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Abstract: In order to measure the interdependence between di�erent mar-
kets, we investigate and compare di�erent measures of dependence includ-
ing cross-correlation, conditional correlation, concordance and correlation in
tails. In the latter case, we use the notion of copula and we de�ne two kinds
of diagnoses which enable us to adjust the joint empirical tail distribution in
the case of two or three markets for the best copulas. In particular, this ap-
proach makes it possible to understand the evolution of the interdependence
of more than two markets in the tails, in particular, when extremal values
(which correspond to a shock) induce some turmoil in the evolution of the
markets.

Keywords: interdependence, conditional correlation, concordance, func-
tions copulas.

Résumé : Quelle est la meilleure mesure du degré d'interdépendance en-
tre les marchés ? Dans cet article, nous analysons et comparons diverses
mesures de dépendance (corrélations croisées, corrélations conditionnelles,
indices de concordance et corrélations dans les queues de distribution) perme-
ttant d'évaluer l'intensité de l'interdépendance entre di�érents marchés. En
outre, à l'aide de la notion de copule, nous proposons deux types d'approche
permettant d'ajuster la queue de distribution empirique dans le cas de deux
ou trois marchés. On peut ainsi comprendre l'évolution de l'interdépendance
dans les queues de distribution de plus de deux marchés lorsque les valeurs
extrêmes (correspondant à des chocs) induisent des perturbations sur ces
marchés.

Mots-clés: interdependance, corrélation conditionnelle, concordance, fonc-
tions copules.

JEL Classi�cation: C14, C22, G15
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1 Introduction

Important issues debated in the literature include the existence of speci�c
patterns characterizing macroeconomic phenomena, in particular the exis-
tence of cycles, their interactions in activity as well as existence of phenom-
ena of co-movement in detrended series.

In order to investigate the existence of cycles inside speci�c series it is
necessary to specify the notion of cycles. In two recent papers, Harding and
Pagan (1999, 2002) present a methodological investigation into the notion
of cycles. They give preference to business cycles, de�ned in terms of the
turning points in the level of economic activity. They debate whether non-
linear models are required to make business cycles. To answer their question
it is necessary to examine certain factors such as the duration of cycles and
their phases, the amplitude of the cycles and their phases, the asymmetric
behaviour of the phases and the cumulative movements within phases. The
problem of the stationarity of series is also examined.

Here, rather than investigating the existence of cycles, we shall focus on
the existence of the interaction between di�erent markets. Then, we will
use our results to analyze the co-movements of cycles between di�erent mar-
kets. In order to determine interaction between markets it is necessary to
�rst assess their correlation. But, in the literature, it has often been said
that the correlation between national markets changes because the volatility
of national markets evolves overtime and also because the interdependence
across markets changes. In order to explain these phenomena, we consider
di�erent approaches based on the notion of correlation, conditional correla-
tion, concordance and, �nally, copula. Using these di�erent measures, it is
possible to assess whether or not contagion exists between markets. In all
these cases we examine stock market co-movements.

Economists have developed a straightforward approach for measuring con-
tagion across stock markets by comparing the correlation between the stock
markets during stable periods to that during a period of turmoil. Then, con-
tagion can be de�ned as a signi�cant increase in the cross-market correlation
during the period of turmoil. This means that if a shock a�ects one mar-
ket (causing it to rise for example), it will have ripple e�ects on the other
one (causing it to rise as well). This rise constitutes contagion. Based on
this approach, contagion implies that cross-market linkages are fundamen-
tally di�erent after a shock to one market, while interdependence implies
no signi�cant change in the cross-market relationship. To examine this phe-
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nomenon of contagion between two or more markets we will consider di�erent
measures and their accuracy.

The �rst natural measure of dependence is linear correlation (or the Pear-
son correlation), but it is a measure of linear dependence. Linear correlation
is widely used but is also an often misunderstood measure of dependence.
Its popularity stems from the ease with which it can be calculated and it is
a natural scalar measure of dependence in elliptical distributions. However,
most �nancial instruments are not jointly elliptically distributed and using
linear correlation as a measure of dependence in many situations might give
misleading conclusions. On the one hand, if we use scenario using heavy-
tailed distributions such as t2- distributions in our modelisation, then the
linear correlation coe�cient is not even de�ned because of in�nite second
order moments. Finally, this linear measure cannot capture the nonlinear
dependence relationships that exist between real data sets. On the other
hand, this measure is static and does not take into account the time evo-
lution of the series studied. For more details on the problems relating to
the use of the linear correlation, please refer to the paper by Embrechts et
al. (1999). For these reasons, we will not use the static measure in this paper.

The di�erent measures that we can use to characterize the existence of
co-movements between stock markets include:

� cross-correlation;

� conditional correlation;

� concordance;

� correlation in tails.

Since it is now well known that stock returns are serially correlated, see for
instance Fama and French (1986) and Poterba and Summers (1987), we will
investigate some links between several �nancial instruments over time. We
will particularly focus on contagion from the American market to the French
and Japanese markets by considering the returns on their MSCI indices in
di�erent periods of time including particular crises that we can interpret as
speci�c shocks (the description of the common stock returns used in this pa-
per can be found in Longin and Solnik (1995)).

First, in Section 3, we use the cross-correlation (time-varying) between
two asset prices, assumed to be a stochastic process, to estimate the delay
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of this contagion and the coe�cients that characterize it. We build accurate
models of the returns on the MSCI indices of American, French and Japanese
markets. These are called transfer function models. In particular, we will
focus on periods with a high volatility and we will try to detect the in�uence
of this behaviour using the cross-correlation coe�cient. Here, we will discuss
some ideas developed by King and Wadhwani (1990) even though we do not
use the same approach as them. The details of the computations of the
various models are given in the appendix in Section 8. In Section 4, we apply
the approach of Boyer et al. (1999) on the use of the conditional correlation to
detect the existence of switching behaviour inside data sets (and consequently
of volatility in the sense that jumps imply volatility): we consider here mixing
processes like autoregressive processes and non-mixing processes like long
memory processes. Other measures like concordance and correlation in tails
will be examined in other sections. This approach will enable us to give
some insight into the concordance measure and the copula. In Section 5, we
compute the degree of concordance and Kendall's tau, which are concordance
measures, between the di�erent markets. These two measures are very useful
as they give general information and take into account the existence of non-
linear features inside data sets. We specify the links between Kendall's tau
and the notion of copula and we recall some important properties of this
coe�cient. In Section 6, we develop the notion of correlation in the tails.
First of all, we show how to compare the empirical tail distribution with
di�erent copulas. We specify our diagnosis and illustrate our results using
the classical QQ-plot method. Then, on the one hand, we compare the joint
empirical tail distribution of the three markets with di�erent copulas, using
the notion of dependent copulas in the tails; on the other hand, we explain
how we can obtain information on more than two markets, which is very
important because the other measures of dependence do not enable us to
obtain a similar result.

2 Data sets

The data sets used in this paper consist of the Morgan Stanley Capital Inter-
national indices (MSCI), daily closing prices for the American market (MSCI-
US), the French market (MSCI-FR) and the Japanese market (MSCI-JP),
from January 1985 to 31 December 2001 (4435 observations). The data sets
were collected from DataStream. The stock market crash of October 1987
generated a large number of reports and commentaries, as did the Asian
crisis of 1997 and the Russian crisis of 1998. Since we want to take into
account these di�erent crises in our scenario, we investigate the di�erent cri-
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teria introduced previously for these di�erent sub-periods. In particular, for
the crash of 1987, we consider the periods from the 22 July 1987 to the 13
October 1987 and from the 23 October 1987 to 14 January 1988. Finally,
we include the crash by considering the period from the 22 July 1987 to the
14 January 1988. We also determine di�erent sub-periods surrounding the
Asian crisis in 1997. We consider the three periods from 25 July 1997 to 16
October 1997 (period before the crisis), from 28 October 1997 to 19 January
1998 (period after the crisis), and then we include the crisis and analyse the
period from 25 July 1997 to January 1998. We also study the Russian crisis
in 1998 and we consider the following three sub-periods: from 4 June 1998 to
26 August 1998 (period before the crisis), from 8 September to 30 November
1998 (period after the crisis), and from 4 June 1998 to 30 November 1998
(period including the crisis). Changes in logarithms of the MSCI indices i.e.
the stocks' returns are used in order to achieve stationarity. More precisely,
we assume that these indices follow stochastic processes and we consider the
series of their log-returns that we denote (Xt)t for the American index, (Yt)t
for the French index and (Zt)t for the Japanese index.

In Figure 1, we represent the curve and the empirical distribution of the
log returns of the three indices over the full sample period from 1985 to 2001
with a total of 4434 points.

We give the �rst four empirical moments of these three indices over the
full period in Table 1. We note that the empirical skewness is di�erent from
zero for each index. So, the data exhibit excess kurtosis compared with the
normal distribution.

