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Abstract

Recent portfolio choice, asset pricing, and option valuation models highlight the importance of
skewness and kurtosis. Since skewness and kurtosis are related to extreme variations, they are also
important for Value-at-Risk measurements. Our framework builds on a GARCH model with a condi-
tional generalized-t distribution for residuals. We compute the skewness and kurtosis for this model
and compare the range of these moments with the maximal theoretical moments. Our model, thus,
allows for time-varying conditional skewness and kurtosis. We implement the model as a constrained
optimization with possibly several thousand restrictions on the dynamics. A sequential quadratic
programming algorithm successfully estimates all the models, on a PC, within at most 50 seconds.
Estimators, obtained with logistically-constrained dynamics, have different properties. We apply this
model to daily and weekly foreign exchange returns, stock returns, and interest-rate changes. We show
that skewness exists for many dates and for almost all series except short-term interest-rate changes.
This finding is consistent with findings from extreme value theory. Kurtosis exists on fewer dates and
for fewer series. There is little evidence, at the weekly frequency, of time-variability of conditional
higher moments. Transition matrices document that agitated states come as a surprise and that
there is a certain persistence in moments beyond volatility. For exchange-rate and stock-market data,

cross-sectionally and at daily frequency, we also document co-variability of moments beyond volatility.
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Conditional Volatility, Skewness, and Kurtosis:
Existence and Persistence

Abstract: Recent portfolio choice, asset pricing, and option valuation models highlight the im-
portance of skewness and kurtosis. Since skewness and kurtosis are related to extreme variations, they
are also important for Value-at-Risk measurements. Our framework builds on a GARCH model with a
conditional generalized-t distribution for residuals. We compute the skewness and kurtosis for this model
and compare the range of these moments with the maximal theoretical moments. Our model, thus, allows
for time-varying conditional skewness and kurtosis. We implement the model as a constrained optimiza-
tion with possibly several thousand restrictions on the dynamics. A sequential quadratic programming
algorithm successfully estimates all the models, on a PC, within at most 50 seconds. Estimators, ob-
tained with logistically-constrained dynamics, have different properties. We apply this model to daily
and weekly foreign exchange returns, stock returns, and interest-rate changes. We show that skewness
exists for many dates and for almost all series except short-term interest-rate changes. This finding is
consistent with findings from extreme value theory. Kurtosis exists on fewer dates and for fewer series.
There is little evidence, at the weekly frequency, of time-variability of conditional higher moments. Tran-
sition matrices document that agitated states come as a surprise and that there is a certain persistence
in moments beyond volatility. For exchange-rate and stock-market data, cross-sectionally and at daily

frequency, we also document co-variability of moments beyond volatility.
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1 Introduction

The following paper questions the existence and persistence of conditional skewness and kurtosis of
various financial series taken at daily and weekly frequency. It also addresses the issue whether modeling
higher moments affects the dynamics of volatility. To address this question, we build on Hansen (1994)
who proposes a GARCH model where conditional residuals are modeled as a generalized Student-t
distribution. The generalized-t distribution is asymmetric and allows for fat-tailedness. We first express
skewness and kurtosis of Hansen’s GARCH model as a function of the underlying parameters. For a
given dynamic structure of the underlying parameters, these computations characterize the conditional
evolution of skewness and kurtosis.

A further theoretical contribution is the characterization, conditional on kurtosis being finite, of the
largest possible domain of skewness and kurtosis for which a density exists with a zero mean and a unit
variance. We achieve this characterization using results from the so-called Hamburger (1920) problem.
These results go back to Stieltjes (1894) and are also related with the little Hausdorff (1921a,b) problem.
Conditional on the assumption that kurtosis and hence skewness exist, we show that the moments of the
generalized Student-t distribution are way within the maximal set of skewness-kurtosis. An advantage
of using the generalized-t distribution is that moments may become infinite. Hence, it is possible to
determine those periods when higher moments do not exist.

The model is inspired by Engle (1982) and Bollerslev (1986) in the way volatility is determined. For
the generalized Student-t distribution, both the asymmetry and the fat-tailness parameters are modeled
as a function of lagged innovations. Given that the generalized Student-t distribution will only be
defined for certain parameters, it is necessary to impose constraints on the dynamic specification. Given
the dynamic nature of the problem, this results in a number of constraints proportional to the number
of observations. For instance, our daily stock-index dataset involves T = 7158 observations, yielding
an estimation with 2 + 3(7T — 2) = 21470 restrictions. This difficult estimation problem is solved using
a recent sophisticated sequential quadratic optimization algorithm implemented in SNOPT, see Gill,
Murray, and Saunders (1997, 1999).!

We estimate the model for six foreign exchange returns, five stock returns, four short-term interest-
rate changes, and five long-term interest-rate changes. The foreign exchange series start on July 26, 1991,
the stock indices on August 23, 1971, the 3-month rates on January 3, 1975, and the 10-year rates on
Mai 20, 1986. All series end on September 3, 1999. We investigate the existence of conditional skewness
and kurtosis both at daily and weekly frequencies. For exchange-rate and stock-market data, we also
investigate the persistence of moments in a time-series context and cross-sectionally.

Our findings are of importance for various strands of literature that recently emphasized the impor-
tance for asset returns of moments beyond the second one. Within a Capital Asset Pricing Model, interest

in moments beyond volatility goes back to the work of Kraus and Litzenberger (1976). Further work

'In the econometrics literature, Gallant and Tauchen (1989) have used the package NPSOL, developed by Gill et al. for

dense matrices.



in that area is by Friend and Westerfield (1980), Barone-Adesi (1985), Sears and Wei (1985, 1988), and
more recently by Fang and Lai (1997), Tan (1991), Kan and Zhou (1999), Harvey and Siddique (1999,
2000). For emerging countries, Hwang and Satchell (1999) model risk premia using higher moments.
With our model and estimation technique, it is possible to extend these models to conditional versions.

Another strand of literature initiated by Mandelbrot (1963) and Fama (1963) recognizes the possibility
that asset returns have such fat tails as to prevent existence of moments beyond the first one. Even though
the non-existence of a second moment appears questionable, there remains the question of the existence
of conditional moments. This type of question may be ecasily addressed with our model. Our model
involves a set of parameters that are related to skewness and kurtosis. We estimate our model under the
constraints that a density exists. The data then decides if, furthermore, a skewness and also possibly a
kurtosis exist. We show that, for 3-month interest-rate changes, the third moment does not appear to
exist. For the other series, skewness appears to exist most of the time but not kurtosis. This type of
result is also related to extreme value theory. In that field, it has been shown by Loretan and Phillips
(1998) that moments beyond the third one do not appear to exist.

