficient and in fixed coefficient models will be the same. However, when these

expressions are affected, the approximations will be different. As an example of this latter
case, consider the model

By = 97533?'95 (11)
r = 0.8xxy_1+02%x7+uy (12)
Qt = (2 — 0.5 % (exp(—¢1(xt_1 — f) + eXp('[bg(.It_l — i’)) + vy (13)

where both v, and u,; are i.i.d. and z = Ex; = 1. It is easy to verify that when ¢; = 15, the
first order solution (including only the terms concerning structural dynamics) is

vy = 0.76x,_1 + 0.95u;, (14)

and it is the same as in the constant coefficient model (¢ = ¥y = 0,v, = 0,Vt), since N¢,
and O¢, are both zero. However, the second order solution (including only terms concerning
structural dynamics) is

y, = 0.762;,_1 + 0.95u; — 0.0156522 | — 0.2375u? + 0.0387,_ 1, (15)
while the second order solution of the constant coefficient model is
y, = 0.762,_1 + 0.95u, — 0.0152027_, — 0.2375u? — 0.038x,_1u, (16)

The h,, matrix differs in the two cases because, in general, v; may affect y;,1 and thus alter
higher order derivatives.

For higher order approximate solutions, the dynamics induced by structural shocks in
constant coefficient and time varying coefficient models will generally differ, even with
exogenous time variations. For example, in a third order approximation, the optimality
conditions will feature terms in F,,, and F,,,, which require a correction of the linear
terms to account for uncertainty. Since in the constant coefficient model some shocks are
omitted, one should expect the correction terms to differ in constant and time varying
coefficient models.



3.3 DISCUSSION

The results we derived require parameter variations to be continuous and smooth. This is in
line with the evidence produced by Stock and Watson (1996) and with the standard practice
employed in time varying coefficient VAR. Our framework is flexible and can accommodate
once-and-for-all breaks (at a known date), as long as the transition between states is smooth.
For example, a smooth threshold exogenously switching specification can be approximated
with 0,01 = (1 —p)0+ pb;+aexp(t—Tp)/(b+exp(t—Tp)), t =1,..., To—1,To, To+1,...T,
where a and b are vectors, while ;11 = (1—p)0+pb+aexp(—(X;—X))/(b+exp(— (X — X)),
where X is the steady state value of X;, can approximate smooth threshold endogenously
switching specifications. What the framework does not allow for are Markov switching
variations, occurring at unknown dates, as in Liu, et al. (2011), or abrupt changes, as in
Davig and Leeper (2006), since the smoothness conditions on the f function may be violated.
Note, however, that our model becomes a close approximation to a Markov switching setup
when the number of states is large.

It is important to emphasize that the (linear) solution we derive is a standard VAR with
fixed coefficients and additional shocks. Thus, DSGE models with time varying coefficients do
not generate new issues for aggregation or non-fundamentalness relative to a fixed coefficient
DSGE model. More importantly, it is incorrect to consider time varying coefficient VAR as
the reduced form counterpart of continuously varying coefficient DSGE models. One can
show that there exists a state space representation of the solution where the (exogenously)
time varying coefficients play the role of additional states of the model. What Proposition
2.1 shows is that the state space representation can be solved out to produce a standard
VAR representation for the endogenous variables. Moreover, the proposition indicates that
the matrices P and Q will be time varying only if ¢, is itself time varying. Thus, to match
the time varying coefficient VAR evidence, it is necessary to consider variations in DSGE
auxiliary parameters rather than variations in DSGE structural parameters.

Kulish and Pagan (2014) have developed solution and estimation procedures for models
with abrupt breaks and learning between the states. Their solution for the pre-break and
post-break period is a constant coefficient VAR, while for the learning period is a time
varying coefficient VAR. Thus, a few words distinguishing the two approaches are needed.
First, they are interested in characterizing the solution during the learning period, when the
structure is unchanged, while we are interested in the decision rule when parameters are
continuously varying. Second, their modelling of time variations is abrupt and the solution
is designed to deal with that situation. Third, in our setup expectations are varying with
the structure; in Kulish and Pagan they vary only in anticipation of a (foreseeable) break.

An alternative way of modelling time variations in (3) would be to make parameters
functions of the exogenous rather than the endogenous variables, ©,y; = ®(0,Z;, Usy1)
as, for example, in Ireland (2007). While the equations the coefficients of the decision rule
solve are different, the conclusions we have derived are unchanged by this modification. For,
example, in the first order approximation, P now solves F'P? + GP 4+ H = 0; given P, Q
solves VQ = —vec(L), + M+ Np,1p, + O¢,) and V = I, @ (FP 4+ G + F¢,); and given P,
R solves WR = —vec(N¢pywy + Oy ), where W = I, @ (FP + G + Fw,).
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While there are obvious economic differences between exogenous vs. endogenous coeffi-
cient variations, an alternative (statistical) way to think about the two specifications is that
in the former each parameter evolves independently and covariations, if they exist, can be
modelled by selecting the matrix ¥, to be of reduced rank. With endogenous variations,
instead a set of observable factors (the X’s) drives common parameter variations. Thus, 3,
is diagonal and full rank, unless some parameter variations are purely endogenous.

As (7) makes clear, it is hard to distinguish models with time varying coefficients from
time invariant models with an additional set of shocks. In fact, models with n; structural
shocks and ns, time varying parameters, models with n = n; + ny structural shocks and
models with n; structural shocks and n, measurement errors are observationally equivalent:

Ty = PZL't_l + QZt + Rut (17)
= Px 1 +Q"z (18)
= Pxi 1+ Qz+v (19)

where Q* = [Q, R]; z; = [z}, u}]’, v+ = Ru;. Thus, when designing time variation diagnostics,
one must rule out a-priori all these potentially observational equivalent structures. In ap-
plications, procedures like the one described in section 3 or the one of Seoane (2014) can be
used to select the interpretation of the additional shocks.

Finally, it is useful to compare the (linear) solution we derive with the solution obtained
when coefficients are constant but the volatility of the shocks is stochastic. Neglecting second
order terms, the solution in this latter case is z; = Pz, + Qz + Ac?. Thus, in empirical
applications, it is crucial to allow for stochastic volatility to avoid to misrepresent volatility
changes for parameter variations - a point made earlier by Sims (2001).

3.4 AN EXAMPLE

To convey some intuition into the mechanics of corollaries 2.2-2.3, we use a simple, closed
economy, RBC model. The representative agent maximizes

= C N
maXEoZﬁt(l_n—Al+7) (20)
t=1

subject to the sequence of constraints

Yi(l—g)=C+ K —(1—-06)Ki4

Y, = QK N/ 7°
where Y; is output, C; consumption, K; the stock of capital, IV, is hours worked, and g; = %
is the share of government expenditure in output. The system is perturbed by two exogenous

structural disturbances: one to the technology Z; and one to the government spending share,
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gt, both assumed to follow time invariant AR(1) processes

G = (1—p)In¢+pcnG 1 +e
Ing; = (1—pg)Ing+p;Ing; 1 +ef (21)

where variables without time subscript denote steady state quantities. There are 12 param-
eters in the model: 6 structural ones (« is the capital share, 1 the risk aversion coefficient,
the inverse of the Frisch elasticity of labor supply, A the constant in front of labor in utility,
B; the time discount factor, and J; the depreciation rate), and 6 auxiliary ones (the steady
state values of the government expenditure share and of TFP, ({,g), their autoregressive
parameters, (pc, pg), and their standard deviations (o¢, 0,)). We assume that all parameters
but f; and ¢, are time invariant. Dueker et al. (2007), Liu et al (2011), and Meier and
Sprenger (2015) provide evidence that these parameters are indeed evolving over time. The
first order approximation to the law of motion of (/3; ,d;) is described below.
The optimality conditions of the problem are:

ACN] = (1-a)(1—g)Ys/N (22)

_ _ 1-— Y,

ﬁtCt "= Et (5t+10t+771(a( fL{qt+1) s + 1-— (5154_1)
t+1
0 99,

+ B (aﬁ—tK?U(CtHa Nit1) — a;};:tht)) (23)
(1 — gt)}/; = Ct + Kt - (1 - 5t)Kt—1 (24)
Y, = K& N (25)

Time variations in §; and ¢§; affect optimal choices in two ways. There is a direct effect
in the Euler equation and in the resource constraint when ; and 9§, are time varying; and if
agents take into account that their decisions may affect parameter variations, there will be
a second (endogenous) effect due variations in the derivatives of ;41 and d;41 with respect
to the endogenous states - see equation (23).