Series mean standard de-
viation

skewness kurtosis

Xt 4.34 10�4 1.04 10�2 -2.67 59.93
Yt 5.27 10�4 1.23 10�2 -0.37 7.03
Zt 1.94 10�4 1.47 10�2 -0.10 12.69

Table 1: Statistics for the series Xt, Yt and Zt (full period
01/01/1985�31/12/2001).

The processes (Xt)t, (Yt)t and (Zt)t are non Gaussian and follow a Log
Laplace distribution, with parameters a = 1:0005 and b = 7:062 10�3 for
(Xt)t, a = 1:0006 and b = 9:455 10�3 for (Yt)t, and a = 1:0003 and
b = 1:048 10�2 for (Zt)t. Note that these distributions were adjusted us-
ing the Kolmogorov-Smirnov test with a 95% level.
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Figure 1: Trajectory and histogram for the log returns of the indices MSCI-
US, MSCI-FR and MSCI-JAP during the full period 01/01/1985-31/12/2001

We also compute the empirical linear correlation coe�cient � (see Table
2) between the three indices: overall, for the di�erent periods considered,
we obtain a positive value which con�rms the dependence between the three
markets.
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�(Xt; Yt) �(Xt; Zt) �(Yt; Zt)

Full period 0.29 0.08 0.26

Oct. 87 Be-
fore Af-
ter In-
cluding

-0.10
0.51
0.52

-0.05
0.18
0.08

0.34
0.30
0.30

Asian
Before
After
Including

0.26
0.47
0.32

-0.27
0.22
0.06

0.24
0.52
0.44

Russian
Before
After
Including

0.49
0.57
0.50

0.22
0.09
0.10

0.45
0.34
0.35

Table 2: Empirical correlation coe�cients between the series Xt, Yt and Zt.

The values that we obtain are consistent with the idea that a form of
contagion exists between these three processes. Analyzing in detail these
correlations, we observe that in most cases, after each shock (crisis in 1987
or the two crises in 1997 and 1998), the values of the coe�cient of correlation
are higher than before the shock. We also observe a particular relationship
between the American and the Asian markets: the correlation being very
weak over the full period, then we can say that the two markets are un-
correlated; during the period of crash, in October 1987, this relationship is
unchanged, both markets continue to behave in the same way.

To consider in greater depth the behaviour which governs these three
markets, we will study the existence of an recursive cross-correlation over
the full period and the sub-periods corresponding to the three crises.

3 The transfer function between the three mar-

kets: American, French and Japanese

First of all, we shall de�ne the notion of cross-correlation used in this section.
Then we will apply it to the three relevant data sets of interest over the full
period and over di�erent sub-periods. We analyse our results in terms of
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whether volatility is �nite or not.

We will begin by speci�ng the general framework. Given two processes
(Xt)t and (Yt)t, we can consider the bivariate process (Zt)t de�ned for each
t by Zt = (Xt; Yt)

T whose components are respectively Xt and Yt and com-
pute the covariance matrix of this process de�ned by �(h) = E[Zt+hZt] =
[ij(h)]i;j=1;2, where the 12(h)'s and 21(h)'s represent the cross-covariance
coe�cients between the processes (Xt)t and (Yt)t. A

T denotes the transposi-
tion of the matrix A. When i = j = 1, we obtain the correlation function of
the process (Xt)t and when i = j = 2, the correlation function of the process
(Yt)t. We assume here that the two processes are centered. In fact, we will
use the correlation matrix de�ned by R(h) = [�ij(h)]i;j=1;2 , with

�ij(h) =
ij(h)

[ii(0)jj(0)]1=2
:

>From a sample data set Z1; � � � ; Zn of length n, a natural estimator of the
covariance matrix �(h) is given by:

�̂(h) = n�1
n�hX
t=1

(Zt+h � Zn)(Zt � Zn)
T = [̂ij(h)]i;j=1;2; 0 � h � n� 1:

The statistic Zn = n�1
Pn

t=1 Zt denotes the vector of sample means. Then,
we can estimate the coe�cients of the correlation matrix by

�̂ij(h) =
̂ij(h)

[̂ii(0)̂jj(0)]1=2
:

In general, deriving the large sample properties of ̂ij(h) and of �̂ij(h) is quite
complicated. Here, we are interested in testing the independence of the two
component series. We will use the following result, see for instance Brockwell
and Davis (1996).

Theorem 3.1 Let (Zt)t be the bivariate time series whose components are
de�ned by:

Xt =
1X

k=�1

�k"t�k;

where ("t)t is a white noise process (0; �2"), and

Yt =
1X

k=�1

�k�t�k;
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where (�t)t is a white noise process (0; �2�). The two sequences ("t)t and (�t)t
are independent,

P1
k=�1 j�kj <1 and

P1
k=�1 j�kj <1.

Then if h � 0, �̂12(h) is asymptotically normal with mean 0 and variance
n�1

P1
j=�1 �11(j)�22(j).

This theorem is useful in testing for correlation between two time series.
If one of the two processes in Theorem 3.1 is a white noise, then it follows
at once from the theorem that �̂12(h) is asymptotically normally distributed
with mean zero and variance n�1, in which case it is straightforward to test
the hypothesis that �12(h) = 0. However, if neither process is white noise,
then a value of j�̂12(h)j which is large relative to n�1=2 does not necessarily
indicate that �12(h) is di�erent from zero.

Since by Theorem 3.1 the large sample distribution of �̂12(h) depends on
both �̂11(:) and �̂22(:), any test for independence of the two components (Xt

and Yt) cannot be based solely on �̂12(h); h 2 Z, without taking into account
the nature of the two components. This di�culty can be circumvented by
"prewhitening" the two series before computing the cross correlations �̂12(h),
i.e. by transforming the two series to white noise by application of suitable
�lters. In the following, we will follow this procedure.

To make the interpretation as clear as possible, we will not provide all
the models that we successively adjusted for the di�erent processes: those
are available from the authors on request. We will now describe the di�erent
steps we carry out for the two processes (Xt)t and (Yt)t.

� First step: we adjust (when it is possible) an AR(p) process for the two
processes (Xt)t and (Yt)t. We denote respectively "t and �t the noises
which appear in the AR(p) representations.

� Second step: assuming that "t and �t are white noises, we compute the
cross-correlation between these two processes and we derive a model
which makes possible to explain "t with respect to �t. We call e1t the
noise which appears in this linear representation.

� Third step: If the noise e1t appears to be non-white, we adjust an AR(p)
for it and then we obtain a new noise called e2t . If e

2
t is white, then the

procedure stops, otherwise, return to the beginning of the third step.

� Fourth step: using all the previous models, we derive a model which
explains the behaviour of process (Yt)t with respect to process (Xt)t
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and noise (e2t )t (the last noise we use in our procedure). This allows
us to build the transfer function between the two processes (Yt)t and
(Xt)t.

We will now provide the results of this exercice.

3.1 The Full period: transfer function model between
the three markets

� The transfer function model between (Xt)t and (Yt)t is:

Yt = 0:34Xt + 0:26Xt�1 + 0:03Xt�2 + 0:02Xt�3 + 0:01Xt�4 + e2t :

� The transfer function model between (Xt)t and (Zt)t is:

Zt = 0:36Xt�1 + 0:02Xt�3 + 0:01Xt�4 � 0:02Xt�7 + e1t � 0:05e1t�6:

� The transfer function model between (Yt)t and (Zt)t is:

Zt = 0:30Yt + 0:16Yt�1 � 0:01Yt�2 � 0:02Yt�6 � 0:01Yt�7 + e1t � 0:05e1t�6:

All the coe�cients that appear are signi�cant. The French index seems
more strongly dependent vis-à-vis the American index than the Japanese
one. Nevertheless, the �rst coe�cient explaining the contagion during the
current day is slightly identical in all models.

3.2 The period surrounding the October 1987 crisis

3.2.1 transfer function model between (Xt)t and (Yt)t

� Before the crash (22/07/1987 - 13/10/1987 (60 points)):

Yt = 0:28Xt�2 + 0:12Xt�3 � 0:05Xt�4 + 0:03Xt�5 + 0:01Xt�6

+0:08Xt�7 + 0:04Xt�8 � 0:11Xt�9 � 0:04Xt�10 + 0:02Xt�11

+e1t + 0:44e1t�1 � 0:19e1t�2 + 0:09e1t�3 + 0:04e1t�4 + 0:01e1t�5:

� After the crash (23/10/1987 - 14/01/1988 (60 points)):

Yt = 0:55Xt + e1t : (1)

� Including the crash (22/07/1987 - 14/01/1988 (127 points)):

Yt = 0:37Xt + e1t : (2)
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We obtain a very simple model on the two last periods (including the
crash or after it). In these two cases, the impact of the American market
on the French one depends only on the same-day transactions. The French
returns do not depend on the lagged values of (Xt)t. The contagion is almost
instantaneous and quite strong (after the crash, a0 = 0:55).