Our model has also implications from a purely econometric point of view. In econometric applications
the presence of heteroskedasticity is dealt with by an adjustment of standard errors, i.e., White (1980),
Bollerslev and Wooldridge (1982), Gourieroux, Monfort and Trogon (1984), and Newey and West (1987).
For a general discussion of this issue see Wooldridge (1994). So far it has not been possible to adjust for
heteroskedasticity of moments beyond variance. The technology proposed in this work may be adapted
to situations where higher moments need to be explicitly modeled, and, thus, a gain in efficiency may be
attained.

The structure of this paper is as follows. In section 2, we present our model and the moments
generated by it. In that section, we also indicate how such a model may be estimated. We relate our
problem to the little Hausdorfl problem and discuss the set of skewness-kurtosis pairs that are generated
by our model. In section 3, we present the data. In section 4, we discuss the parameter estimates. In
section 5, we address the issue of existence and persistence of conditional skewness and kurtosis. Then,
we consider co-variability between markets of moments beyond volatility. In section 6, we conclude with

directions for further research. Analytical results are given in the appendix.

2 A model for conditional skewness and kurtosis

2.1 The generalized Student-t distribution

Our model builds on the GARCH model of Engle (1982) and of Bollerslev (1986).2 Within this class of
models, it is well known that residuals are non-normal. This result has led to the introduction of fat-

tailed distributions. Nelson (1994) considers the generalized error distribution. Bollerslev and Wooldridge

®The literature concerning GARCH models is huge. Several reviews of the literature are available, i.e.,Bollerslev, Chou,

and Kroner (1992), Bera and Higgins (1993), and Bollerslev, Engle, and Nelson (1994).



(1992) consider the case of a Student-t distribution.? Engle and Gonzalez-Rivera (1991) model residuals
non-parametrically. Even though these contributions recognize the fact that errors have fat tails, they
do not render the tails time varying, i.e., the parameters of the error distribution are assumed to be
constant.

Hansen (1994) is the first to propose a model that allows for conditional higher moments. He achieves
this by introducing a generalization of the Student-t distribution where asymmetries may occur, while
maintaining the assumption of a zero mean and unit variance. By assuming that parameters are depen-
dent on past realizations, he shows that parameters may be made time varying, and thus that higher-
moments may be made time varying.* In the finance literature, Harvey and Siddique (1999) introduce a
non-central Student-t distribution.

Hansen’s Student-t distribution is defined by

2
be (1+n—12 (=) ) Tz < —afb,
g9(zln, A) = o (1)
1 bz+a 2 2 : o
bc l+nf2(1+x) ifz>—a/b

where
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n—1 Vr(n—2)I (%)

If a random variable Z has the density g(z|n, A), we will write Z ~ HT'(z|n, \). Inspection of the various

formulas reveals that this density is defined for 2 < 1 < oo and —1 < A < 1. Furthermore, this density
encompasses a large set of conventional densities. For instance, if A = 0, Hansen’s distribution reduces to
the traditional Student-t distribution. We recall that the traditional Student-t distribution is not skewed.
If in addition = oo, the Student-t distribution collapses to a normal density. Figure 1 displays various
densities obtained for different values of A and 7. We notice that A controls skewness: if A is positive,
the probability mass concentrates in the right tail.

It is well known that a traditional Student-t with 1 degrees of freedom allows for the existence of all
moments up to the nth. Therefore, given the restriction 1 > 2, Hansen’s skewed t distribution is well
defined and its second moment exists. The higher moments are not given directly by the parameter 7,
but formulas exist for these moments. We establish now the formulas of the higher moments of Hansen’s
generalized-t distribution.

We show in appendix A that, if Z ~ IHT(z|n, A), then Z has zero mean and unit variance. Further-
more, defining a random variable X with mean a and standard deviation b, obtained with X = bZ + a,
and m; = E[X7], we find that

E[Z%] = [m3—3amsa+ 2a°]/0%, (2)
E[ZY = [m4—4dams + 6a®my — 3a%] /b, (3)

*For a definition of the traditional Student-t distribution, see for instance Mood, Graybill, and Boes (1982).

4 . . .
Hansen does not discuss the link between parameters and higher moments.
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Since Z has zero mean and unit variance, we obtain that skewness (Sk) and kurtosis (Ku) are directly

related to the third and fourth moments:

Sk[Z] = E[Z?] Ku[Z] = E[Z%].

Fxcess kurtosis is defined as XKu = Ku — 3.

We notice at this stage that the density and the various moments do not exist for all parameters.
Given the way asymmetry is introduced, we must have —1 < A < 1. The density ¢ is meaningful if > 2.
Careful scrutiny of the algebra yielding equation (2) shows that skewness exists if 7 > 3. Last, kurtosis
in equation (3) is well defined if n > 4.7

Given these restrictions on the underlying parameters, it is clear that skewness and kurtosis will also
be restricted to certain domains. Figure 2 (3) traces the skewness (respectively kurtosis) surface for
given values of A and 7. Focusing on figure 2, we notice that for small values of 77 the range of possible
skewness is large. On the other hand, when one slightly increases 17 beyond 4, the surface strongly levels
out. When we consider the case of kurtosis in figure 3, we verify a degeneracy as 7 reaches its boundary
value of 4. To get a better feel for the possible range of skewness that one can obtain as A varies between
—1 and 1, we trace in figure 4 various curves corresponding to selected values of 1. For the case where
7 takes the value 4.5, hence when kurtosis exists, we notice a strong restriction for skewness ranging
between —3 and 3. Clearly, for even higher values of 7, the possible range of skewness decreases even
further.

This last picture illustrates the fact that for a given level of kurtosis only a finite set of skewness may
exist. This raises the more general question of existence of a density for given moments. We address this

issue in the next section.
2.2 The moment problem
The question of the existence of a non-decreasing function « for a sequence of scalars ji; such that
b
= / xdo(z) (4)
a
has already been addressed in the functional analysis literature. There are essentially two approaches.

The first approach is discussed in Widder (1946). The case a = 0, b = oo has been investigated by

Stieltjes (1894) and was motivated by a problem issued from physics.® The case a = 0 and b = 1 has

°In empirical applications, we will only impose that 1 > 2 and let the data decide for itself if for a given time period a

given moment exists.