Note that varying parameters can not be considered wedges in the sense of Chari et al.
(2007), because there are cross-equation restrictions that need to be satisfied. Furthermore,
while the rank of the covariance matrix of the wedges is full, this is not necessarily the case
in our setup.

We specialize this setup to consider various possibilities.

3.4.1 Model A: Constant coefficients.
As a benchmark, we let 3, = 8% and §; = §. The optimality conditions are

Ey [f(XH-la X, Xi—1, Ziyr, 2y, @)} =
ACIN = (1= a)(1 = g)Y
C; "= ELCH (ol — gy1)Yepr /K +1 = 0)
1—g)V;—Ci+ K, — (1 =6)K;4
Y, — QK N

Ey =0 (26)
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Xy = (K, Y, Cy, Ny)'s Zy = (i, g¢)'- In the steady state, we have:

K_ _aoll-9g) g_l_(gg_i. ﬂ_@% K\,
Y -1+ Y vy YV y)

Y =

(27)

(1—0:)4(1—9) (

3.4.2 Model B: Exogenous parameter variations

Set dy = Biy1/Br. Welet O —O = (dip1 — (1—pg) B, 6441 — (1 — ps)0)" = Upyq and postulate

Udt+1 =  Pdldt + €di+1 (28)
Ust+1 = PsUst + €5t+1 (29)

Since O, is exogenous, 05;11/0K; = 06441/0K; = 0 and the f function becomes

By [f( X1, Xo, Xio1, Z41, Z1, ©141,04)] =
ACINTT = (1= a)(1 - g)Ys
1 —d,CLL/C" (a1 = gi1) i /I + 1 = i)
(1 — gt)lft — Ct — Kt + (1 — 5t)Kt—1
Y;t - Ctha—thl_a

E, =0 (30)

where X; = (K;,Y;, Cy, ), Zy = (¢, g¢)' and O = Oy

With the selected parameterization the steady state values of (%, %, %, Y') coincide with
those of the constant coefficient model. In addition, since ¢, = 0, variations in (dy1,d¢41)
leave the decision rule matrices P and Q) as in model A. Thus, as far as structural dynamics
are concerned, models A and B are observationally equivalent.

To examine whether variations in ©; have an instantaneous impact on X;, we need to

check the columns of N¢,w, + Od,.

0 0
Noupu+ 00, = | M0 70| g (31)
0 0

Note that if d; were a fast moving variable, the impact effect on X; would depend on the
persistence of shocks to the growth rate of the discount factor. For example, if p; = 0,
shocks to the growth rate of the time discount factor have no effects on X;. Thus, if only
the discount factor is time varying and variations in its growth rate are i.i.d., models A and
B have identical decision rules.
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3.4.3 Model C: Endogenous parameter variations, no internalization

Assume that the time variations in the growth rate of the discount factor and in the depre-
ciation rate are driven by the aggregate capital stock. We specify

Q1 = [0, — (0, — 6))e =K 1[0, — (0, — 0)e” =K 1 Uy, \y (32)

where ¢, ¢y, ©,, ©; are vectors of parameters and Uy, is a zero mean, i.i.d. vector of shocks.
This specification is flexible and depending on the choice of ¢’s,we can accommodate linear
or quadratic relationships, which are symmetric or asymmetric. To ensure that models C
and A have the same steady states, we set ©, = (3/2, §/2).

We assume that agents treat the capital stock appearing in (32) as an aggregate variable.
This assumption is similar to the 'small k -big k’ situation encountered in standard rational
expectations models or to the distinction between internal and external habit formation.
Thus, agents’ first order conditions do not take into account the fact that their optimal capital
choice changes d; and §; so 0f;+1/0K; = 0d;41/0K; = 0 and the equilibrium conditions are
then as in (30).Since the f function is the same as in model B, the matrices N and O are
unchanged.

To examine whether parameter variations affect the matrices regulating structural dy-
namics note that

0O O
0 l/ﬂ d —ﬂ/? (¢11—¢21) 0 00
No: =19 0 ) (6, — 5/2) (613 — b33) 0 0 0) (33)
0O 0
0 0
1B 0| (du— B2 —dm) 0 0 0
O = | o ((6 5/2)(612— ) 0 0 o) (34)
0 0

Endogenous variations in d;, §; leave P and Q unaffected, unless ¢ # ¢ and/or ¢3 # ¢y, i.e.
unless there are asymmetries in the law of motion of (dy,d;). To verify whether parameter
variations impact on X;, check the columns of N¢,w, + O¢,. We have:

0 0
_ 1/6(du_6/2)(_¢1+¢2) 0
0 0

if @1 # ¢Po, or P3 # ¢4 and regardless of persistence of the shocks to the parameters.

3.4.4 Model D: Endogenous parameter variations, internalization.

We still assume that time variations in the discount factor and in the depreciation rate
are driven by the aggregate capital stock and by an exogenous shock, as in equation (32).
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Contrary to case C, we assume that agents internalize the effects their capital decisions have
on parameter variations. The relevant derivatives are

diyy = Odyr /0K, = —(Bu — B/2)[—¢re” #FH) 4 gy eP2 (K1) (36)
01 = 0611/0K; = —(8, — 6/2)[—pze” K=K 1, e0alFi=K)) (37)

In order for the steady states of model D to equal to those of model A, we restrict ¢; = ¢ =
01, ¢3 = ¢4 = ¢3. The optimality conditions are:

O - Et [f(Xt-i-la Xt? Xt—17 Zt+17 Zt; @t-‘rh @t)] -

ACIN] ™ — (1= a)(1 — g)Ys
1 —di w(Crya, Ner) /G " —dy CLL/C M (a1 = gegn)Yea /Kipr + 1 — 01 + 674 KG)
(1—g)Y, —Cy— K+ (1 —6) K4
— G N

E;

where as before X; = (Ky,Y;, C, Ny)', Zy = ((t, g¢)' but now ©, = (dy, §, d}, d;)" and

diy1 2d — (dy = B/2)[e 1 E) 4 o1 (Rem K] 4 Up,t+1
5t+1 - o (5u - 5/2)[6 ¢3(Ki—K + €¢3(Kt ] + U57t+1
a., |~ (0, Ky, Up1) = —(dy — B/2)p[—e~ N EK) 4 ghi(Ki—K))
o — (8 = 6/2)gl eI 4 eoulki K]
(39)
The relevant matrices of derivatives evaluated at the steady states are w, = Ogx2,
0 O 0 0 0 0O 00
N of | 0 1/ —u(C,N)/C™" —pK O—ﬁ— -1/ 0 0 0
00, | 0 0 0 0 YT 00, 0 —-K 00
0 O 0 0 0 0O 00
0 0 00 0 0
b = 0 0 00 b = 0 0
’ —2(Bu—pB/2)¢7 0 0 0 |7 —2(B, — B/2)¢3 0
~2(5, —6/2)¢2 0 0 0 0 —~2(6, — 6/2)%

Clearly, N¢, # 0, and No,w, + O¢p, = 0. Thus, a shock to the law of motion of the
parameters alters the dynamics produced by structural shocks, even when the relationship
between parameters and states is symmetric.