3.2.2 transfer function model between (Xt)t and (Zt)t

� Before the crash (22/07/1987 - 13/10/1987 (60 points)): the two data sets
seem to have an independent evolution since it is not possible to adjust a
regression model between them.
� After the crash (23/10/1987 - 14/01/1988 (60 points)):

Zt = 0:20Xt�1 � 0:06Xt�3 + 0:02Xt�5 (3)

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

� Including the crash (22/07/1987 - 14/01/1988 (127 points)):

Zt = 0:58Xt�1 + e2t � 0:21e2t�1 + 0:04e2t�2 � 0:01e2t�3:

The crash has created a new interaction between these two markets: this
can be seen when we compare their behaviour before the crash and after it.

3.2.3 transfer function model between (Yt)t and (Zt)t

� Before the crash (22/07/1987 - 13/10/1987 (60 points)):

Zt = 0:46Yt � 0:20Yt�1 + e1t :

� After the crash (23/10/1987 - 14/01/1988 (60 points)):

Zt = 0:20Yt + 0:29Yt�1 � 0:06Yt�2 � 0:09Yt�3 + 0:02Yt�4 + 0:03Yt�5

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

� Including the crash (22/07/1987 - 14/01/1988 (127 points)):

Zt = 0:38Yt + 0:50Yt�1 + e1t : (4)

The relationship between the Asian market and the French market is quite
di�erent from that observed between the French and the American markets.
Indeed, before the crash, the two markets (Japanese and French) displayed
the same pattern. Now, comparing (2) and (4) we note that after the crash
the evolution between the three markets is slightly similar: the impact of the
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shock seems non-negligible.

It seems that the variation generated by this crisis resulted in greater
disruption between the Asian and the American markets than between the
others. Indeed, the Asian and the American markets appeared independent
before the crash, and they appeared to be correlated after the crash.

3.3 The period surrounding the Asian crisis of 1997

3.3.1 transfer function model between (Xt)t and (Yt)t

� Before the crisis (25/07/1997 - 16/10/1997 (60 points)):

Yt = 0:36Xt�1 + e1t :

� After the crisis (28/10/1997 - 19/01/1998 (60 points)):

Yt = 0:52Xt + 0:33Xt�1 + e1t : (5)

� Including the crisis (25/07/1997 - 19/01/1998 (127 points)):

Yt = 0:35Xt + 0:50Xt�1 � 0:10Xt�10 � 0:14Xt�11 + e1t :

After the crisis the French market and the American markets were corre-
lated but this phenomenon disappears when we take into account the period
including the crisis.

3.3.2 transfer function model between (Xt)t and (Zt)t

� Before the crisis (25/07/1997 - 16/10/1997 (60 points)):

Zt = 0:58Xt�1 + e1t :

� After the crisis (28/10/1997 - 19/01/1998 (60 points)):

Zt = 0:78Xt�1 � 0:24Xt�3 + 0:08Xt�5 � 0:02Xt�7 (6)

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

� Including the crisis (25/07/1997 - 19/01/1998 (127 points)):

Zt = 0:56Xt�1 � 0:15Xt�3 + 0:04Xt�5 � 0:01Xt�7 + 0:16Xt�11 � 0:04Xt�13

+e1t � 0:26e1t�2 + 0:07e1t�4 � 0:02e1t�6:

The two markets appear quite stable during this crisis. Here, there is
some evidence of correlation between the two markets for the di�erent periods
under consideration.
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3.3.3 transfer function model between (Yt)t and (Zt)t

� Before the crisis (25/07/1997 - 16/10/1997 (60 points)):

Zt = 0:35Yt�1 + e1t :

� After the crisis (28/10/1997 - 19/01/1998 (60 points)):

Zt = 1:01Yt � 0:31Yt�2 + 0:10Yt�4 � 0:03Yt�6 + 0:01Yt�8

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6 + 0:01e1t�8:

� Including the crisis (25/07/1997 - 19/01/1998 (127 points)):

Zt = 0:70Yt � 0:18Yt�2 + 0:05Yt�4 � 0:01Yt�6 +

+e1t � 0:26e1t�2 + 0:07e1t�4 � 0:02e1t�6:

After the crisis, the Asian market is strongly in�uenced by the French
one. We note this stronger in�uence for all the periods we examined for
these three data sets. When we introduce the crisis, the in�uence of the
French market persists.

3.4 The period surrounding the Russian crisis of 1998

3.4.1 transfer function model between (Xt)t and (Yt)t

� Before the crisis (04/06/1998 - 26/08/1998 (60 points)):

Yt = 0:67Xt � 0:21Xt�8 + e1t :

� After the crisis (08/09/1998 - 30/11/1998 (60 points)):

Yt = 0:74Xt + e1t :

� Including the crisis (04/06/1998 - 30/11/1998 (127 points)):

Yt = 0:55Xt + e1t :

It seems that this crisis did not change the link between the two markets.

3.4.2 transfer function model between (Xt)t and (Zt)t

For the three sub-periods: before the crisis (04/06/1998 - 26/08/1998 (60
points)), after the crisis (08/09/1998 - 30/11/1998 (60 points)) and with the
sub-period including the crisis (04/06/1998 - 30/11/1998 (127 points)), it is
not possible to adjust a regression model: the coe�cients are not signi�cantly
di�erent from zero. The two markets seem "independent". We do not observe
a contagion phenomenon.
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3.4.3 transfer function model between (Yt)t and (Zt)t

� Before the crisis (04/06/1998 - 26/08/1998 (60 points)):

Zt = 0:61Yt + 0:19Yt�1 � 0:06Yt�2 + 0:02Yt�3

+e1t + 0:31e1t�1 � 0:10e1t�2 + 0:03e1t�3:

� After the crisis (08/09/1998 - 30/11/1998 (60 points)):

Zt = 0:38Yt + 0:40Yt�1 � 0:11Yt�5 � 0:12Yt�6 + 0:03Yt�10 + 0:03Yt�11

+e2t � 0:31e2t�4 � 0:29e2t�5 + 0:10e2t�8 + 0:09e2t�9:

� Including the crisis (04/06/1998 - 30/11/1998 (127 points)):

Zt = 0:44Yt + 0:38Yt�1 + e1t :

The crisis did not amplify the phenomenon of contagion between the
French and the Asian markets. The relationship between the two markets
remains similar (same models) during the three periods.

3.5 Some additional remarks

In order to try to explain why markets around the world fall simultaneously,
we can consider for instance the di�erent models given in (1), (3), (5) and (6).
In all cases, there is an ampli�cation of the relationship between the markets
which are in competition. We observe that the cross-correlation structures
between these returns change before and after the crises, and they also vary
when we compare them over the long period. There is also some evidence of
an increase in the correlation between the three markets after the di�erent
crises (see Table 2). Moreover, we note a signi�cant change in the volatil-
ity for the French index after the crisis and during the crisis, but this kind
of jump is not so signi�cant when we use cross-correlations. In this case,
the volatility seems self-sustained. The positive coe�cients of these transfer
function models explain the strong cross-correlations between the markets
and demonstrate that the contagion is strong the same day and with a lag of
one day. Besides, we also observe some asymmetry in the information process
with the model that we adjust. The question to be considered is whether
false information is produced as we know that this situation produces some
volatility.
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Series full period Before Oct.
87,

After Oct.
87

Xt 1.04 10�2 1.03 10�2 2.29 10�2

Yt 1.23 10�2 9.78 10�3 2.50 10�2

Zt 1.47 10�2 1.35 10�2 1.74 10�2

Table 3: Standard deviation for the series Xt, Yt, Zt, over the full period
and surrounding the crisis of 1987.

Table 3 shows that index volatility exists for each and increases under the
impact of the crash, compared with its level for the full period. The following
question now arises: does the existence of contagion between two markets
increase the volatility or vice versa, i.e. does the change in the volatility of
two markets imply a contagion phenomenon between them, inducing high
positive coe�cients in their transfer function? If we decide to measure the
contagion by means of cross-correlations assessed between the di�erent data
sets for di�erent periods, it then seems that when the contagion appears
stronger, the volatility that characterizes the data sets increases also. How-
ever, it is important to recall that the empirical variance one of the measure
of the volatility, appears in the computation of both the correlation and
cross-correlation coe�cients: thus it is very di�cult to establish which factor
in�uences the other. We can only observe that the correlation coe�cient is
positive and is consistent with the framework of contagion model.

The empirical cross-correlation between two markets can di�er relative to
the sub-periods considered (for instance, a smooth period or a period of tur-
moil): when this di�erence is detected it is called "correlation breakdown" in
the literature. However, this is not the characteristic of switching in a model.
Indeed, it is possible to show that the data drawn from a stationary process
(which implies that the correlation coe�cients are constant) can show the
same relationship.