®The first moment appears as a center of gravity and the second moment is interpreted as the inertia.



been studied by Hausdorff (1921a, 1921b), and is called the little Hausdorff problem. The situation of
interest for us, @ = —oc and b = 400, has been studied by Hamburger (1920). A second approach to the
moment problem is discussed in Baker and Graves-Morris (1996) and involves Padé approximants.

A first result is that a solution to equation (4) is not unique. Widder (1946) provides a counter-
example. Next, there is the question of conditions that must be satisfied by p; to ensure existence
of a solution to equation (4). The answer to this question is that the sequence ft; must be positive
definite (Widder, 1946, p. 134, Theorem 12.a). This means that the following sequence of numbers and

determinants must satisfy

Ho H1 M2
Ho
fio 20 uy >0, fy pg pg | 200
1 M2
Ko H3 My

In particular, for the four-moment problem, with g = 1, gy =0, and py = 1, this implies the following

relation between skewness ji3 and kurtosis pu:
,u% < 1+ pig, with py > 0. (5)

This relation shows that, for a given level of kurtosis, only a finite set of skewness may be reached. Given
that, for a normal density, p, takes the value 3, this shows that a density will exist for densities that
may have significantly thinner tails than the normal density.

Figure 5 illustrates the skewness-kurtosis boundary ensuring the existence of a density. The curve
ABC corresponds to the domain (5) for the general case. The curve DEFG corresponds to the domain
of attainable skewness and kurtosis, assuming 77 > 0. We notice that the kurtosis cannot be below 3,
indicating that the generalized Student-t distribution does not allow for tails thinner than the normal
distribution. The maximum value for skewness is attained when 7 — 0 and A — 1 (or —1). In this case,

upper bound for skewness is
e (94 32¢%)

(9 — 16¢2)3/2
with & = T'(5/2) / (V2T (2)). Approximately, one finds fi — 3.9978. Note that kurtosis has to take

very large values for pi5 to be attainable.

3

Given these conditions on the existence of moments, we may now consider our general model.

2.3 A model for time-varying skewness and kurtosis

Let ry, for t = 1,---,7T, be realizations of a variable of interest. For exchange-rate and stock-market
data, this variable will be a log-return. For interest-rate data, we will consider changes that are defined

as 100 (Ry — R;—1) where Ry is the interest rate prevailing at {. We assume that

e o=yt Y (6)
Yt = Otéy, (7)



of = a0+ by (y;11)? + b5 (Y 1)? + iy, (8)
€~ HT(en, M). (9)

Equation (6) decomposes the return of time ¢ into a conditional mean, g, and an innovation, y;. Equation
(7) defines this innovation as the product between conditional volatility, o, and a residual, €. The
next equation (8) determines the dynamics of volatility. We use the notation y™ = max(y,0) and
y~ = max(—y,0). Such a specification has been suggested by Glosten, Jagannathan, and Runkel (1993),
and by Zakotan (1994). In equation (9), we specify that residuals follow a generalized Student-t with
time-varying parameters (1, \;).

Our stated aim is to test for persistence and existence of conditional moments. This means that we
must allow for the parameters of the generalized Student-t distribution to have a dynamic specification.
It is tempting to use for 7, and A; a specification similar to an ARMA(1,1), thus resembling equation
(8). Such a specification is, however, hazardous. Indeed, for financial data, there exist outliers (such as
the October 1987 crash). This in turn may lead to spuriously significant parameters. To see how such
spurious parameters may arise let us proceed with a thought experiment. We assume an ARMA(1,1)

type specification for the parameters such as
At =a+ b’l“t,]_ + C/\t,]_.

Furthermore, we consider that the data results from i.i.d. normal data. Now, the estimates of b and ¢ will
be small and statistically non-significant. Because of random variation, b and ¢ will not be equal to zero,
assume that they take positive values. For our thought experiment we consider now the replacement of
ri—1, the return at time ¢ — 1, by a large positive perturbation. Had such an event existed in reality, it
would have created heavy tailedness. Because at time ¢, A\; needs to be bounded above by 1, the program
will converge at a solution where the impact at time ¢ is undone. This is achieved with the choice of a
large negative ¢ that may appear statistically significant even if robust estimates, i.e., White (1980), of

the standard error get used. For this reason, we will use a specification without lagged parameter:

N, = a1+ biiri1+ barea, (10)
At = a2+ bari—1 + baory_o. (11)

We also have the following constraints on the parameters

by +co < 1, (12)
by +co < 1, (13)
2 < ny, (14)
1 < <l (15)

The first two equations, (12) and (13), guarantee stationarity for the volatility process given by equation

(8). The following 1" — 2 constraints are necessary to guarantee that the density is well defined (the first



two values 77 and 7, are not needed). Last, equation (15) involves 2(T — 2) inequality constraints that
guarantee that skewness will be well defined.

The estimation of model (6) to (9) and (10) to (11) under the constraints (12) to (15) represents a
formidable task. Furthermore, given that the likelihood is defined unless the constraints are binding, it
is necessary to use an optimization algorithm, where the constraints are always satisfied. This implies
using an interior optimization algorithm. Furthermore, the sample is of a rather large size. For this
reason, speed becomes a very important factor. Given the structure of our problem, we use a program
developed for sparse matrices: SNOPT, developed by Gill, Murray, and Saunders (1997, 1999).

For a given set of initial values, this program first verifies that all initial values satisfy the restrictions.
In case of non satisfaction, it searches initial values satisfying the restrictions and that are closest to
the proposed initial values with respect to the Euclidean norm. Next, it uses a sequential quadratic
programming algorithm whereby it is guaranteed that the linear constraints are always satisfied.

As mentioned, optimization under tens of thousand of restrictions is a formidable task. For this
reason, it is tempting to impose artificial constraints forcing parameters into the authorized domain via
a non-linear function. This non-linear function may, however, introduce distortions in the problem. To
investigate this issue, we consider logistic transforms mapping unconstrained dynamics into constrained

ones. This yields:

n, = a1+ buri—1 + brar_a, (16)
At = az+bare 1+ baare g, (17)

M = Gooo ()y Mt = gi_1.1 (M),

where gig (%) = a + (b—a)(1+e™")! is defined as the logistic map.”