In sum, parameter variations matter for the structural dynamics either if the relationship
between parameters and the states is asymmetric or if agents internalize the consequences
their decisions have on parameter variations, or both.

3.4.5 Impulse responses

Why are structural dynamics in models C and D different from those in model A? To under-
stand what drives economic differences, we compute impulse responses. For the parameters
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common to all models, we choose a = 0.30, 8 =0.99, 6 = 0.025, v =2, n =2, A= 4.50,
¢=L;pc = 0.90, o, = 0.00712, g = 0.18, p, = 0.50 and o, = 0.01. For the other parameters,
we choose:

e Model B: pg = 0.985, p; = 0.95 and o3 = 0.002 o5 = 0.07.

e Model C : g5 = 0.01, g = 0.03, by5 = 0.2, o5 = 0.1, 54 = 05 = 0.5, B, = 0.999, 5, =
0.025.

Bu = 0.999, 8, = 0.025.

Figure 1 reports the responses of hours, capital, consumption, and output to the two struc-
tural shocks in the four models. The first column has the responses to technology shocks;
the second has the responses to government expenditure shocks .

Note first, that the sign of the responses is unchanged by the presence of parameter
variations. The responses of models C' and D differ from those of model A in the shape and
the persistence of consumption and capital responses. Differences occur because income and
substitution effects are different. For instance, in response to technology shocks, agents work
and save less and consume more in models C' and D than in the constant coefficients model,
while in response to government expenditure shocks, consumption falls more and capital falls
less relative to the constant coefficients case. Thus, parameter variations play the same role
as uncertainty variations and make agents desire to smooth less transitory structural shocks.

4 CHARACTERIZING TIME VARYING MISSPECIFICATION

Because the decision rules of constant coefficient models are generally misspecified when the
data generating process (DGP) features parameter variations, it is important to diagnose po-
tential time varying problems. This section describes two diagnostics useful for the purpose:
one based on "wedges” and one based on forecast errors.

Consider the optimality conditions of a constant coefficient model

Ey [F(Xi—1, W, 0%€,,,0)] =0 (40)
obtained substituting for X; the decision rule:

Xt = h(Xt_l,Wt7O'E€§+17@) (41)

1Since the responses of hours and output to government expenditure shocks are different from what the
conventional wisdom indicates, a few words of explanation are needed. In a standard RBC in response to
government expenditure shocks, hours and output typically increase because of a wealth effect. However,
here the shock affects the share of government expenditure in GDP. Thus, the positive wealth effect on labor
supply is absent because government expenditure increase in exactly the same proportion as output, thus
disincentivizing agents to try to increase private output.
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Figure 1: Impulse responses, first order approximation

When X;_; has been generated by the constant coefficient model, F'is a martingale differ-
ence. When instead X; ; has been generated by a time varying coefficient model

X: = h* (X:—D Wt, Uzet+1, @) (42)

E[F (X}, W, 036}, ,,0)] # 0,since 0¥}, | # 0X€q1 and h# h*. Furthermore, FI(X; |, Wy, 0X¢f, |, O)
will be predictable using past values X, ;. To see why, consider the first order approximate
optimality conditions. In this system of equations, the wedge is

(F(P* — P>+ G(P* — P))z} , +
(F(Q" = Qv + G(Q" = Q) + F(P* = P)(G" = &)z +
(F(P*— P)R"+ GR" + FR w,)u; (43)

When P* = P,Q* = @, as in the exogenously varying model, the wedge reduces to
(GR* 4+ FR w,)uy (44)

which differs from zero if R* # 0 and will be predictable using z;_;,j > 1, if w, # 0. When,
as in the endogenously varying model, P* # P, Q* # @, the wedge will differ from zero, even
when R = 0, and will be predictable using past z;_,, even when w, = 0.

Hence, to detect time varying misspecification, one can compute wedges and regress them
on the lags of the observables. If they are significant, the martingale difference condition is
violated, and there is evidence of time varying parameters. Note that the diagnostic uses the
assumption that the model is correctly specified up to parameter variations. If the model is
incorrect, lags of the observables may be significant, even without time varying coefficients.
Inohue, Kuo, and Rossi (2015) apply this idea to detect generic model misspecification.
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The logic of the forecast error diagnostic is similar. The linearized decision rule in a
constant coefficients model is z; = Px;_1+ @z, while in a time varying coefficient model it is
x; = Pz} {+Q" %+ R*u;. Let v} be the forecast error in predicting 7 using the decision rules
of the constant coefficient model and the data generated from the time varying coefficient
model. The forecast error can be decomposed as

U: = I:j — PZL’ZLl = Q*Zt -+ R*Ut + (P* — P)ZL’le (45>

Thus, forecast errors are functions of the lags of the observables x;_; when P* # P. However,
even if P* = P, forecasts error linearly depend on the lags of the observables if u; is serially
correlated. Hence, an alternative way to check for parameter variations involves regressing
the forecast errors v; on lagged values of the observables and checking the significance of
the regression coefficients.

DGP Euler wedge Forecast errors output
F-test ¢;_1,m7-1 =0 | F-test ¢;_1,n¢_1,9:-1 =0

T=1000 | T=150 | T=1000 T=150
Fixed coefficients 0.00 0.00 0.00 0.00
Fixed coeff and capacity utilization 0.001 0.003 1.00 0.98
Exogenous TVC no serial correlation 0.07 0.001 0.91 0.24
Exogenous TVC 0.53 0.40 1.00 0.90
Endogenous TVC 1.00 0.93 1.00 0.99

Table 1: Percentage of rejections at the 0.05 confidence level of the null of no time variations
in 1000 experiments. The dependent variable is either the Euler wedge or the forecast error
in the output equation. The regressors are lagged consumption and interest rates for the
Euler wedge; lagged output, consumption and hours for the forecast error.

We apply the two diagnostics to 1,000 samples constructed using the RBC model previ-
ously considered. Table 1 reports the rejection rate of an F-statistic for the null hypothesis
of no time variations at the 0.05 percent confidence level. The Euler wedge diagnostic has
very good size properties (does not reject the hypothesis of no time variations) when the
model has fixed coefficients; when it has fixed coefficients but it is locally misspecified -
capacity utilization is neglected; and when the exogenous time variations are i.i.d.. It is
somewhat conservative in detecting time variations when exogenous parameter variations
are persistent and has excellent power properties when variations are endogenous. The
forecast error diagnostic has good size properties when the DGP has no time variation and
no misspecification is present but tends to overreject the null if misspecification is present
or exogenous time variations are i.i.d.. On the other hand, it has good power properties
when time variations are present. Because of the differences they display, it seems wise to
use both diagnostics in empirical applications.
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4.1 EXOGENOUS VS. ENDOGENOUS PARAMETER VARIATIONS

If the diagnostics of the previous subsection indicate the presence of parameter variations,
one may interested in knowing whether they are of exogenous or endogenous type. One
way to distinguish the two options is to use the DGSE-VAR methodology of Del Negro and
Schorfheide (2004). In a DSGE-VAR, one uses the DSGE model as a prior for the VAR
of the observable data and employs the marginal likelihood to measure the value of the
additional information the DSGE provides. If the additional observations come from the
DGP, the quality of the estimates improves (standard errors are reduced), and the marginal
likelihood increases. On the other hand, if the additional observations come from a DGP
different from the one generating the data, biases may be introduced, noise added, and the
precision of the estimates and the fit of the model reduced.

Formally, let L(c|y) be the likelihood of the VAR model for data y and let g;(clv;, M;)
be the prior induced by the DSGE model M; using parameters 7; on the VAR parameters
« .The marginal likelihood is h;(y|y;, M;) = | L(aly)g;(aly;, M;)de, which, for given y, is
a function of M;. Since L(a|y) is fixed, h;(y|v;, M;) reflects the plausibility of g;(aly;, M;)
in the data. Thus, if g; and g9 are two DSGE-based priors and hy(y|vy1, M1) > ha(y|ye, Ms),
there is better support for in the data for g;.