In order to illustrate this phenomenon, we now use another approach
to try to measure the contagion between the markets when there is some
volatility and if there is some evidence that price jumps have occurred during
the periods. This approach focuses on the concept of conditional correlation
which allows us to identify the presence of volatility.
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4 Conditional correlation relative to the deciles

of the distribution of returns

We have observed previously that during periods of high market volatility,
correlations between asset prices can di�er substantially from those seen in
smoother markets. Such di�erences in correlations have been attributed ei-
ther to structural breaks in the underlying distribution of returns or to "con-
tagion" across markets that occurs only during periods of market turbulence
(here we will try to ascertain whether these di�erences only re�ect time-
varying sampling volatility). We will now analyse the distribution of returns
and compare them with a stationary distribution. Indeed, it is possible to
observe changes in the correlations even when the distribution is stationary:
thus, those changes cannot be attributed to the presence of high volatility!
This means that if we observe an increase in the sampling correlations (like in
the previous section), this does not necessarily mean that there is contagion
between the two markets. This behaviour may be the result of high volatility
within the data set. This also means that the change in the correlations does
not imply the presence of a structural break in the data. The important
question is to determine whether a change in the correlations provides any
information or not. In this section we use the conditional correlation to try
to understand this problem.

4.1 Presentation of the method

To better understand whether the increase in the volatility of returns varies
together with an increase in sampling correlations even when the true correla-
tions are constant, we will consider some data sets obtained from a stationary
process (thus their correlation is constant over the period under considera-
tion), and we will compute the conditional correlation relative to a speci�c
information set. The choice of this information set can be used to character-
ize, on a market, the periods of calm and of turmoil. First, we explain the
method theoretically, then we show how we can use it empirically.

Given two correlated Gaussian random variables X and Y , we denote �
the non-null correlation between these two random variables. We assume
that (X; Y ) follows a bivariate Gaussian distribution with Gaussian margins.
For a set A, we can compute the conditional correlation �A between X and
Y conditionally to an event X 2 A relative to � and we obtain:

corr(X; Y jX 2 A) = �A = �

�
�2 + (1� �2)

var(X)

var(XjX 2 A)

��1=2
: (7)
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For di�erent values of �, we can compute analytically this conditional
correlation as soon as we specify the sets A. In the following, we will use
the sets de�ned by the deciles of the Gaussian distribution of X. It is quite
natural that the variances of the points which belong to the �rst decile set
(var(XjX 2 D1)) and to the last decile set (var(XjX 2 D10)) are higher than
the others, because we are considering the tails of the distributions. The
variances in the central decile sets (var(XjX 2 D5) and var(XjX 2 D6)) are
smaller. For �xed values of �, the relationship between the deciles and the
conditional correlations corr(X; Y jX 2 Di) are "U-shaped", which means
that the higher the variance, the higher the conditional correlation and vice
versa. Note that the relationship (7) is accurate if the random variables X
and Y are Gaussian.

This approach can be generalized for a couple of random vectors X 2 R
n

and Y 2 R
n . If we denote �XY = cov(X;Y) the unconditional covariance

and �XYjA the conditional covariance relative to an event A, then the average
correlation between X and Y may be de�ned by:

� =
tr(
P
XY

)p
tr(
P
XX

)tr(
P
YY

)

where tr(.) is the trace operator and the corresponding conditional correla-
tion relative to an event A is given by:

�A =
tr(
P
XYjA)q

tr(
P
XXjA)tr(

P
YYjA)

:

Then it is possible, in the vectorial setting up, to derive a similar formula
between � and �A, as in (7), using the following relationship:

P
XYjA =P

XY

P�1
XX

P
XXjA.

Now, to apply these results to di�erent data sets X1; X2; � � �Xn and
Y1; Y2; � � �Yn, we estimate the coe�cients � and �A by their empirical ex-
pression. For instance, for �A, we use:

�̂A =

P
i2A(Xi �X

A

n )(Yi � Y
A

n )qP
i2A(Xi �X

A

n )
2
P

i2A(Yi � Y
A

n )
2

(8)

where X
A

n represents the empirical mean in the set A. note that a similar
expression is used in order to evaluate �.
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4.2 Conditional correlation between (Xt)t and (Yt)t over
the full period 01/01/1985-31/12/2001

In this section we set out to compute (8) for our data sets, with a view to
understanding the behaviour of their conditional correlation relative to dif-
ferent data sets representing the �uctuation in volatility. These results will
be compared with the accurate computation (7) obtained from a bivariate
Gaussian framework.

We use two of the three data sets previously investigated, i.e. the log
returns of the MSCI-US index, denoted (Xt)t, and of the MSCI-FR index,
denoted (Yt)t. In Section 3, we showed that these two processes are depen-
dent and in Section 2 we noted that they follow logLaplace distributions. In
order to see if the independence between two series plays a fundamental role
in the computation of the coe�cient of the conditional correlation (the em-
pirical formula (8) does not take account of the series' model), we compute
this coe�cient for the whitened series of our data sets initially, and subse-
quently, for the original series.

First as regards, the residuals, we use the following notation in this para-
graph: ("t)t and (�t)t denote the whitened series relative to (Xt)t and (Yt)t
de�ned in Section 3. In Table 4, we give the empirical values for the condi-
tional correlations between ("t)t and (�t)t relative to the deciles of the em-
pirical law of ("t)t. The correlation coe�cient between these two processes
is equal to �̂ = 0:294.

Decile Interval Corr(X; Y jX 2 Di) 90% Con�dence
Interval

1 �22:187 < x � �1:017 0.303 (0.056, 0.267)
2 �1:017 < x � �0:567 0.074 (-0.058, 0.135)
3 �0:567 < x � �0:314 0.097 (-0.070, 0.118)
4 �0:314 < x � �0:127 0.029 (-0.078, 0.104)
5 �0:127 < x � 0:005 -0.033 (-0.080, 0.098)
6 0:005 < x � 0:164 0.005 (-0.080, 0.098)
7 0:164 < x � 0:363 0.041 (-0.078, 0.104)
8 0:363 < x � 0:617 0.034 (-0.070, 0.118)
9 0:617 < x � 1:047 0.037 (-0.058, 0.135)
10 1:047 < x � 6:920 0.196 (0.056, 0.267)
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Table 4: Conditional correlations between X = ("t)t and Y = (�t)t
(�̂ = 0:294).

In order to compare the results obtained here with the theory, we give, in
Table 5, the theoretical conditional correlations computed from a stationary
i.i.d. bivariate Gaussian distribution with the same correlation coe�cient
� = 0:294, using (7). In Figure 2, we give the representation of the condi-
tional correlation calculated in Table 5. We obtain a U-curve form which
shows that the higher the variance, the higher the conditional correlation.
Although the correlation is constant because of the stationarity, we show that
the conditional correlation is not constant. We recall that this conditioning
is linked to the volatility of the process.

Decile Interval Var(XjX 2 Di) Corr(X; Y jX 2 Di)
1 �1 < x � �1:282 0.169 0.126
2 �1:282 < x � �0:842 0.016 0.039
3 �0:842 < x � �0:524 0.008 0.028
4 �0:524 < x � �0:253 0.006 0.024
5 �0:253 < x � 0 0.005 0.022
6 0 < x � 0:253 0.005 0.022
7 0:253 < x � 0:524 0.006 0.024
8 0:524 < x � 0:842 0.008 0.028
9 0:842 < x � 1:282 0.016 0.039
10 1:282 < x � +1 0.169 0.126

Table 5: Variances and conditional correlations for a bivariate Gaussian
vector with � = 0:294.

Thus, a U-shaped pattern need not indicate a correlation breakdown, but
may instead merely be a consequence of the "ex post" partitioning of the
data, here, into deciles. The di�erences between the conditional correlations
are caused by the choice of the sub-samples alone and not by any change in
the parameters of the data generating process.

In order to compare the theoretical results (Table 5) with the empirical
results (Table 4), we provide a 90% con�dence interval for the theoretical
conditional correlation, in Table 4. All these con�dence intervals have been
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Figure 2: U-curve of the conditional correlation relative to the decile sets
obtained from the bivariate Gaussian distribution with � = 0:294

obtained by means of Monte Carlo methods by simulating s = 100 real-
izations of length n = 4434 of a bivariate Gaussian process with theoretical
correlation coe�cient � = 0:294. From the results, we note that the empirical
and theoretical conditional correlations follow virtually the same U-shaped
pattern. The empirical conditional correlation is outside the 90% con�dence
interval for normally distributed data only once in decile 1. Thus, the previ-
ous remarks concerning the behaviour of the conditional correlations can be
applied to these residual data sets ("t)t and (�t)t.