3 Empirical results

3.1 The dataset
3.1.1 Description

In this study, we investigate the time series behavior of six foreign exchange-rate series, of five stock
indices, of four 3-month Euro-rate changes, and of five long-term interest-rate changes. We use the
following symbols: SFR-DM for the Swiss Franc-Deutsche Mark and CAN-US for the Canadian dollar
to US dollar. Then we use DM-US, YEN-US, UK-US, FF-US for the amount of Deutsche Mark, Yen,
British Pound, and French Francs necessary to purchase one US dollar. S&P, NIK, DAX, CAC, and
FTSE correspond to the S&P 500, the Nikkei, the Deutsche Aktien Index, the CAC40, and the FTSE
100 stock-market indices. All those indices have also been used in other studies, i.e., Jorion (1995),

Ait-Sahalia (1999), Gray (1996). Data for the week of the October 1987 crash have been suppressed

"For the case 400, we set b to a large positive value such as 30.



from the data set. The exchange rates have been provided by a large bank. They cover the period from
July 26, 1991 to September 3, 1999, representing 1969 observations. The stock-market indices have been
obtained from Datastream. They cover the period from August 23, 1971 to September 3, 1999 for a
total of 7159 observations. For interest-rate data we use the symbols US3M, UK3M, FR3M, and GE3M
for the 3-month Euro-rate changes for the US, the UK, France, and Germany. Similarly, we use USLT,
UKLT, FRLT, and GELT for bonds with ten years to maturity for the US, UK, France, and Germany.
Our short-term interest-rate data runs from January 3, 1975 to September 3, 1999, for a total of 6535

observations. Our long-term interest rates cover the period from May 20, 1986 to September 3, 1999.%

3.1.2 Descriptive Statistics

Exchange rates and stock-market indices

Table 1 displays several sample statistics, first for exchange rates and then for stock-market indices.
We notice that the standard deviation of exchange rates tends to be smaller than for indices. Exchange
rates display a wide range of possible skewness. This ranges from -1.3889 for the YEN-US to 0.3868
for the UK-US. This translates the fact that, over the sample considered, on certain occasions, the Yen
appreciated sharply whereas the pound depreciated. Skewness is significant for all series except for the
DM-US and the FF-US. Given the effort to align both currencies, we can expect the two series to have
a similar behavior. For the stock indices, we find a negative skewness for the S&P, DAX, and CAC,
indicating the presence of sharp drops in stock prices. However, when standard errors are computed
using the Generalized Method of Moments, as suggested by Richardson and Smith (1993), we find that
no skewness is significant at the 5 percent level. Turning to excess kurtosis, we find that all countries
have a strongly significant statistic. This translates the fact that the tails of exchange rates and of stock
returns are fatter than tails of the normal distribution. Considering the Jarque-Bera statistic, which is
distributed as a x? with two degrees of freedom, we reject normality for all series.

The Engle test statistics with lags 1 and 5, obtained by regressing squared returns on one lagged,
respectively five lagged, squared returns is distributed as a x? with the degree of freedom equal to the
number of lags. The strong significance of the statistics reveals the presence of heteroskedasticity in the
data.

The Box-Ljung statistic, corrected for heteroskedasticity, tests for the existence of serial correlation
among the first 5 or 10 observations. Even though we are able to detect serial correlation, the coefficient

of correlation is always small.’

$We did not do any data-snooping in this study. That is we did not try to select a particular sample length to obtain
nicer empirical results. Also, we did not drop any data-series for which our model may not have worked. The inclusion
of little investigated datasets such as the Swiss Franc-Deutsche Mark or the Can-US exchange rate was motivated by the

question whether less liquid markets are subject to different dynamics.

“We filtered the data with an AR(5) auto-regression and estimated various specifications with and without the filtering.
Since the estimations, involving filtered or non-filtered data, yielded similar results, we decided to report the results obtained

for non-filtered data.
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Three-month and ten-year interest-rate changes

Table 2 displays descriptive statistics for short-term and long-term interest-rate changes. We find
that the standard deviation of short rates is larger than for long rates. Skewness is significant at the 5
percent level for all countries except for the German 3-month rate. Economic theory provides few hints
what the sign of skewness should be for interest-rate data, and indeed, the sign pattern of skewness is
not clear-cut. The positive skewness for the UK short rate and the German long rate suggests that
these countries had on average more sharp upward movements than downward movements. At usual
significance levels, no skewness is statistically significant.

Excess kurtosis is always strongly significant. This suggests that the distribution of interest-rate
changes has a thicker tail than the normal distribution. We notice at the short end a magnitude of
kurtosis at least three times larger than at the long end. In particular, for the French short rate, we find
an excess kurtosis of 331.53 and an associated standardized excess kurtosis of 5470.65. The magnitude
of this statistics questions the existence of a fourth moment for this series. The Jarque-Bera statistics
takes very large values, suggesting that the data is non-normally distributed.

Turning to the Engle test for heteroskedasticity, we notice again large coefficients, indicating that
the data is highly heteroskedastic. The Box-Ljung statistics for serial correlation reveals that serial
correlation may exist for US and UK data at the short end. At the long end, only US rates display a
certain level of serial correlation.

These descriptive statistics suggest that moments beyond variance may have an important role to

play. Our model will help in understanding the dynamics of skewness and kurtosis.

4 Estimation of the general model

4.1 ...using daily foreign exchange-rate and stock-index data...

Table 3 reports parameter estimates of the general model at daily frequency. The first row of the
table, labeled info, displays consistently a 0. This indicates that the sequential quadratic programming
algorithm converged and found a solution. ' We performed all estimations using the same set of initial
values for the GARCH equation (8) (ap = 0.05, by = 0.05, by = 0.05, cg = 0.85). This choice was
guided by our prior knowledge of estimates reported in the literature. Furthermore, we imposed a1 = 5,
D11 = b1a = ao = b1 = bog = 0. This vector of initial values is an interior point, i.e., a vector for which
all constraints are satisfied. When we perturbed these initial values and selected non-interior points,
the program performed a phase-I run of the simplex algorithm to find an interior point, closest to the

proposed initial value, with respect to the Euclidean distance. The second row of table 3 displays the

Y9 A solution may be local rather than global; for this reason, we also estimated the model with different initial values.
For all series, we found convergence to the same values with the exception of the SFR-DM. For that series we initialized the
model with the parameters obtained from the model without the second lag, i.e., bi2 = b2z = 0. For weekly data, where our

samples are much smaller, the problem of multiplicity of a solution appears more pronounced than for daily data.
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time required before convergence was reached. For a precision of 1076, we obtained convergence under 18
seconds for all exchange-rate data and under 57 seconds for the roughly three times larger stock-market
database. This suggests that our algorithm can be used for real-time applications.