Thus, for a given data set, a researcher comparing the marginal likelihood produced by
adding data from the exogenous and the endogenous specifications should detect whether
the observable sample is more likely to be generated by one of the two models. We prefer to
use the DSGE-VAR device rather than comparing the marginal likelihood of different models
directly because small samples may led to distortions in marginal likelihood comparisons,
distortions that will be reduced in our DSGE-VAR setup.

T7=150 T1=750

DGP Model B|Model C/Model D|Model B|Model C[Model D
Simulated from B| 1.00 0.00 0.00 0.99 0.00 0.00
Simulated from C| 0.01 0.99 0.00 0.00 0.98 0.00
Simulated from D| 0.00 0.00 1.00 0.00 0.00 0.99

Table 2: Probability that Bayes factor exceeds 3.0 in a sample of 1,000 experiments. Marginal
likelihoods are obtained using T=150 data points produced by the models listed in the first
row and 7} simulated data from the model listed in the first column. When rows do not sum
to one, the Bayes factor is inconclusive (below 3.0).

Table 2 reports results using this technology in the RBC example. The sample size is
T = 150 and Bayes factors computed when T} = 150, 750 simulated data from the DSGE
listed in the first row are added to the actual data and 1,000 experiments are run. The
statistic is powerful since marginal likelihood differences are quite large, even when 77 = 150.
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4.2 SOME PRACTICAL SUGGESTIONS

Given that, in practice, we do not know if a model is misspecified or not, we suggest users
the following checklist as a way to approach the diagnostic problem:

i) Take a conventional model that has been used and tested in the literature and estimate
its structural parameters, potentially allowing for time variations in the variance of the
shocks.

ii) Run the time variation diagnostics and, if time variations are found to be present,
check whether endogenous vs. exogenous variations are more appropriate.

When the model is of large scale, running regressions on all potential endogenous vari-
ables leads to overparameterization and muticollinearity. Thus, it is important to select the
relevant variables to make the test powerful. We recommend users to employ the states of
the model, as they determine the endogenous variables. Similarly, when performing the
exogenous vs. endogenous check, having the proper state variables for the endogenous spec-
ification is important to make the comparison fair. One way do this is to estimate a model
with exogenous time variation, take the smoothed residuals and run auxiliary regressions of
the smoothed residuals on potential determinants of time variations. To avoid overparame-
terization, we also suggest users to a-priori shrink the coefficients of the auxiliary diagnostic
regressions toward zero. Rejection of the null of no time variations in this case provides
stronger confidence that parameter variations are indeed present.

When the diagnostics detect time variations, one needs to specify which parameter may
be time varying for the next stage of the analysis. In theory, one could specify time variations
in all the structural parameters of interest, but this may lead again to an overparametrized
model, which is difficult to estimate. We suggest two approaches here: either introduce time
variations in parameters which have been documented in the literature to be unstable or in
parameters a researcher suspects variations to be present. Alternatively, one could look at
the smoothed residuals of the time invariant model, equation by equation, and restrict time
variations to the parameters appearing of the equations whose residuals show the largest
evidence of serial correlation.

5 PARAMETER IDENTIFICATION

Since forecast errors are used to construct the likelihood function via the Kalman filter, one
should expect the misspecification present in the forecast errors to spread to the likelihood
function. In this section we examine whether time invariant parameters can be identified
from a potentially misspecified likelihood function. Canova and Sala (2009) have shown
that standard DSGE models feature several population identification problems, intrinsic to
the models and to the solution method employed. The issue we are concerned with here
is whether parameters that could be identified if the correct likelihood is employed became
poorly identified when the wrong likelihood is used. In other words, we ask whether iden-
tification problems in time invariant parameters may emerge as a byproduct of neglecting
variations in other parameters. Magnusson and Mavroedis (2014) have shown that when
GMM is used, time variations in certain parameters help the identification of time invariant
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parameters. Huang (2014) qualifies the result by showing that time variations in weakly
identified parameters have no effect on the asymptotic distribution of strongly identified
parameters.

Figures 2 and 3 plot the likelihood function of the RBC model in the risk aversion
coefficient v and the share parameter 7; and in the labor share o and the autoregressive
parameter of the technology p¢, when the forecast errors of the correct model (top row)
and of the constant coefficient model (bottom row) are used to construct the likelihood
function. The first column considers data generated by the model B, the second and the
third data generated by models C and D.

While the likelihood curvature in the correct model is not large, it is easy to verify that
the maximum occurs at v = 2, n = 2,a = 0.30, p, = 0.9 for all three specifications. When
the decision rules of the constant coefficients model are used to construct the likelihood
function and the true DGP is model B, the likelihood is flattened and the risk aversion
coefficient v become very weakly identified. When the true model features endogenous time
variations, distortions are larger. The likelihood function becomes locally convex in p¢;
and a become weakly identified, and the maximum in the p. is shifted away from the true
value.

True RBC B - Estimated with RBC B True RBC C - Estimated with RBC C True RBC D - Estimated with RBC D
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Figure 2: Likelihood surfaces
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Figure 3: Likelihood surfaces

These observations are confirmed by the Koop et al. (2013) statistic, see table 5. Koop
et al. show that asymptotically the precision matrix grows at the rate T for identified
parameters and at rate less than T for underidentified parameters. Thus, the precision of
the estimates, scaled by the sample size, converges to a constant for identified parameters
and to zero for underidentified parameters. Furthermore, the magnitude of the constant
measures identification strength: a large value indicates a strongly identified parameter; a
small value a weakly identified one.

When the DGP is model B and a fixed coefficients model is considered, all parameters
are identified, even though A and n are only weakly identified. When the DGP are models
C and D, all parameters but p, seem identifiable. Interestingly, in models C and D, p, is
weakly identified, even when the correct likelihood is used. Thus, time variations in 3; and
¢ do not help in the identification of p,, in line with Huang (2014).

6 STRUCTURAL ESTIMATION WITH A MISSPECIFIED MODEL

To study the properties of likelihood -based estimates of a misspecified constant coefficients
model, we conduct a Monte Carlo exercise. We generate 150 or 1,000 data points from
versions B, C, D of the RBC model previously considered, estimate the structural parameters
using the likelihood function constructed with the decision rules of the time invariant model
A, and repeat the exercise 150 times using different shock realizations. We also estimate
the structural parameters using the likelihood constructed with the correct decision rules
(i.e. model B rules if the data is generated with model B, etc.) for benchmarking estimation
distortions.

22



Parameter | T=150 | T=300 | T=500 | T=750 | T=1000 | T=1500 | T=2500
DGP Model B, Estimated model A
n 15.9 17.8 17.2 18.8 184 19.3 17.9
0 28.5 45.7 108.4 81.4 93.6 104.2 90.17
o 1.8e+4 | 2.6e+4 | 4.2e+4 | 4.2e+4 | 4.5e+4 | 4.9e+4 | 4.37e+4
Pyq 209.2 | 655.5 | 2741 2190 2860 3417 2802
) 927.3 | 973.8 | 1.7e+4 | 1.Te+4 | 2.4e+4 | 2.3e+4 | 2.5e+4
! 140.2 | 156.2 | 264.2 | 215.5 239.1 252.1 229.3
A 28.42 | 30.67 7.99 10.99 9.15 7.83 9.83
DGP Model C, Estimated model A
n 822 1033 743 785 759 746 752
y 2261 3147 2682 2809 2720 2579 2566
Dz 3073 2673 2952 2909 2799 2806 2877
Py 1.74 2.23 2.44 2.96 3.17 2.82 2.90
) 4.6e+5 | 4.4e+5 | 4.3e+5 | 4.0e+5 | 3.8e+5 | 4.4e+5 | 4.3e+5H
o 1.8e+4 | 1.1e+4 | 1.4e+4 | 1.2e+4 | 1.1e+4 | 1.6e+4 | 1.5e+4
A 351 493 441 505 500 449 444
DGP Model D, Estimated model A
n 550 575 592 610 545 542 494
vy 3577 2442 2660 2870 2564 2711 2430
02 1613 1243 1120 1162 1068 1189 1074
Py 1.22 1.28 1.44 1.53 1.60 1.62 1.67
) 5.2e+5 | 6.7e+5 | 6.5e+5 | 6.0e+5 | 5.7e+5 | 5.8e+5 | 5.7e+5
! 1.le+4 | 2.5e+4 | 2.4e+4 | 1.9e+4 | 2.1e+4 | 2.0e+4 | 2.1e+4
A 488 276 340 382 349 395 334