Now, we are interested in investigating this approach for the observed log
returns of the MSCI-US index denoted (Xt)t and the observed log returns
of the MSCI-FR index denoted (Yt)t. These two data sets are not i.i.d.
and their empirical correlation coe�cient is �̂ = 0:295. We give, in Table
6, the theoretical conditional correlations obtained using an i.i.d. bivariate
Gaussian distribution with correlation coe�cient � = 0:295. In Table 7, we
present the empirical conditional correlations by empirical deciles between
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the two series

Decile Interval Var(XjX 2 Di) Corr(X; Y jX 2 Di)
1 �1 < x � �1:282 0.169 0.126
2 �1:282 < x � �0:842 0.016 0.039
3 �0:842 < x � �0:524 0.008 0.028
4 �0:524 < x � �0:253 0.006 0.024
5 �0:253 < x � 0 0.005 0.023
6 0 < x � 0:253 0.005 0.023
7 0:253 < x � 0:524 0.006 0.024
8 0:524 < x � 0:842 0.008 0.028
9 0:842 < x � 1:282 0.016 0.039
10 1:282 < x � +1 0.169 0.126

Table 6: Variances and conditional correlations for a bivariate Gaussian
process (� = 0:295).

(Xt)t and (Yt)t, and we also provide 90% con�dence intervals for the theo-
retical conditional correlations under the assumption of bivariate normality.
Again, the results suggest that the empirical and theoretical conditional cor-
relations are quite similar. The empirical conditional correlations are outside
the 90% con�dence interval only for the �rst decile as in the previous case.

Correlation breakdowns are still observed when taking into account the
deciles even when the true data generating process has a constant correlation
coe�cient. Then, these features are not only true in the i.i.d. case but also
for non-i.i.d. mixing processes as in the case of our series. This justi�es our
dealing with the returns and not the whitened series.
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Decile Interval Corr(X; Y jX 2 Di) 90% Con�dence
Interval

1 �21:919 < x � �1:016 0.336 (0.060, 0.276)
2 �1:016 < x � �0:567 0.042 (-0.054, 0.138)
3 �0:567 < x � �0:319 0.052 (-0.065, 0.121)
4 �0:319 < x � �0:128 0.036 (-0.076, 0.105)
5 �0:128 < x � �0:014 -0.047 (-0.079, 0.098)
6 �0:014 < x � 0:165 0.036 (-0.079, 0.098)
7 0:165 < x � 0:361 0.005 (-0.076, 0.105)
8 0:361 < x � 0:618 0.006 (-0.065, 0.121)
9 0:618 < x � 1:038 0.049 (-0.054, 0.138)
10 1:038 < x � 8:213 0.202 (0.060, 0.276)

Table 7: Conditional correlations between X = (Xt)t and Y = (Yt)t
(�̂ = 0:295).

For both the series ("t=�t and Xt=Yt), the same pattern of correlations
would arise if they were generated under bivariate Gaussian distributions
with a constant correlation coe�cient. Hence, the question of correlation
breakdown cannot be decided on this basis, since the U-shaped pattern of
conditional correlations presented in the data set cannot be used by itself to
determine whether actual correlations di�er across turbulent and calm sub-
periods.

We have seen in the previous section that these data sets can be modelized
by autoregressive processes which are mixing processes. Thus, the correlation
breakdowns that we observed in Tables 4 and 7 are irrespective of the actual
stationarity properties of the data. In order to �nd a solution to the real
problem of �nding a good method, alternative investigations are required.
Before looking at other methods, we suggest seeing if the same behaviour
can be observed when the data sets follow long memory processes whose
non-mixing properties are known, see Guégan and Ladoucette (2001). The
importance of long memory behaviour is now well-known in a lot of �nancial
data sets, see for instance the recent work of Avouyi-Dovi et al. (2002) and
references therein, thus it is important to have some kind of information for
this class of processes.

We investigate the previous approach for two kinds of processes: the
FARIMA processes and the GARMA processes.
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First, we simulated a bivariate process whose margins correspond to non-
mixing Gaussian FARIMA processes. We use a theoretical value of the long
memory parameter d equals 0.4 for the both processes. Because of this value
of the parameter, the processes are stationary and highly persistent. We use
the same correlation coe�cient as we observed between (Xt)t and (Yt)t, i.e.
� = 0:295, and we make Monte Carlo simulations to obtain the con�dence
intervals. The results are given in Table 8. We observe that the values of
(8) are outside the con�dence intervals for deciles 1, 2, 4 and 7. Thus, these
results are quite di�erent from those presented in Table 6.

Decile Interval Corr(X; Y jX 2 Di) 90% Con�dence
Interval

1 �3:392 < x � �1:291 0.032 (0.060, 0.276)
2 �1:291 < x � �0:900 0.152 (-0.054, 0.138)
3 �0:900 < x � �0:566 0.081 (-0.065, 0.121)
4 �0:566 < x � �0:268 -0.160 (-0.076, 0.105)
5 �0:268 < x � �0:007 0.012 (-0.079, 0.098)
6 �0:007 < x � 0:245 0.025 (-0.079, 0.098)
7 0:245 < x � 0:526 -0.081 (-0.076, 0.105)
8 0:526 < x � 0:857 0.031 (-0.065, 0.121)
9 0:857 < x � 1:358 0.096 (-0.054, 0.138)
10 1:358 < x � 4:021 0.112 (0.060, 0.276)

Table 8: Conditional correlations between two Gaussian FARIMA processes
(with long memory parameter d = 0:4) with � = 0:295.

Now, we carry out the same procedure using a Gegenbauer process which
belongs to the class of GARMA processes and which is known to take into
account both long memory behaviour and some kind of seasonality, see Gray
et al. (1989). In Table 9, we report the results obtained from a bivariate
stationary Gaussian Gegenbauer process whose correlation coe�cient is also
� = 0:295. These two processes have been simulated with the theoretical
parameters d = 0:4 and � = cos(�=6).
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Decile Interval Corr(X; Y jX 2 Di) 90% Con�dence
Interval

1 �3:703 < x � �1:284 0.113 (0.060, 0.276)
2 �1:284 < x � �0:822 0.150 (-0.054, 0.138)
3 �0:822 < x � �0:536 0.211 (-0.065, 0.121)
4 �0:536 < x � �0:269 0.082 (-0.076, 0.105)
5 �0:269 < x � �0:019 -0.033 (-0.079, 0.098)
6 �0:019 < x � 0:242 -0.118 (-0.079, 0.098)
7 0:242 < x � 0:508 0.187 (-0.076, 0.105)
8 0:508 < x � 0:850 -0.030 (-0.065, 0.121)
9 0:850 < x � 1:268 0.073 (-0.054, 0.138)
10 1:268 < x � 3:696 0.020 (0.060, 0.276)

Table 9: Conditional correlations between two Gaussian Gegenbauer
processes (with parameters d = 0:4 and � = cos(�=6)) with � = 0:295.

We observe in that latter case that values are often outside the con�dence
intervals as with the FARIMA process (deciles 2,3,6 and 7). Thus, it seems
that there is a di�erence in behaviour between mixing and non-mixing pro-
cesses concerning the conditional correlations relative to the deciles of the
distribution. For long memory processes we do not obtain the classical U-
shaped pattern like in Figure 2.

Thus, working with non-mixing processes renders this approach irrele-
vant: taking into account the deciles of the distribution is not relevant be-
cause of the default of non-mixing, which does not make it possible to sepa-
rate correctly the data into the di�erent subsets under consideration.

To test whether the correlation between two series is constant or changing
over time, we compared sampling correlations between two series calculated
from sub-sets of the data. If these conditional correlations are found to be
statistically di�erent from each other, one might be tempted to conclude that
the population correlation is not constant. We have shown analytically (fol-
lowing here Boyer et al., 1999) and empirically (with a new approach) that
this intuitively attractive approach to testing correlation breakdowns can be
misleading unless the data are governed, possibly, by long memory processes.

Similar results have been obtained for the others couple of series (Amer-
ican/Japanese and French/Japanese) we therefore do not give them here for
simplicity's sake. They are available from the authors on request.
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5 Concordance measures

In the previous sections, we �rstly investigated the non- conditional cross-
correlations between three markets. This allowed us to de�ne a transfer
function between the markets as whole and to give an indication of the delay
of response to some speci�c shocks within the markets. This does not make
it possible to de�ne a link between the presence of volatility and the di�erent
movements within the markets. Next, we studied the conditional correlation
between two markets in order to understand the link between the change
in correlation and the volatility. We show that the changes in correlation
cannot be a good indicator of the variation of volatility within the markets
because the same behaviour can be observed for strong stationary processes.

In this section, we use overall measures between the markets to detect
their co-movements. These measures could be stronger than the previous
ones in the sense that they make it possible to take into account the presence
of non-linearity within the data sets.

One of the measures that have been developed in the literature is the
conformity measure introduced by King and Plosser (1994). In their paper,
they compare the evolution of di�erent macro-economic data sets relative to
a reference business cycle introduced by Burns and Mitchell (1943). Their
measure is de�ned in the following way: to compute the conformity of a
series during reference cycle expansions, a value of 1 is assigned to each ex-
pansion for which the average per month change in the cycle relative from
trough to peak is positive. For those expansions where the average per month
change is negative (that is the series falls during an expansion), a value of
-1 is assigned. The average of this series of ones and minus ones (multiplied
by 100) is the index of conformity. A conformity of +100 corresponds to a
series that, on average rises, during the each reference cycle expansion and a
conformity of �100 corresponds to a series, that on average, falls during the
each reference cycle expansion. We do not investigate this index here as it
requires a reference cycle to do so.