We now turn to interpreting the volatility equation (8). Since the volatility equation allows asymme-
tries, we first test their relative importance. The statistics LRT; corresponds to the likelihood-ratio test
of the null hypothesis Hy : bj = b, . Considering exchange rates, we notice that, except for the SFR-DM,
no asymmetric impact of news exists. For the SFR-DM, a rather thinly traded currency, we find that
a decrease of the exchange rate (an appreciation of the SFR with respect to the DM) is followed by an
increase of volatility.!! For all series, inspection of the magnitude of by and by indicates that a large
return will lead to a subsequent increase in volatility.

Considering stock-market data, we find strong differences between “bad” negative residuals and
“good” positive residuals. Negative returns will have a larger impact on the volatility of future re-
turns than positive returns. This observation has been well documented, e.g., Nelson (1990), Campbell
and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), Zakoian (1994), Sentana (1995), and
may be explained by Black’s (1976) leverage hypothesis.

We now turn to the dynamics of those parameters that drive higher moments. That is, we consider
estimates of the degree of freedom parameter 7, (equation (10)) and of the asymmetry parameter \;
(equation (11)). To do so, we first turn to the issue of how long time it takes before a large event is
incorporated in the data. A hint is given by the likelihood-ratio test statistic LRT9 of the null hypothesis
Hy : bi12 = b2 = 0, i.e., if the second order lag for both 1, and A; matters. For exchange rates, we
uniformly find that the second lag is not required. We present, in table 3, the parameters b1 and
boo even though they are non significant, because, a reestimation of our model imposing bio = bog = 0
showed that the lag-one parameter estimates were not significantly altered. For stock returns, the smallest
likelihood ratio statistics is 8.30 for the Nikkei, whereas the critical value for a 5 percent level is 5.99.
This means that a specification with two lags is required for stock returns.

Inspection of parameter b1 indicates, for exchange rates, that an excessively large positive return
(depreciation of a currency with respect to its reference currency) will increase the tails of the distribution
on the subsequent day. We also find that all estimates of the parameter b12 are negative. This suggests
that a correction occurs during the second day. Hence, in the short run (say one day), extremes will be
followed by extremes, then markets calm down after the second day.

Turning to stock returns, we find that all parameters b1 and byo are negative (except byp for the CAC
return) and that both b1; and b12 are significant for three out of five series. Again, an interpretation
may be given. Consider an extreme event consisting of a crash. Occurrence of this crash, combined with
the negative coefficients 011 and b12 suggests that on two consecutive days 7, will be abnormally high.

This implies the presence of conditional fat-tailedness. This finding also indicates that the “removal”

' An explanation of this finding without further considering cross-country interest-rate differentials would be hazardous

and will not be attempted here.
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of volatility through a GARCH model leaves conditional information, of an higher order, that may be
important to model situations where the tail behavior of distributions is crucial.

Stock market data is skewed, and casual evidence suggests that extreme events will consist of crashes.
Let us therefore consider the occurrence at time t—1 of a large negative return. Given the form of equation
(10), a negative coefficient b1; implies that the day after, at time ¢, the market will be associated with a
large event. Since 7, is a measure of the tail of the distribution, it is not possible at this stage to make a
statement whether the large event will be positive or negative. The second lag, b2, indicates that even
two days after a large negative event, there will be a higher probability of a tail event.

Now, we turn to the interpretation of the dynamics of A\;. First, we observe that the sign of as tends to
be of the sign of skewness, as reported in table 1. This confirms that A; captures directional movements
driven by large events. Next, we observe that for exchange rates as well as for stock returns, parameters
bo1 and bgo are positive. Exceptions are 0o for the YEN-US with a non-significant estimate of -0.0161
and by for the CAC with an estimate of -0.0236.

This positive sign for the two lagged parameters indicates that there is a tendency for extremes of a
given sign to be followed by large events of the same sign for several days. For exchange rates, for which
only lag-one parameters are significant, this implies that after a depreciation of the currency, the day
after there is an increased probability of a further depreciation. For stock returns, we find that for four
out, of five series, in case of a large drop of the market, skewness will continue to be negative, and hence
the probability of a large negative event is increased.

These results display intuitive and reasonable patterns for conditional fat-tailedness of returns and

of skewness. Now, we turn to the interpretation of interest-rate changes.

4.2 ... using daily short-term and long-term interest-rate changes

As we will show in interpreting table 4, the dynamic of interest-rate changes differs in important ways
from the dynamic behavior of foreign exchange and stock returns. In particular, we will show that higher
moments for short rates do not exist, and when they do they cannot be predicted. First, we consider the
volatility equation of the short rate. Inspection of LRT1, which is the test statistics of the hypothesis
by = by, reveals that there is an asymmetric impact of positive and negative interest-rate changes on
subsequent volatility. Inspection of the relative size of the parameters bg’ and by indicates that a positive
shock on interest rates induces a stronger increase in volatility than a negative shock. This finding is
in accordance with the casual observation that increases in interest rate represent “bad news” for the
economy given their negative impact on investment and given that they are triggered by other “bad news”
often related to increases in inflation. We also find that there is persistence in volatility as testified by
the large estimates of cg.

/e turn now to the dynamics of 1, and A;. First, the likelihood-ratio test statistic LRTy of the null
hypothesis b11 = bi12 = ba1 = boo = 0 indicates that, with the exception of the German long rates, there is

little evidence for a dynamic involving two lags. Inspection of the heteroskedasticity-consistent standard
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errors, associated with 019 and bao, sheds further insights on the lag-two dynamic. For the 3-month
interest-rate changes, none of the coefficients, with the exception of b1o for FR3M and boo for GE3M,
are significant. On the other hand, we notice for the long rate, even though b12 = 0 cannot be rejected
excepted for Germany, that the hypothesis b2 = 0 may be soundly rejected for all long rates except
for the US where by = 0.0041 with a standard error of 0.0028. This finding suggests that a certain
persistence exists in higher moments, driven by baa.