Table 3: Koop, Pesaran, and Smith diagnostic. Reported are the diagonal elements of the
precision matrix scaled by the sample size

We consider two setups: one where parameter variations are small (2-5 percent of the
variance of output is explained by shocks to the parameters; henceforth, DGP1) and one
where parameter variations are substantial (around 20 percent of the variance of output
is explained by shocks to the parameters; henceforth, DGP2). Table 4 has the results for
DGP1: it reports the fixed parameters used to generate the data (column 1), the mean pos-
terior estimate (across replications) obtained when the likelihood uses the correct decision
rules (column 2), and the mean posterior estimate, the 5th and the 95th percentile of the
distribution of estimates obtained when the likelihood function uses the decision rules of the
time invariant model, when T=150 (columns 3-5) and when T=1000 (columns 6-8). Table
Al in the appendix has the results for DGP2. Figures A1 and A2 in the appendix plot the
distributions of estimates for the two DGPs. The vertical line represents the true parameter
value; solid black lines represent distributions obtained with the correct model; solid blue
(red) lines represent the distributions obtained with the incorrect constant coefficient model
when T=150 (T=1000). When the model is correctly specified, the distribution of estimates
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should collapse around the true value. Thus, if the mean is away from the true parameter
value and/or the spread of the distribution is large, likelihood -based methods have difficul-
ties in recovering the constant parameters of the data generating process. Figure 4 presents
the impulse responses for DGP1: the first two columns have the responses to technology
shocks and government expenditure shocks in model B, the next two the responses in model
C, and the last two the responses in model D. In each box we report the response obtained
using mean value of the correct distribution of estimates, and the 16th and 84th percentiles
of the distribution of responses obtained using the estimated distribution of parameters pro-
duced by the time invariant model. Figure A3 in the appendix has the same information for
DGP2. Table 5 presents the long run variance decomposition for DGP1 (table A2 has the
information for DGP2) when T=150 and the mean posterior estimate is used in the com-
putations. In the first two columns we have the contribution of technology and government
spending shocks in the correct model; the last two columns have the contribution when the
constant coefficient model is used.

For the two time varying parameters, we set d; = 5,11/, and assume that in model B,
O141—0 = (dis1(1—pp) B, 0141—(1—ps)0) = Upy1, where § = 0.99, 5 = 0.025 the components
of Upt1 = (Uget1,use41) are independent AR(1) process with persistence pg = 0.9, ps = 0.8,
and standard deviations o4 = 0.002, 05 = 0.07. For models C and D, the law of motion of the
time varying parameters is O, = [@, — (0, — 0;)e K=K 1[0, — (6, — ©;)erKi=K)] 1
Uit1, where ©) = (0.9999,0.03), ¢, = (0.03,0.2), ¢, = (0.031,0.1), Upyy is i.id. with
¥, =diag(0.03,0.008).

A few features of the results are worth discussing. First, when the correct model is em-
ployed, estimation is successful even when T=150, regardless of the DGP and of whether time
variations are exogenous or endogenous. Thus, numerical distortions seem minor. Second,
with DGP1, a number of distortions occur when a time invariant model is used in estimation.
For example, when exogenous variations are present, the persistence of government spending
shock is poorly estimated (mean persistence is about 50 percent larger than the true one),
while estimates of §, « and A are severely biased downward. The distortions are smaller when
the time variations are endogenous (models C and D). Nevertheless, significant downward
biases exist in the inverse of the Frisch elasticity v, in 0 and «. Third, the performance of
the time invariant model is roughly independent of whether the data features external or
internal endogenous time variations and does not improve when the sample size increases.

When parameter variations explain a significant portion of output variability, all features
become more striking. For example, when parameter variations are exogenous, estimating a
time invariant model leads to an overestimation of the persistence of the structural shocks.
In fact, the only way a time invariant model can accommodate the additional dynamics
and variability present in the endogenous variables is by increasing the persistence of both
shocks. In models C and D the distortions become considerably larger and, for example,
the mean posterior estimate of inverse of the Frisch elasticity is now negative. In addition,
the distribution of estimates is typically skewed and multimodal. Thus, neglected parameter
variations are more detrimental when they account for a significant portion of the variability
of the endogenous variables.
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True value|Estimated Correct| Estimated Time invariant Estimated Time invariant
Mean Mean 5 percentile 95 percentile]Mean 5 percentile 95 percentile
T=150 T=150 T=1000

DGP Model B
n=20 2.00 2.03 1.47 2.88 2.32 1.55 3.37
v =2.0 2.02 1.23 -0.14 2.07 0.96 -0.38 2.04
p. = 0.98 0.97 0.99 0.97 1.00 0.99 0.96 1.00
pg = 0.5 0.47 0.74 0.60 0.96 0.87 0.77 0.98
6 =0.025 0.03 0.01 0.01 0.02 0.01 0.01 0.05
a=0.3 0.30 0.19 0.11 0.28 0.23 0.15 0.40
A=45 4.55 2.79 1.33 4.12 2.68 1.23 4.06

DGP Model C
n=2.0 2.00 2.42 1.63 3.85 2.85 1.73 6.14
v =2.0 2.00 0.64 -0.26 1.77 0.60 -0.50 1.79
p- = 0.98 0.98 0.99 0.97 1.00 0.97 0.85 1.00
pg = 0.5 0.48 0.43 -0.10 0.96 0.65 0.27 0.98
6 =0.025 0.03 0.01 0.01 0.02 0.02 0.01 0.09
a=0.3 0.30 0.22 0.13 0.34 0.29 0.18 0.47
A=45 4.49 2.14 1.18 3.47 2.37 1.18 3.66

DGP Model D
n =20 2.00 2.58 1.69 3.34 2.40 1.74 3.26
v = 2.0 2.01 0.29 -0.28 1.54 1.09 -0.30 1.99
p. = 0.97 0.96 0.99 0.94 1.00 0.96 0.91 1.00
pg = 0.5 0.48 0.51 -0.26 0.96 0.66 0.39 0.98
6 =0.025 0.02 0.01 0.01 0.03 0.01 0.01 0.02
a=0.3 0.30 0.22 0.14 0.35 0.22 0.15 0.30
A=45 4.52 2.32 1.42 3.68 3.45 1.37 4.51

Table 4: Distributions of estimates, DGP1.

Impulse responses are in line with these conclusions. When parameter variations explain
a small fraction of the variability of output, responses to technology shocks are off in terms
of impact magnitude, in particular for output; and the response produced with estimates of
the true model tend to be on the upper limit of the estimated 68 percent band produced
with estimates of the incorrect model. Interestingly, output responses are those more poorly
characterized and, consistent with previous findings, the misspecification is larger when the
true model features exogenous time variations. The responses to government expenditure
shocks obtained with a time invariant model are different from those obtained estimating
the correct model in terms of magnitude, shape and persistence. Since the signal that
government expenditure shocks produce is weak, it is not surprising that it is obscured by
the presence of parameter variations.

The dynamic distortions obtained when parameter variations matter for the variance
of output are generally larger. For example, the persistence of the responses to technology
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Figure 4: Impulse responses, DGP1

shocks is poorly estimated. While true responses tend to zero, the bands obtained estimating
a time invariant model do not include zero even after 10 years.