Thus, we will focus on the following concordance measures: the degree of
concordance and Kendall's tau. We begin by de�ning the degree of concor-
dance, then we study Kendall's tau and specify its properties.

Let (X 0; Y 0)T be an independent copy of the random vector (X; Y )T . We
say that (X; Y )T and (X 0; Y 0)T are concordant if (X �X 0)(Y �Y 0) > 0, and
discordant if (X �X 0)(Y � Y 0) < 0. In particular, this notion will enable us
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to determine whether two time series co-move.

To determine whether a pattern exists in the evolution of the data, we
use the degree of concordance introduced by Harding and Pagan (2002). SX
(respectively SY ) denotes the series which takes the value unity when the
series X (respectively Y ) is in expansion and zero when it is in contraction,
the degree of concordance is de�ned by:

C(X; Y ) = n�1(
nX
i=1

(Si;X :Si;Y ) + (1� Si;X):(1� Si;Y ));

where n represents the sample size that we observe for the random variables
X and Y . This degree summarizes the common phases of expansion and
recession in X and Y but not the amplitude of the swings. Thus it may ap-
pear complementary to the method developed in Section 3, which provides
the amplitude of the change with the transfer function. In this section, the
log returns of the three MSCI indices are respectively denoted X = (Xt)t for
the American market, Y = (Yt)t for the French market and Z = (Zt)t for the
Japanese market.

In Table 10, we present the empirical degrees of concordance for the three
indices X, Y and Z during the various sample periods we have already con-
sidered in Section 3.

C(X; Y ) C(X;Z) C(Y; Z)

Full period 0.54 0.48 0.57

Oct. 87
Before
After
Including

0.53
0.64
0.60

0.36
0.53
0.44

0.66
0.58
0.60

Asian
Before
After
Including

0.59
0.68
0.65

0.31
0.58
0.45

0.54
0.63
0.60

Russian
Before
After
Including

0.51
0.66
0.59

0.56
0.54
0.55

0.61
0.68
0.61

Table 10: Empirical degrees of concordance for the three markets.

27



We observe that the degrees appear higher after a strong shock. This
characterizes the existence of a co-movement within the three returns. Over
the full period, the degrees are close to 0.5, which means that these markets
seem to follow an independent evolution. After the di�erent crises, the degree
of concordance estimated for the American market and the French market
increases. This is not the case between the Asian market and the Ameri-
can market. Specially during the Russian crisis, the degree of concordance
is always close to 0.5. These results are close to those observed in Section
3. Thus, if we compare this measure with the transfer's method, it seems
complementary: it indicates how often changes coincide inside the series.

We can also consider two other concordance measures close to this de-
gree of concordance which are Kendall's tau and Spearman's rho. Like the
previous degree, they provide alternatives to the linear correlation coe�cient
as a measure of dependence for non-elliptical distributions. We give their
de�nitions and properties, using the same notations as before.

Kendall's tau for two random variables X and Y is de�ned as

�(X; Y ) = P[(X �X 0)(Y � Y 0) > 0]� P[(X �X 0)(Y � Y 0) < 0];

where (X 0; Y 0)T is an independent copy of the vector (X; Y )T . Hence, Kendall's
tau is simply the probability of concordance minus the probability of discor-
dance.

Spearman's rho for two random variables X and Y is de�ned as

�S(X; Y ) = 3(P[(X � ~X)(Y � Y 0) > 0]� P[(X � ~X)(Y � Y 0) < 0]);

where (X 0; Y 0)T and ( ~X; ~Y )T are also independent copies of the vector (X; Y )T .
For our purposes there is no di�erence between working with Kendall's tau
or Spearman's rho. Here, we are going to work with Kendall's tau.

Recall that �1 � �(X; Y ) � 1. Kendall's tau is invariant under strictly
increasing transformations: that is, if f and g are strictly increasing func-
tions then �(f(X); g(Y )) = �(X; Y ). This property does not hold for linear
correlation. Note that if f and g are marginal distribution functions ofX and
Y , respectively, then f(X) and g(Y ) are uniform. Now � = 1 (= �1) if and
only if Y = f(X) for any monotone increase (or decrease) in the function.
The coe�cient � is null if X and Y are independent.
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If H denotes the joint distribution of the random vector (X; Y )T , then:

� = �(X; Y ) = 4E[H(X; Y )]� 1: (9)

This relationship is derived from the following result: P[X > x; Y > y] =
H(x; y) � F (x) � G(y) + 1, where F and G are the marginal distribution
functions of X and Y . Thus, if the function H is known, � is known and
vice versa. Now, we obtain a way to understand the strong link which exists
between � andH, and how to construct the well-known functionH. For more
details, see, for instance Lehmann (1966) and Schweizer and Sklar (1983).

We consider the following class of functions:

�� =
n
�� : [0; 1]! [0;1]; ��(1) = 0; �

0

�(t) < 0; �
00

�(t) > 0; � 2 [�1; 1]
o
:

Classical functions �� 2 �� are: ��(t) = � log t, ��(t) = (1 � t)�, ��(t) =
t�� � 1 with � > 1. Then, it is easy to show that for all convex functions
�� 2 ��, there exists a function C� such that:

C�(u; v) =

8<
:

��1� (��(u) + ��(v)); if ��(u) + ��(v) � ��(0)

0; otherwise:
(10)

Thus, the function C�(u; v) is a symmetric 2-dimensional distribution
function whose margins are uniform on the interval [0; 1]. It is an Archimedean
copula generated by ��. The notion of Archimedean copulas was introduced
by Ling (1965). Amongst the Archimedean distributions, we have the Frank
law, see Frank (1979), the Cook and Johnson law (and the Oakes law),
see Cook and Johnson (1981) (and Oakes, 1982), the Gumbel law (and the
Hougaard law), see Gumbel (1958) (and Hougaard, 1986), the Ali-Mikhail-
Haq law, see Ali et al. (1978). Note that the Plackett, the Farlie and the
Marda laws are not Archimedean, see respectively Plackett (1965), Farlie
(1960) and Marda (1970): this derives from Abel's criteria (1826). The
Archimedean property is fundamental in applications: indeed, this means
that it is possible to construct this copula using a generator �� and that
there exists a formula which makes it possible to compute Kendall's tau
from this operator, i.e.:

�(C�) = 1 + 4

Z 1

0

��(t)

�0�(t)
dt: (11)

We will now provide for some of these laws, the relationship between the
parameter �, the coe�cient � and the generator ��. This will be very use-
ful to compute, in the next section, the copulas on the markets we investigate.
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� The Gumbel law G� is de�ned on the unit square by:

G�(u; v)
�+1 = exp

�
�
�
j loguj�+1 + j log vj�+1

�1=(�+1)
�
; � � 0:

Then G� is generated by ��(t) = j log tj�+1; 0 � t � 1 and Kendall's
tau is computed as follows:

�(G�) =
�

� + 1
: (12)

The same generator is used to obtain Hougaard's copulas .

� The Cook and Johnson, also called Clayton, law J� is de�ned on the
unit square by:

J�(u; v) =
h 1

u�
+

1

v�
� 1

i� 1

�

; � > 0:

We note that this class contains the following particular cases: the
logistic function, see Satterthwaite and Hutchinson (1978), the Pareto
function, see Marda (1962) and the Burr function, see Takahasi (1965).
Then J� is generated by ��(t) =

t���1
�

; 0 � t � 1 and Kendall's tau is
given by:

�(J�) =
�

� + 2
: (13)

The same generator is used to obtain Oakes's copulas.

� The Ali-Mikhail-Haq law A� is de�ned on the unit square by:

A�(u; v) =
uv

1� �(1� u)(1� v)
; �1 � � � 1:

Then, A� is generated by ��(t) = (1 � �)�1 log
h
1+�(t�1)

t

i
; 0 � t �

1. We note that when � = 1 we obtain the Cook and Johnson law
as a particular case of the Ali-Mikhail-Haq law. Also, we obtain the
following Kendall's tau:

�(A�) =
3�2 � 2�� 2(1� �)2 log(1� �)

3�2
: (14)

� The Frank law F� is de�ned on the unit square by:

F�(u; v) = log�

h
1 +

(�u � 1)(�v � 1)

�� 1

i
; � > 0:
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Then F� is generated by ��(t) = � log 1��t

1��
; 0 � t � 1. Also, we obtain

the following expression for Kendall's tau:

�(F�) = 1�
4
�
1�D1(� log�)

�
� log�

(15)

with D1(x) =
1
x

R x

0
t

et�1
dt.