Given that none of the coefficients involved in the dynamics of 7, and A; for the short rate are
significant, we focus now on the interpretation of the dynamics for the long rates. We notice that
coefficients b11, b12, bo1, and bog tend in general to be positive. This means that after a “bad event”
occurred for interest rates, i.e., an increase, subsequently the distribution of returns will be fat tailed.
Furthermore, it is possible to state that after a positive shock, skewness will be positive. This shows that
after an event of a given sign occurred, the market will tend to be followed by a similar event.

We may conclude this section by stating that very little can be said about the dynamics of higher
moments of short-term interest-rate changes. There does not seem to exist a particular relation. On
the contrary, long-term interest-rate changes follow dynamics similar to exchange rates or stock indices.
After a bad news, i.c., a large increase of the rate, the probability of a further large augments. This
feature is measured through the fat-tailedness of returns as well as through the increased skewness.

So far we interpreted only briefly the behavior of the parameters A\; and n;,. The reason for doing
so is that their actual, simultaneous impact on the generalized-t distribution is sometimes difficult to
interpret. For instance, an increase of A\; will lead to higher skewness, yet a contemporaneous decrease
of kurtosis via 1, may offset the possible increase in fat-tailedness. The link of \; and 7, with skewness
and kurtosis is highly non-linear. In a later section we will return to the direct analysis of skewness and
kurtosis.

As aggregation of the data occurs, the dynamic at a different frequency is known to be rather different,
i.e. Drost and Nijman (1993). For this reason we consider now the estimates obtained at a weekly

frequency.

4.3 ... and using weekly data

The interpretation of weekly results follows a similar logic as the interpretation of daily data. The set of
series for which predictability of higher moments exists is strongly reduced. For this reason, we discuss
the results for all series simultaneously. In tables 5 and 6, we display the results for our estimations at a
weekly frequency. Concerning the volatility dynamics, we notice for exchange rates that decreases of an
exchange rate with respect to the dollar are likely to trigger increased volatility. Our reference currency
is the US dollar, hence it is not surprising that all exchange-rate returns will display similar patterns.

For the stock-market indices, we find volatility impact patterns that are compatible with Black’s
(1976) leverage hypothesis: Bad news, i.e., crashes, will trigger larger volatility than good news.

Turning to interest rates, both at the short and the long end, we find that interest-rate increases tend
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to trigger larger subsequent volatility than interest-rate drops.

Turning now to the dynamics of n, and A, we first observe that the likelihood-ratio test statistic
LRTj; testing for any dynamics at all is not significant, except for a few series. Furthermore, rather few
coeflicients reach statistical significance, and when they do, the signs are ambiguous. Those observations
suggest that there is little evidence of persistence of skewness and kurtosis at a weekly frequency. For

these reasons, our further investigations will only focus on daily data.

4.4 Remaining specification issues

We now address the question whether the allowance of a dynamic of higher moments destroys asymmetries
in the volatility equation of stock-market data. To do so, we compared the estimates reported in table 3
with those obtained in a standard GARCH(1,1) model, i.e., where b11 = b2 = bay = bgs = 0. Even though
we do not report the values obtained in this estimation, our finding is that the explicit modeling of the
asymmetry and fat-tailedness of residuals does not significantly alter the value taken by the estimates
that appear in the volatility equation. For instance, for the SFR-DM, the largest deviation of a parameter
is by an amount of 0.01 for cg. For the DM-US, estimates of ag, bg, by , and cp, were 0.0138, 0.0471,
0.0786, and 0.9099 respectively, indicating that the difference with the estimates reported in table 3 is
truly a small one. For all other series, the deviations of the parameters with respect to the GARCH(1,1)
estimates are of a similar magnitude.

The estimation of a model involving several thousand inequality constraints is a unusual task in
finance. Often, the choice of a logistic transform is made, such as in equations (16) and (17). To measure
the importance of this type of non-linear map, we also estimated the model after imposing the logistic
transform. Again, we will not report the estimates. Clearly, because of the transformation, parameter
estimates will no longer be the same. More importantly, we found that many times a parameter that
turned out to be significant with one model, was no longer significant with the other model. Also, the
dynamics obtained for the resulting series of constrained, time-varying parameters, 1, and \; turned out

to be different. For this reason, we decided to report the results obtained without the logistic transform.

5 Analysis of the dynamics of skewness and kurtosis

Several issues are outstanding. In the previous section, we estimated the dynamics of parameters 1, and
A¢. Even though these parameters are related to skewness and kurtosis, the relation is a highly non-linear
one. For this reason, in order to proceed one step further, we now consider the evolution of skewness and
kurtosis through time, obtained from equations (2) and (3). Next, we analyze cross-sectional movements
between various markets in terms of skewness as well as kurtosis. Our model, therefore, extends in a

certain sense the one by Kroner and Ng (1998).
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5.1 Existence of moments

Inspection of formulas (2) and (3) suggests that third and fourth moments will only exist for 7, > 3 and
1, > 4 respectively. We first address the issue of the existence of skewness and kurtosis.!?

Table 7 reports at daily frequency, for each series, the number of times when constraints 7, > 3 and
1, > 4 were binding. This counts the number of days when skewness or kurtosis does not exist over the
sample under study.

We first consider foreign exchange returns and stock-market returns. The number of dates during
which the skewness does not exist is very low. The largest proportion of infinite skewness is obtained for
the YEN-US and the Nikkei, with 0.3% of the sample in both cases.

The number of cases where the kurtosis does not exist is, by construction, larger than for the skewness,
since the constraint 7, > 4 is more often binding than 7, > 3. It is as high as 5.3% for the Nikkei and
4.4% for the YEN-US exchange rate. Therefore, for these markets, assuming the existence of the fourth
moment may be misleading.

Turning now to interest-rate changes, we find that skewness and kurtosis do not exist for many
dates. In particular, for three-month interest-rate changes, kurtosis never exists whatever the country.
Moreover, for France and Germany, even skewness is found to be infinite in most cases. Concerning
long-term interest-rate changes, we obtain that German and UK kurtosis do not exist for a large number

of dates (between 12% and 60% of the sample). Yet, skewness exists for almost all dates for each country.