Variable Technology‘Government Technology‘ Government
DGP: Model B Estimated: Time invariant

Y 94.100 0.300 0.997 0.004

C 89.500 0.200 0.999 0.001

N 60.200 0.500 0.986 0.014

K 70.200 0.400 0.995 0.006
DGP: Model C Estimated: Time invariant

Y 97.200 0.300 0.988 0.016

C 88.100 0.300 0.999 0.001

N 44.600 0.600 0.990 0.012

K 84.400 0.200 0.990 0.014
DGP: Model D Estimated: Time invariant

Y 98.000 0.100 0.993 0.015

C 92.200 0.200 0.998 0.003

N 35.900 0.500 0.973 0.034

K 96.600 0.300 0.992 0.012

Table 5: Long run variance decomposition, DGP1.

What is the contribution of structural shocks to the variability of the endogenous variables
when the forecast errors of the time invariant model are used to construct the likelihood
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function? One should expect the structural shocks of the time invariant model to be a
contaminated version of the structural shocks of the time varying DGP for two reasons.
First, the wrong P matrix is used to compute forecast errors. Second, we are aggregating m
(primitive and parameter) shocks into n < m (structural) shocks, thus generating VARMA
decision rules where the n structural shocks are functions of the leads and lags of the original
disturbances (see e.g. Canova and Paustian, 2011). Thus, even if the P matrix were correctly
specified, distortions should occur, unless the shocks to the parameters are unimportant and
feature low persistence.

When parameter variations explain a small portion of output, technology shocks in the
time invariant model absorb the missing variability, regardless of the nature of parameter
variations and the effect seems strong for hours worked. When parameter variations explain
a larger portion of the variance of output, technology shocks still absorb a large amount of the
missing variability but, in some cases, spending shocks also capture the missing variability
see, e.g., the case of endogenous variations

In sum, for the DGP we consider and the parameterization employed, estimating a con-
stant parameter model when the DGP features time varying parameters leads to distortions,
regardless of the sample size, of whether variations are exogenous or endogenous, and of
whether parameter variations matter for output variability or not. The parameters mostly
affected are those regulating the estimated persistence of the shocks and those controlling
income and substitution effects.

7 STRUCTURAL DYNAMICS AND SVAR METHODS

The previous section showed that if time variations are neglected, structural estimates
are biased and structural responses distorted. Because of these problems, one may wonder
whether less structural and computationally less demanding methods can be used if struc-
tural dynamics are all that matters to the investigator. Canova and Paustian (2011) showed
that when the model misses features of the DGP, SVAR methods employing robust sign
restrictions can be effective in capturing qualitative features of structural dynamics. Here
we ask if SVARs are good also when parameter variations are neglected.

The exercise is as follows. Using the illustrative RBC model, we simulate data from
the decision rules of models B, C, and D when parameter variations generate small output
volatility (DGP1). We then estimate a VAR, compute residuals, and rotate them using
an orthonormal matrix. We then keep the resulting impulse responses if (simultaneously)
technology shocks generate a positive response of hours, capital, output, and consumption
on impact and government expenditure shocks generate a negative response of hours, output,
consumption and capital. These restrictions hold in the four model specifications we consider

2We have also performed a Monte Carlo exercise allowing the labor share to be time varying. Variations in
the labor share have been documented in, e.g., Rios Rull and Santaeularia Llopis (2010), and there is evidence
that they are strongly countercyclical. This is relevant for our exercise because all four optimatility conditions
are affected by time variations, altering the strength of the income and substitution effect distortions. Indeed,
we do find that distortions become quite large and it many cases it becomes difficult to estimate the time
invariant model regardless of the DGP (results available on request).
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and are robust to variations of the (constant) structural parameters within a reasonable
range. We repeat the exercise 150 times and collect the distribution of structural responses
when the correct and the time invariant SVAR specifications are used. Figure 5 plots the
median response in the correct model (red line) and the 16th and 84th percentiles of the
distribution of responses obtained with the time invariant model.

Overall, SVAR methods are competitive with structural methods when parameter varia-
tions are neglected. When the DGP is model B, the sign and the shape of the responses are
correctly captured. Although the responses to technology shocks obtained with the correct
model are on the upper bound of the band obtained with the time invariant model and the
responses to government spending shocks obtained with the correct model tend to be on
the lower bound of the bands obtained, no major distortions occur. The performance with
the other two DGPs is similar. With model C, it is the magnitude of the response of con-
sumption that is mainly misrepresented, while with model D it is primarily the persistence
of certain responses that is underestimated.
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Figure 5: Impulse responses, DGP1, SVAR models.

Recall that there are two sources of misspecification in time invariant models: the P
matrix is generally incorrect; aggregation problems are present. Our analysis indicates that,
with the DGP we use, i) distortion in the P matrix are small; ii) the Q matrix is not very
strongly affected by time variations; iii) shock misaggregation is minor. Because parameter
shocks are i.i.d., timing distortions are also small.
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8 TIME VARYING FINANCIAL FRICTIONS?

We apply the technology we developed to the unconventional monetary policy model of
Gertler and Karadi’s (GK) (2010). Our contribution is three fold. We provide likelihood
estimates of the parameters specific to the model (the fraction of capital that can be diverted
by banks A, the proportional transfer to entering bankers w, and the survival probability of
bankers 6), which the authors have informally calibrated to match a steady state spread,
a steady state leverage, and a notional length of bank activity; we use the diagnostics we
developed to gauge the extent of parameter variations; we estimate a model with time
variations in A and compare its fit with the fit of the time invariant model augmented with
an extra shock; and examine responses to capital quality shocks in the fixed coefficient and
the time varying coefficient models.

The equations of the GK model are summarized in appendix C. We use U.S. data from
1985Q2 to 2014Q3 on the growth rate of output, growth rate of consumption, growth rate
of leverage, and growth intermediary demand for assets (credit) and the spread. The spread
is measured by the difference between BAA 10-year corporate bond yields and a 10-year
treasury constant maturity, and it is from the FRED, as are real personal consumption
expenditures and GDP data. Leverage is from Haver and measures Tier 1 (core) capital as
a percent of average total assets. Credit is measured as total loans (from Haver), scaled by
size of US population. While the data transformation is sufficient to eliminate volatility
variations, the credit and the spread variable display a significant structural break in the
last few years of the sample. Thus, we present estimates obtained in the full sample and in
the sample ending at 2007:4.

Equation T-stat F-stat
Y;—1 C;_1 Credit;_; Leverage;_; Spread;_1
Sample 1985:3-2014:3
Y 0.84 2.61 0.24 0.52 10.00 | 4.39
C -0.85 1.11  0.85 -0.65 0.33 1.26
Credit |1.06 2.61 1.65 -0.58 8.49 7.11
Leverage|-1.11-2.50 -1.63 0.63 -8.25 7.04
Spread |-1.26-3.06 -1.10 0.81 -8.46 8.16
Sample 1985:3-2007:4
Y -1.79 3.87 -2.23 -0.38 6.86 4.23
C -1.37 1.19 -0.26 0.38 1.40 0.81
Credit |-1.18 3.53  -0.69 -0.08 7.02 3.60
Leverage|-1.06-3.46  0.75 0.09 -6.80 3.72
Spread |1.16 -3.84 -1.03 0.17 -6.86 | 4.29

Table 6: Regression diagnostic for time variation. The left-hand side of the regression is the
forecast in the equation listed in the first column; the right-hand side the variables listed in
the second to the fifth column. Critical levels of the F-stat(5,112)=2.56 and F(5,85)=2.90.