� The Dependent law D� is de�ned on the unit square by:

D�(u; v) =
h
1 +

�
(u�1 � 1)� + (v�1 � 1)�

� 1

�

i�1
; � � 1:

Then D� is generated by ��(t) = (t�1 � 1)�; 0 � t � 1 and Kendall's
tau is given by:

�(D�) = 1�
2

3�
: (16)

We note that the Cook-Johnson/Oakes copulas family and the Gum-
bel/Hougaard copulas family allow for only non-negative correlations. How-
ever, Frank's family allows for negative as well as positive dependence.

In Table 11, we present the empirical Kendall's tau computed for the
indices X, Y and Z during the various sub-periods de�ned before.

�(X; Y ) �(X;Z) �(Y; Z)

Full period 0.09 -0.03 0.15

Oct. 87
Before
After
Including

0.07
0.28
0.20

-0.28
0.03
-0.12

0.31
0.14
0.20

Asian
Before
After
Including

0.17
0.38
0.30

-0.38
0.17
-0.09

0.10
0.24
0.20

Russian
Before
After
Including

0
0.31
0.17

0.14
0.07
0.11

0.24
0.34
0.24

Table 11: Empirical Kendall's tau for the three markets.
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These results are coherent with those presented in Table 10 (see column
one) since the coe�cients are higher after the shocks. This measure is inter-
esting because, when we compare it with the values obtained for the linear
correlation in Table 2, we observe contradictory results. For instance, before
the Russian crisis, �(X; Y ) = 0:49, which means that the two markets appear
linearly correlated, whereas �(X; Y ) = 0, which means that the markets are
independent! As the distribution between the two markets is non-elliptical,
we know that the linear correlation is not e�cient.

We will use the relationship that exists between Kendall's tau and cer-
tain copulas to compute the copulas between the di�erent markets under
consideration. We will use this approach in the next section.

6 Tail correlation

The previous sections (Sections 3 and 4) show that we cannot determine the
presence of volatility, jumps or switching within data sets from the analy-
sis of non-conditional correlation and conditional correlation. To assess the
conditional correlation necessitates knowledge of the conditional distribution
that is unknown in general. Here, we try to bypass this problem looking at
the conditional distribution in the tail. Some recent papers have investigated
conditional tail behaviour, our approach is close to the work of Brummelhuis
and Guégan (2000), Frey and McNeil (2000) and Longin and Solnik (2001),
but our goal is di�erent. The asymptotic conditional distribution could pro-
vide us another way to understand the behaviour of conditional correlation.
To obtain this information, we need to calculate the bivariate distribution in
the tails and we will use the notion of copula to do this. We will introduce
another de�nition for the copulas, coherent with the previous one. This de�-
nition is more popular but it is restricted because it does not make it possible
to construct the copula contrary to the former de�nition.

6.1 Bivariate case

Here, we are interested in measuring the dependence in the tail of the joint
distribution between two markets. To measure this dependency, we proceed
in several steps. First of all, using the POT method (Peak Over Threshold),
we estimate the tail distribution of each market. In the second step, we
compute the empirical Kendall's tau in the tails for each market pair. This
will enable us to compute, for each copula, its parameter �. In the third
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step, we use the expression that links the joint distribution and the copula
with the margins (Sklar Theorem). Finally, we carry out a diagnostic test
between the empirical joint distribution and the estimated copula. For this
�nal step, we need to give an important feature of the copulas in the tails:
indeed, some copulas present what we call a tail dependence and others do
not. Thus, the choice of the copulas to reconstruct the joint distribution in
the tails is fundamental. So, there is a risk of misspeci�cation if we are not
careful about this choice.

1. In the �rst step, we estimate the distribution associated with each
market when we �x a speci�c threshold, in order to determine their
tail behaviour. To obtain these distributions, we use the POT method
whose principle will be brie�y recalled.

If X follows a distribution function F , we de�ne the associated distri-
bution of excesses losses over a high threshold u as:

Fu(y) = P [X � u � yjX > u] (17)

for 0 � y < x0 � u where x0 � +1 is the right endpoint of F . We
note that Fu can be written in terms of the underlying distribution F
as follows:

Fu(y) =
F (y + u)� F (u)

1� F (u)
: (18)

Now, the following theorem gives the asymptotic behaviour of the func-
tion Fu.

Theorem 6.1 For a large class of underlying distribution F , we can
obtain a function �(u) such that:

lim
u!x0

sup
0�y<x0�u

jFu(y)�G�;�(u)(y)j = 0;

where the function G�;�(u)(y) is called the Generalized Pareto Distribu-
tion (GPD). The GPD depends on two parameters, a shape parameter
� and a scaling parameter �, and is expressed as follows:

G�;�(x) =

8<
:

1� (1 + �x=�)�1=�; � 6= 0

1� exp(�x=�); � = 0
(19)

with � > 0, x � 0 when � � 0 and 0 � x � ��=� when � < 0.
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If � > 0 it is a reparametrized version of the Pareto distribution, � = 0
corresponds to the exponential distribution and � < 0 is known as a
Pareto type II distribution. When � > 0, the GPD is heavy-tailed and
for k � 1=�, E [Xk ] is in�nite. For instance, we obtain an in�nite vari-
ance when � = 1=2.

Thus, for a "large class" of distribution F , the excess function Fu con-
verges to a generalized Pareto distribution as the threshold u is raised.
All the common continuous distributions of statistics are included in
this "large class". In fact, we can assume that the GPD models can
approximate the unknown excess distribution Fu, i.e. for a certain
threshold u and for some � and � (to be estimated), we obtain:

Fu(y) = G�;�(y): (20)

Now, we can de�ne the link between a general one-dimensional distri-
bution function F for a �xed threshold u and G�;�. Combining the
expressions (18), (20) and setting x = u+ y we obtain:

F (x) = (1� F (u))G�;�(x� u) + F (u) (21)

for x > u.

We estimate F (u) using 1 � Nu=n, where Nu is the number of data
exceeding the �xed threshold u, and if we estimate the parameters �
and � of the GPD, we obtain the tail estimator:

F̂ (x) = 1�
Nu

n

�
1 + �̂

x� u

�̂

��1=�̂
; x > u: (22)

which is only valid for x > u.

We will now consider the data sets X1; � � � ; Xn from the di�erent mar-
kets. For these sets, we �t the GPD to the Nu excesses using the
maximum likelihood estimation (MLE) of the parameters � and � and
we compute the con�dence intervals for the estimates of the parame-
ters using a bootstrap procedure. To obtain these estimates, we need
to choose the threshold u. On the one hand, it has to be chosen suf-
�ciently high so that Theorem 6.1 can be applied, and, on the other
hand, it has to be considered su�ciently low to have su�cient data for
the estimation procedure. Here, we choose u relative to the quantiles.

34



The threshold u will represent the 90% and the 95% levels respectively.
This means that to de�ne the tails of the empirical distributions of
the three indices we consider the upper 10% (respectively 5%) of the
total number of observations (given the 4434 daily data, this implies
Nu = 443 threshold exceedances (respectively Nu = 222 threshold ex-
ceedances)).

In the following, we consider the time series de�ned by the log returns
of the MSCI indices, denoted X = (Xt)t, Y = (Yt)t and Z = (Zt)t
for the American market, the French market and the Japanese market
respectively .

90% (Nu = 443) 95% (Nu = 222)

X u = 1:0389 �̂ = 0:5565
�̂ = 0:1060

u = 1:4182 �̂ = 0:6129
�̂ = 0:1033

Y u = 1:1395 �̂ = 0:5127
�̂ = 0:1047

u = 1:5071 �̂ = 0:5688
�̂ = 0:0818

Z u = 1:1078 �̂ = 0:6459
�̂ = 0:0966

u = 1:6037 �̂ = 0:5996
�̂ = 0:1704

Table 12: Values of the parameters of the GPD adjusted for the three
markets for di�erent thresholds.

In Table 12, we give the values of the estimation for the parameters
� and � of the GPD distributions adjusted for the tail of each of the
three markets for the di�erent thresholds. We provide in Table 13, the
bootstrap con�dence intervals for these estimations using 100 replica-
tions of length 443 (for the 90% level) and of length 222 (for the 95%
level).

90% (Nu = 443) 95% (Nu = 222)

X �̂ 2 [0:5370; 0:5944],
�̂ 2 [0:0635; 0:1321]

�̂ 2 [0:5891; 0:6714],
�̂ 2 [0:0454; 0:1306]

Y �̂ 2 [0:4865; 0:5424],
�̂ 2 [0:0607; 0:1337]

�̂ 2 [0:5396; 0:6143],
�̂ 2 [0:0205; 0:1185]

Z �̂ 2 [0:6237; 0:6821],
�̂ 2 [0:0522; 0:1359]

�̂ 2 [0:5564; 0:6442],
�̂ 2 [0:0844; 0:2064]

Table 13: Bootstrap con�dence intervals for the estimation of � and �.
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Whatever the case, the parameter � is positive and signi�cant, thus a
Pareto distribution can be �tted for the tail of all the markets.