5.2 Persistence of skewness and kurtosis

We turn now to the issue of the persistence of skewness and kurtosis. As an illustration, we display the
evolution of 1, and A, and the first four moments for the DM-US exchange rate in figures 6 and 7 and
for the S&P in figures 8 and 9. Since equations (10) and (11) describe both 1, and A; as depending on
lagged returns, we obtain that both n, and A\; display a pattern similar to returns (figures 6 and 8). But
this is not the case for skewness and kurtosis, since relations between (1, A\;) and (mas¢, ma;) are highly
non-linear ones. In figure 7, we first note that conditional volatility is highly persistent, but stationary.
Major events during the sample period (as the September 1992 EMS crisis or the September 1998 Russian
crisis) are associated with a long-lasting increase in volatility. The mean-reverting time period can be
as long as one month. A particularly interesting feature of skewness and kurtosis is that they are far
less persistent than volatility. Stars in figures for skewness and kurtosis indicate dates when kurtosis was
found to be infinite (1), < 4) . We notice that a strong increase in volatility is generally accompanied by
infinite skewness and kurtosis. Moreover, these figures do not reveal strong serial correlation of skewness
and kurtosis. Closer inspection of kurtosis for the S&P reveals some kurtosis clustering.

For the S&P, we also display in figure 10 a scatterplot of past and current skewness in the top graph as

well as of past and current kurtosis in the bottom graph. At first glance, we notice a positive relationship

121In fact, there are only very few cases where skewness exists but kurtosis does not exist, (3 < 7, < 4).
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between past and current skewness. The serial correlation coefficient is 0.2 and the sum of diagonal
element in the transition matrix is 30.8%.

To gain further insight on persistence in third and fourth moments, tables 8 and 9 report transition
probability matrices for skewness and kurtosis respectively. We rank the value of a higher moment into one
of five possible categories. First, entries with infinite values were isolated (in an interval denoted by I5). For
the remaining entries, we constitute four intervals, corresponding to the quartiles (I;, j = 1, ...4). Elements
(a,b) of transition probability matrices measure the percentage of times that the series moves from a
skewness (or kurtosis) in quartile b at time ¢t — 1 to quartile a at time ¢t. Considering transition probability
allows to circumvent some drawbacks of serial correlation coefficients in presence of outliers.'® In absence
of serial correlation, each element of the transition matrix would have the same value (1/16 = 6.25%). In
case of a positive correlation, elements along the principal diagonal are larger than off-diagonal elements.

We first consider transition matrices for skewness, for exchange rates and stock returns (table 8). In
most cases, we obtain a positive relation between ms; and ms;—1. Let us for instance consider the UK-US
exchange rate. At any date ¢t — 1, the skewness falls in quartile 1 with a probability of 25 percent. Then,
conditionally on the fact that ms;—1 belonged to quartile 1, the skewness at date ¢ turns out to be in
quartile 1 in 11.7 out of the 25 cases, whereas it is in quartile 4 in only 3 out of 25 cases. If we sum
probabilities on the diagonal, we obtain 41.6%. This is much higher than 25%, as it would prevail in case
of absence of serial correlation. We can conclude that skewness of the UK-US exchange rate has a strong
positive correlation. Interestingly, we notice that skewness in low and high quartiles (quartiles 1 and 4)
at date ¢t — 1 displays a larger probability to stay in the same state at time ¢. This persistence-result of
states is rather general. For instance, the sum of elements on the first diagonal is high for the DM-US
and FF-US exchange rates (35.8%, and 39.35% respectively) and for the DAX and FTSE returns (39.3%
and 37.5% respectively). Moreover, elements (1,1) and (4,4) of the transition matrix have probability
larger than 10%.

Finally, for two series, the YEN-US exchange rate and the CAC return, we obtain a negative rela-
tionship between mg; and msg;—1.

Now, we turn to the persistence of kurtosis. For some markets, we obtain a strong positive relation
between past and current kurtosis. The sum of diagonal elements is 41.1% for the S&P, 40.1% for the
Nikkei and 35.5% for the FTSE. Inspection of figure 10, bottom panel, confirms that the S&P displays
a rather persistent kurtosis. On the contrary, we obtain a negative relationship for most exchange rates
(DM-US, UK-US, and FF-US) and for the CAC return.

5.3 Coskewness and cokurtosis

An abundant literature has documented volatility co-movements (see, e.g., Hamao, Masulis, and Ng,

1990, or Susmel and Engle, 1994, for stock markets). More recently, some authors stated that correlation

13This is a well-known problem. The correlation coefficient can be biased, if two extreme values occurs at two consecutive

dates. With transition matrices, outliers cannot bias correlation measures, since they only appear as elements of an interval.
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between markets may increase during periods of high volatility (Longin and Solnik, 1995, Ramchand and
Susmel, 1998). Now, we wish to address the issue of co-movements between markets under investigation
in terms of skewness and kurtosis. A positive coskewness between two markets indicates an increase
in the probability of occurrence of a large event in the same direction on both markets. A positive
cokurtosis reveals an increase in the probability of occurrence of a large event on both markets, whatever
the direction of the shock.

To illustrate the strong relationship between higher moments of DM-US and FR-US, figure 11 displays
a scatterplot of skewness and kurtosis for the exchange rates. The relation is clearly positive. In absence
of outliers, the estimation of the correlation coefficient is not biased. Therefore, we regress the DM-US
moment on the corresponding FR-US moment. We find a parameter estimate of 1.118 (with standard
error of 0.010) for skewness and 0.921 (with standard error of 0.011) for kurtosis. Corrected R? are as
high as 0.87 and 0.77 respectively.

Tables 10 and 11 report joint probability matrices for coskewness and cokurtosis for some pairs of
markets. We consider relationships between the DM-US exchange rates vis-a-vis other currencies, and
relationships between the S&P and other stock-market indices.

First, considering exchange rates, we find large positive co-movements of skewness between European
currencies. The sum of diagonal elements is as high as 73% for DM-US and FR-US and 50% for DM-US
and UK-US. This indicates, for instance, that the occurrence of a DM-US skewness in a given quartile is
associated, in 73 out of 100 cases, with a FR-US skewness in the same quartile. Moreover, the strong link
between both skewness mainly comes from large events, since elements (1,1) and (4, 4) of the transition
matrix exceed 20% for the DM-US and FR-US and 15% for the DM-US and UK-US.

Inspection of table 11 reveals a similar pattern for cokurtosis. The sum of diagonal elements is 78%
for DM-US and FR-US and 38% for DM-US and UK-US.