Using a flat prior, the posterior mode estimates for the full sample are A = 0.245, 0 =
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0.464, w = 0.012; the standard errors are tight (0.0182, 0.0098, 0.0008), making the estimates
highly significant. For the shorter 1985-2007 sample the modal estimates are A = 0.178, § =
0.399, w = 0.008, and the standard errors are 0.0127, 0.0129, 0.0006. Thus, while estimates
of the three crucial parameters are altered when data for the last financial crisis is used,
differences are small a-posteriori. For comparison, GK calibrated these three parameters to
A=0.318,0 =0.972, w = 0.002. In the GK model X regulates private leverage: our estimate
implies a higher steady state leverage than the one implied by the authors (our estimate for
the full sample is 3.32, GK is 1.38), which is closer to the leverage found in the U.S. in
corporate and non-corporate business sectors over the sample. Our estimates also suggest
that bankers’ survival probability is lower than the one assumed by GK (about 10 years).
With the parameter estimates obtained in the full sample, we perform our diagnostics.
Table 6 indicates that the forecast errors of all equations except consumption are predictable
and, typically, lagged consumption and lagged spread matter. The mean value of the Euler
wedge is 0.02 with a standard error of 0.03; but both lagged consumption and lagged in-
vestment to output ratios significantly explain its movements (coefficients are respectively
-0.10 and 0.72, with standard errors of 0.01 and 0.13). When we run our diagnostics on
the shorter sample, we reach the same conclusions: all forecast errors but the one of the
consumption equation are predictable, and lagged consumption and lagged spread matter;
lagged consumption and lagged investment to output ratios predict the wedge (coefficients
are respectively -0.13 and 0.96, with standard errors of 0.02 and 0.23). Thus, the time
variations we detect are not due to the crisis and to the potential break it generates.

Parameter|/Time Invariant|Time Invariant/Exogenous TVC| Endogenous TVC
6 shocks Function of net worth
h 0.43 (0.006)| 0.11 (0.02)| 0.19 (0.03) | 0.09 (0.02)
A 0.24 (0.01)| 0.97 (0.01)| 0.37 (0.03) | 0.55 (0.03)
w 0.01 (0.008)| 0.02 (0.001)] 0.02 (0.002)| 0.11 (0.008)
0 0.46 (0.009)| 0.80 (0.01)| 0.54 (0.01) | 0.52 (0.02)
P 0.99 (0.004)
o 0.02 (0.002) | 0.03 (0.003)
Au 0.98 (0.008)
o1 0.02 (0.007)
103 0.15 (0.009)
Log ML  |-167.97 1098.32 1546.18 1628.69

Table 7: Parameter estimates, Gertler and Karadi model, standard errors in parenthesis.
Armed with this preliminary evidence, we estimate the model allowing A to be time

varying. Since A regulates leverage and drives movements in the credit and spread equations,
whose smoothed residuals seem to be the most affected by serial correlation, we opt to make
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this parameter time varying. We specify

A = (1—=p)A+ paAic1 + e Exogenous variations (46)
A
Mo o= (25N, — (Mg — 5) * (exp(—a1 * (Xi—1 — X?)) 4+ exp(¢a * (Xi—1 — X?))) + erx
Endogenous variations (47)

where X is net bank wealth. We chose bank net wealth as the relevant state in the endogenous
specification because of its importance for the spread and the credit variable. Table 7 reports
estimates of selected parameters.

In the model with exogenously varying parameters, variations in \; very persistent. Fur-
thermore, estimates of (A, w, ) are now larger making steady state leverage drop to about
2.9 and the lifetime of bankers to increase. With the endogenous specification, estimates
of A and w further increase, making steady state leverage fall to 1.9, but bankers’ survival
probability is roughly unchanged. The data seem to require a very strong asymmetric spec-
ification for time variations (¢; < ¢,), implying a strong negative relationship between the
fraction of funds that bankers can divert and their net worth. Finally, note that, in term of
marginal likelihood, the endogenous specification is superior to both the exogenous one and
the fixed coefficient specification augmented by a shock to bankers’ net worth accumulation
equation.

To investigate how inference differs in the three estimated models, we plot in figure 7
the responses of output, inflation, investment, net worth, leverage, and the spread to a one
percent capital quality shock. The constant coefficient specification closely replicates the
dynamics presented by GK (see their figure 3). There is a persistent decline in output and a
temporary but strong decline in inflation. Investment temporarily falls but it then increases
because capital is below its steady state. Bankers’ net worth falls and there is a sharp
increase in the spread.

When we allow A\ to be exogenously varying, responses are qualitatively similar. Quan-
titatively, output falls more on impact but less in the short run; net worth falls less and the
spread increases less in the short run. Thus, making A exogenously time varying, reduces
the model’s ability to capture recessionary effects on impact.

When variations are endogenous, the model possesses an additional mechanism of prop-
agation of shocks since lower net worth implies higher share of funds diverted by banks and
generally stronger accelerator dynamics. Since the dynamic responses of net worth are highly
persistent, the spread persistently increases making investment increase less and output fall
more and more persistently relative to the other two cases. Thus, neglecting endogenous A
variations could impair our ability to correctly measure the effects of capital quality shocks.

While the economic interpretation of the relationship between A and net worth is beyond
the scope of the paper, attempts to endogenize crucial parameters in the Gertler and Karadi
model exist (see e.g. Bi, Leeper and Leith, 2014; Ferrante, 2014). Their work could provide
the microfundations for the evidence we uncover.
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9 (CONCLUSIONS

This paper is interested in i) characterizing the decision rules of a DSGE when parameter
variations are exogenous or endogenous, and in the latter case, when agents internalize or
not the effects their decisions may have on parameter variations; ii) providing diagnostics to
detect misspecification driven by parameter variations; and iii) studying the consequences of
using time invariant models when the parameters are time varying in terms of identification,
estimation, and inference

We show that if parameter variations are purely exogenous, the contemporaneous impact
and the dynamics induced by structural shocks are the same as in a model with no param-
eter variations. However, if parameter variations are endogenous, the structural dynamics
may be different and the extent of the difference depends on the detail of the model. We
provide diagnostics to detect the misspecification due to neglected parameter variations and
describe a marginal likelihood diagnostics to recognize whether exogenous or endogenous
time variations should be used.

We highlight that certain parameter identification problems noted in the literature may
be the result of misspecification due to neglected time variations. Our Monte Carlo study
indicates that parameter and impulse response distortions may be large even for modest time
variations in the parameters. It also shows that, when parameter variations are neglected,
SVAR methods are competitive with more structural likelihood-based methods, as far as the
responses to structural disturbances are concerned.

In the context of the Gertler and Karadi (2010) model, we show that the parameter
regulating the amount of moral hazard is likely to be time varying. When we allow variations
to be linked to the amount of net worth bankers have, the fit of the model dramatically
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improves, primarily because there is an additional propagation channel that makes spread
and thus output responses stronger and more persistent.

Overall, our analysis provide researchers with a new set of tools to help them to assess
the quality of their models and respecify certain problematic features.
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APPENDIX A: ADDITIONAL MONTE CARLO FIGURES AND TABLES
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Figure 7: Density of estimates; DGP1 (parameter variations explain 2-5 percent of output
variance).
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Figure 8: Density of estimates, DGP2 (parameter variations explain 20 percent of output
variance).