Turning to stock markets, we obtain positive relations between skewness and between kurtosis. But
links are weaker than those obtained with exchange rates. The largest co-movements are found for the
S&P and FTSE. The sum of diagonal elements is 35% for skewness and 33% for kurtosis. For other
markets, we notice some co-movements, but only for the first and fourth quartiles, thus for more extreme
events. Therefore, once again, our results indicate that co-movements of moments beyond volatility are

more intensive during agitated periods.

6 Conclusion

This work has shown how to implement directly Hansen’s (1994) model without ad-hoc parameter restric-
tions. This implementation involves a sequential quadratic programming algorithm where even several
thousand constraints may arise.

The model is run over a large number of series at daily and weekly frequency. For daily data we

find evidence of persistence for foreign exchange data and stock indices, less so for interest rate changes.
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Especially for short term interest rates little evidence of persistence of higher moments is found. Turning
to a weekly frequency, even foreign exchange and stock market higher-moments loose their predictability.

We extend the finding of Harvey and Siddique (1999) that the modeling of asymmetries of volatility
has no impact on the dynamics of the skewness parameter to the case of kurtosis.

Turning to cross-sectional skewness and kurtosis, we document that higher moments of foreign ex-
change data and stock returns are strongly correlated.

The methodology developed in this paper is important for dynamic portfolio allocation and the
testing of conditional financial models. Given that we model the tails of a distribution, our model is
also of relevance for value at risk models. The model considered gives a conditional description of the
tail behavior of returns. That financial returns are fat-tailed is not new. Mandelbrot (1973) mentions
that returns should be modeled with stable laws. Stable distributions do not admit second moments.
Without being so drastic, we are able to quantify those dates where kurtosis and possibly even skewness
ceases to exist. Our model provides, thus, an alternative to stable laws.

The models is presently univariate. Multivariate extensions may be achieved with copula functions,
i.e., Nelsen (1999). So far we emphasized the importance of this model for economic applications, yet

the modeling of a certain type of parametric heteroskedasticity may be of relevance to gain in efficiency.
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Appendix A

In the following we derive a certain number of theoretical results concerning Hansen’s (1994) generalized-
t distribution. We will extensively use the following result of Gradshteyn and Ryzhik (1994, p. 341,
3.241.4):

o0 _ 1 p\» T (&)T (1+n— &)
" A N I A p v v
./0 M (p + qz”) dx p— <q) T

defined for 0 < p/v < n+1, p # 0, and ¢ # 0 where I' is the gamma function for which I'(x) =
(x—1)I'(x — 1) and I'(1/2) = /7. We first use this lemma to verify that the expression (1), given in the
text truly defines a density.

The starting point is the conventional Student’s t distribution with 7 degrees of freedom defined by
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The constant ¢ has to be set in such a manner that the probability mass integrates to 1. This requires
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A change of variable in the left integral, from z into —z, shows that the two integrals in the center are

equal. A straightforward application of the lemma implies that
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In order to introduce an asymmetry, Hansen considers the new random variable
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We perform the change of variables y = (1 — M)z and y = (1 + M)z in the two integrals. It follows from
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the lemma that

And similarly T, = (1 +X)2(n —2) (¢/2)T (ﬂg—l) /T (17'2"—1) Putting everything together yields

a = E[Y] = A\l —2,
n—1

The second moment of Y follows using similar computations: ms = E[Y?| = I, + I. The same change

of variables as previously yields

Also I, = (1 + \)3/(1 — A\)3I, and, therefore, after several simplifications we get that E[Y?] = 1 4 3)\%,
Since VY] = E[Y2] — (E[Y])?, we obtain that b2 = V[Y] = 1 + 3)\% — a2. Since conditional residuals are
assumed to have zero mean and unit variance, we introduce the random variable Z = (Y — a)/b which
will be centered, i.e., with mean 0, and reduced, i.e., with variance 1. The passage from Y to Z will not
change the constant ¢, it is only necessary to multiply the density by the Jacobian of the transformation
b=, Clearly, the random variable 7 = (Y — a)/b has zero mean and unit variance. The density of 7
follows from the change of variable Y = bZ + a and is displayed in formula (1) of the text.

Those computations verify Hansen’s. Our model involves, however, higher order moments that we
compute now. The third moment of Y is given by mg = E[Y3] = I, + I;. The same change of variables

as previously yields

(1= —2)
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where the first equality follows from a straightforward application of the lemma. The second equality

= —2c

follows from simple algebra. Also I, = (1 + \)*/(1 — A\)*I,. Eventually we obtain

(n—2)°

ms = 16cA(1 + A%m

21



defined if n > 3. The third moment of Z may be obtained as a function of the various moments of Y.
We obtain
B[78) = [E[Y3] — 34E[Y?] + 2a3} /6P,

We now turn to the computation of the last moment of interest for this paper. A generalization for
even higher moments can be easily obtained. The fourth moment may again be written as the sum of
integrals: my = I + I.

We have

=
~~
L
o~
~—

The various steps involved in the computation use the same techniques as previously. Also, it can be
shown that I, = (14 X)%/(1—\)°I,. The second equality follows from the lemma and the third one from

simple algebra. Regrouping terms we obtain
-2
g = 32 (1 4 1002 + 50%)
n—A4
defined if 7 > 4. We also obtain the associated moment of 7 as:
E[74] = [E[Yﬂ — 1aE[Y?] + 6a2E[Y?] — :aaﬂ i

We verified those formulas and their numerical implementation by computing the various moments via

numerical integration of a generalized-t.
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Appendix B

In the following appendix, we present the computations of the gradient of the log-likelihood. To
simplify notations, we focus on the gradient of a single observation. Summation of these gradients yields
the sample gradients. We define d = (br/o + a)/(1 — Xs) where s is a sign dummy taking the value of 1
if br /o +a < 0 and s = —1 otherwise. We also define v; = 1 + d?/(n — 2). We recall that the likelihood

of an observation is
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To obtain the gradients with respect to the various parameters (LO’Z)S—./ by , o, a1,bi1,b12, a1,ba1, bay we de-
compose the problem and make frequent use of the chain rule of differentiation. The necessary ingredients

to obtain the gradients are:
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To obtain 9l;/0n we proceed similarly. First, we notice that de/dn = c9ln(c)/0n and
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where W(-) is the derivative of the log of the gamma function. This derivative is known as the di-gamma
function, which may be implemented with desired accuracy. The Fortran library IMSL also implements
this function.

Now, we can compute the partials with respect to the actual parameters by using:
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For the problem with logistic transform, the gradients are obtained in a similar manner.
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