36



True Estimated Correct| Estimated Time invariant Estimated Time invariant
Mean Mean 5 percentile 95 percentilelMean 5 percentile 95 percentile
T=150 T=150 T=1000

DGP Model B
n=20 2.00 2.29 1.53 3.87 2.45 1.61 3.09
v =2.0 2.01 1.11 -0.33 2.06 0.25 -0.27 1.95
p.=0.9 0.94 0.99 0.96 1.00 0.99 0.97 1.00
pg = 0.5 0.47 0.76 0.62 0.96 0.91 0.79 0.98
6 =0.025 0.03 0.01 0.01 0.03 0.01 0.01 0.01
a=0.3 0.30 0.19 0.11 0.41 0.21 0.10 0.34
A=45 4.53 2.73 1.33 4.14 1.80 1.14 4.16

DGP Model C
n=20 2.00 3.40 1.56 7.51 5.19 1.77 22.90
v=2.0 2.00 -0.08 -0.32 0.73 -0.19 -0.35 0.35
p.=0.9 0.88 0.99 0.93 1.00 0.99 0.90 1.00
pg = 0.5 0.48 0.56 0.08 0.97 0.91 0.59 0.98
6 =0.025 0.02 0.02 0.01 0.07 0.02 0.01 0.07
a=0.3 0.30 0.26 0.15 0.34 0.26 0.19 0.35
A=45 4.50 1.71 1.25 2.77 2.27 1.24 8.17

DGP Model D
n=2.0 2.00 3.05 1.68 4.59 2.40 1.98 4.81
v =2.0 2.00 -0.06 -0.28 0.54 1.63 -0.27 1.98
p, =0.9 0.88 0.98 0.90 1.00 0.92 0.91 1.00
pg = 0.5 0.47 0.42 -0.46 0.96 0.50 0.32 0.97
6 =0.025 0.02 0.01 0.01 0.03 0.01 0.01 0.01
a=0.3 0.30 0.23 0.15 0.32 0.21 0.13 0.27
A=45 4.49 1.91 1.45 3.57 4.10 1.65 4.51

Table A1: Distributions of estimates, DGP2 (parameter variations explain 20 percent of output
variance).
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Figure 9: Impulse responses, DGP2 (parameter variations explain 20 percent of output
variance)
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small

Table A2: Variance decomposition, DGP2 (parameter variations explain 20 percent of output

variance).

Variable

Technology\Government

Technology\ Government

DGP: Model B Estimated: Time invariant

Y 81.300 0.100 0.998 0.006

C 55.300 0.100 0.998 0.002

N 15.600 0.400 0.978 0.025

K 40.600 0.100 0.994 0.008
DGP: Model C Estimated: Time invariant

Y 81.900 0.100 0.927 0.082

C 26.500 0.100 0.999 0.001

N 5.400 0.400 0.966 0.039

K 37.400 0.100 0.974 0.030
DGP: Model D Estimated: Time invariant

Y 82.200 0.100 0.936 0.072

C 32.800 0.100 0.996 0.008

N 10.200 0.500 0.928 0.079

K 60.000 0.400 0.979 0.028
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APPENDIX B : THE RBC MODEL WITH VARIABLE CAPITAL UTILIZATION OF SECTION 3

The representative household maximizes the following stream of future utility

max Fy i Ik C%_n —A n?—v (48)
= 1—n 1+~
c iy = wng + ik —a(u)ki — Ty (49)
it = ke— (1—0)ki—1 (50)
kj = ulki— (51)

where ¢; is consumption, i; investment, k; the stock of capital, and n; is hours worked. Household
chooses the utilization rate of capital, u;, and the amount of effective capital that she can rent to
the firm, i.e. k7. Household receives earnings from supplying labor and capital services to the firm,
i.e. w; and 7F respectively, subject to a cost of changing capital utilization, a(u;)ks. Finally, T; are
lump sum taxes levied by the government. The production function is

ye = 2 (kf)

A fraction of output is consumed by the government and financed with lump-sum taxes. The
government budget constrain is always balanced, i.e.

gty = 1Ty

The optimality conditions of the planner problem are

I—g)ye=cr+ ki — (1 =9 — alup)u) ki1
Anfel = (1 —a)(1 — gi)ye/n
1= BEy(ct/ct1)"(1 = 0 — a(ue1)uer + a(l = gey1)ye1/kr)
(1 — g)ye/ k-1 = ue(a’ (ur)ug + aluyr))

Yt = Zt(utkt—l)antl_a

1/5_;5_1 <e¢(“t—1) _ 1)

The functional form for the adjustment cost of the capital utilization is in the last equation and it

satisfies a(1) =0, a’(1) = 1/8+ 6 — 1, a"(1) = ¢(1/8 + 6 — 1). If assume that, in the steady state

u = 1, the steady states for (g, 5, %, n) are the same as in the RBC model without variable capital

a(uy) =

utilization.
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APPENDIX C : THE EQUATIONS OF GERTLER AND KARADI MODEL

exp(or) = (exp(Cy) — hexp(Ci—1))~7 — Bh(exp(Ciy1) — hexp(Cr)) ™7 (52)
1 = PBexp(R)exp(Ap1) (53)
_ exp(or)
ep(he) = exp(0t—1) >4
x *exp(L:)? = exp(ot)exp(Pmyt)(l —a) SEEEZ)) (55)
exp(ry) = (1—0)Bexp(Apr1)(exp(Rr+1) — exp(Re)) + Bexp(Air1)0 exp(zi11) exp(v{5)
exp(ne) = (1—0)+ Bexp(Ay41)0 exp(2t41) exp(n+1) (57)
B 1 exp(nt)
exp(de) = (I — ) A —exp(y) (58)
exp(zt) = (exp(Rpy:) — exp(Re—1))(1 — tr—1) exp(Pe—1) + exp(Ri—1) (59)
B exp(¢r) (1 — 1) oxp(2
=) = =) P (90)
_exp(ey) exp(IVe)
ep(f) = exp(Qt) oy
exp(Ny) = exp(Ney) + exp(Nny) (62)
exp(Ner) = 0exp(z)exp(Ni—1)exp(—enes) + G (63)
exp(Nny) = w(l—1-1)exp(Qy)exp(&r) exp(Ki—1) (64)
= (ex a exp(Ym,t) ex * (ex - exp(5))
xp(Rr) = (exp(P)a ol oxplr) e exp(@r) - 2B (65)
exp(Ymt) = exp(ar) * (exp(&) * exp(Uy) * exp(Ki—1))* * exp (L)t (66)
_ ( Ung +17) I+ 1) (Ing+ %)
ep(@) = 1+05m(p s 1)? + ni( Ut Vo 1 159
- pem(auan( Gt - o GEt Ey (o7
exp(8) = b+ b/(1+¢) * exp(Up)'** (68)
O{exp(Ym) _ bexp(U;)S exp(&;) * exp(K;_1) (69)
exp(Uy) exp(Pin,t)

In, = exp(ly) —exp(d) * exp(&) * exp(Ki-1) (70)
exp(Ky) = exp(&)* exp(Ki—1) + Iy (71)
exp(Gi) = G *exp(gt) (72)
exp(Yi) = exp(C) + exp(Ge) + expll) + 0.5m( L) < DI+ 1) + rrexpl )

exp(Yin,t) = exp(Yy) * exp(Dy) (74)
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exp(Dy)

exp(X¢)
exp(Fy)
exp(Z;)

exp(in 1)

(exp(infl;))'
exp(it)
exp(it)

(o
Qg
&
gt
eyt
@

7y % exp(Dy—1) * exp(infle—1) """ exp(in fly)°

(1= 9)((1 = yexp(infly_1)" =D exp(infly) ™) /(1 — 5)) /17 (75)
1/ exp(Ppt) (76)
exp(Y;) * exp(Prt) + By exp(Ai41) exp(inflir1) (exp(infly)) 7" exp(FilTT)
exp(Y;) + By exp(Avr1) exp(inflypr) " exp(infl) 1= exp(Zi11)  (78)
e el (19)

0]
(=)

v exp(infle—1)" (79 + (1 — ) (explin 1))

exp(Ry) * exp(infli41)

explir—1)7 (8~ explinfle)" * (exp(X:)/(e/ (€ — 1)) expless)
k¥ (Rppp1 — Re — Rl + R°) 4+ ey y

Pa *At—1 — Oq * €q.¢

pe* &1 — O¢ x egy

Pg * gt—1 — €g;t

Pop ¥ Cpt—1 Tt Cyt

pe*G—1tect

o Co 0o
w N =

o O oo
N O O

N N N N N N N TN N
0] [08)
o >~
N’ N e e N e N N N

Note: (; = 0,Vt in the basic estimated model. It appears only in the augmented model of table 7.
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