Now, using the estimator (22) with the values of the parameters �̂ and �̂
given in Table 12, we can compute the tail of the marginal distribution
of each market for x > u, where u corresponds to a chosen threshold.
In the following, F̂ , Ĝ and Ĵ will denote the tail distributions of the
American market, the French market and the Japanese market respec-
tively.

2. In the second step, we compute the empirical Kendall's tau �̂ between
the di�erent markets in the tails. To do so, we use the points that are
beyond the 0.9-quantile (Nu = 443 points) of the distribution of each
market, i.e. the points for which we adjusted the GPD in the �rst step.
We do the same for the 0.95-quantile (Nu = 222 points). The results
are given in Table 14.

3. In the third step, using the values of Kendall's tau, we compute the
parameters � of the di�erent Archimedean copulas which enable us to
approximate the joint distribution of two markets. We begin by recall-
ing the fundamental result of Sklar used in this session.

90% 95%

�̂ (XT ; YT ) 0.0588 0.0588

�̂ (XT ; ZT ) 0.0090 -0.0136

�̂ (YT ; ZT ) -0.0271 -0.0679

Table 14: Empirical Kendall's tau relative to the quantiles for the
three markets considered in the tails (the tails of X, Y and Z are

denoted XT , YT and ZT respectively).

Let us consider a general random vector Z = (X; Y )T and assume that
it has a joint distribution function H(x; y) = P[X � x; Y � y] and that
each random variable X and Y has a continuous marginal distribution
function denoted F and G respectively. It has been shown by Sklar
(1959) that every 2-dimensional distribution function H with margins
F and G can be written as H(x; y) = C(F (x); G(y)) for an unique
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(because the marginals are continuous) function C that is known as
the copula of H. Like the previous section, we will use the notation
C� for Archimedean copulas and the notation C for a general copula.
In the case of the Archimedean copulas, we then obtain the following
relationship:

H(x; y) = C�

�
F (x); G(y)

�
: (23)

A copula C is a bivariate distribution with uniform marginals and it
has the signi�cant property of not changing under strictly increasing
transformations of the random variables X and Y . Moreover, it makes
sense to interpret C as the dependence structure of the vector Z. In the
literature, this function has been called "dependence function" by De-
heuvels (1978), "uniform representation" by Kimelsdorf and Sampson
(1975) and "copula" by Sklar (1959). This sometimes makes reading
the papers on this topic di�cult. The last denomination is now the
most popular, in particular in �nancial circles, and we use it here.

Practically, to obtain the joint distribution H of the random vector
Z = (X; Y )T given the marginal distribution functions F and G of X
and Y respectively, we have to choose a copula to apply to these mar-
gins.

Now, using the expression (22) for the empirical tail of the marginal
distribution of two markets X and Y de�ned for x > uX and y > uY ,
and also using the relationship (23), we obtain:

Ĥ(x; y) = C�̂(F̂ (x); Ĝ(y)); x > uX; y > uY : (24)

In particular, this expression models the dependence structure of obser-
vations exceeding the thresholds uX and uY using Archimedean copulas
C�̂ for some estimated values �̂ of the dependence parameter �.

Using the values obtained for �̂ in Table 14, we can compute the param-
eter �̂ for di�erent Archimedean laws. For the Gumbel law (G�), the
Cook and Johnson law (J�) and the Dependent law (D�) we obtain the
parameters using an inversion of the formula which gives the expression
of the copula. We will now recall these simple relations between � and
� :

� For the Gumbel law: � = �
1��

,
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� For the Cook and Johnson law: � = 2�
1��

� For the Dependent law: � = 2
3(1��)

.

� For the Ali-Mikhail-Haq (A�) law and for the Frank law (F�) we
use a numerical resolution. In Tables 15, 16 and 17 we specify the
values of the parameter � for these di�erent laws.

4. Fourth step. In this part, we specify the methods that can be used to
assess the approximation of the empirical tail of the joint distribution
of two markets via the use of copulas. We consider the random vector
Z = (X; Y )T of two markets X and Y . To estimate the tail of their
joint distribution function, we use the expression (24), where C� de-
notes the particular choice of Archimedean copulas.

5. Now, we will try to determine the best Archimedean copulasC�, amongst
G�, J�, D�, A� and F�, for adjusting the empirical tail of the joint dis-
tribution function H of the random vector (X; Y )T , with X and Y
having empirical margins F̂ and Ĝ respectively.

To obtain this result we will use two di�erent diagnoses: a numerical
method and a graphical method. Both methods will enable us to decide
on the best approximation from the range of the previous Archimedean
copulas.

First, we use a numerical criterion that we denoteD2 which corresponds
to:

D2 =
X
x;y

���C�̂

�
F̂ (x); Ĝ(y)

�
� Ĥ(x; y)

���2:
Then, copulas C�̂, for which we obtain the minimum distance D2, will
be chosen as the best approximation. For the various copulas, the
quantities D2 are given in Tables 15, 16 and 17 relative to the di�erent
couples of markets.

90% G� J� A� F� D�

�̂ 1.0625 0.1250 0.2476 0.5357 0.7083
D2 2.8929 0.4158 0.4912 0.5758 103.9952

95% G� J� A� F� D�

�̂ 1.0625 0.1250 0.2476 0.5357 0.7083
D2 0.3034 0.0743 0.0794 0.0838 8.8490
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Table 15: Values of �̂ and of D2 for the couple (X=American market,
Y=French market) relative to the various copulas.

For the couple (X; Y ), we obtain the best approximation using the
Cook and Johnson law for both thresholds.

90% G� J� A� F� D�

�̂ 1.0091 0.0183 0.0403 0.6978 0.6728
D2 0.7109 0.5268 0.5434 0.7000 151.1397

95% G� J� A� F� D�

�̂ 0.9866 -0.0268 -0.0620 0.7452 0.6577
D2 0.0551 0.0530 0.0526 0.0567 16.0837

Table 16: Values of �̂ and of D2 for the couple (X=American market,
Z=Japanese market) relative to the various copulas.

For the couple (X;Z), we obtain the best approximation using the Cook
and Johnson law for the 0.9-quantile threshold and for the threshold
that corresponds to the 0.95-quantile, which we obtain using the Ali-
Mikhail-Haq law.

90% G� J� A� F� D�

�̂ 0.9736 -0.0529 -0.1259 0.7666 0.6490
D2 0.8158 0.3933 0.4066 0.4346 203.4705

95% G� J� A� F� D�

�̂ 0.9364 -0.1271 -0.3295 0.8110 0.6243
D2 0.2289 0.0455 0.0425 0.0533 22.8012

Table 17: Values of �̂ and of D2 for the couple (Y=French market,
Z=Japanese market) relative to the various copulas.

For the couple (Y; Z), we obtain the best approximation using the Cook
and Johnson law for the 0.9-quantile threshold and for the threshold
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that corresponds to the 0.95-quantile, which we obtain using the Ali-
Mikhail-Haq law .

Now, we will use a graphical criterion. From the de�nition of a copula
C, we know that if U and V are two uniform random variables then
the random variables

C(V jU) =
@C

@U
(U; V )

and

C(U jV ) =
@C

@V
(U; V )

are also uniformly distributed. We use this property to quantify the
adjustment between the empirical joint distribution and the di�erent
copulas, using the classical QQ-plot method. For that, we need to cal-
culate the partial derivatives of the various Archimedean copulas under
consideration. Since the Archimedean copulas C� are symmetric, we
only investigate C�(V jU).

These partial derivatives are the following:

� For the Gumbel copulas:

G�(vju) = G�(u; v)
j loguj�

u

�
j loguj�+1 + j log vj�+1

�
:

� For the Cook and Johnson copulas:

J�(vju) =
�
1 + u�(v�� � 1)

��(1+�)=�
:

� For the Ali-Mikhail-Haq copulas:

A�(vju) =
v(1� �(1� u)(1� v))� uv�(1� v)

(1� �(1� u)(1� v))2
:

� For the Frank copulas:

F�(vju) =
�
1 +

(�u � 1)(�v � 1)

�+ 1

��1 �u

� + 1
(�v � 1):

� For the dependent copulas:

D�(vju) = (D�(u; v))
�2
�
(u�1�1)�+(v�1�1)�

�(1��)=�
(u�1�1)��1u�2:
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Thus, as the distribution functions of F̂ (X) and Ĝ(Y ) are uniform, we
plot, for each copula C�, the empirical distribution C�̂(Ĝ(Y )jF̂ (X))
against the uniform distribution. The straighter the line, the better
the adjustment of the joint distribution Ĥ by the copulas C�̂.

We note that we obtain similar results using this graphical method and
the �rst numerical method.
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Figure 3: QQ-plot for the Gumbel copulas
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Figure 4: QQ-plot for the Cook and Johnson copulas
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Figure 5: QQ-plot for the Ali-Mikhail-Haq copulas
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Figure 6: QQ-plot for the Frank copulas

To illustrate this graphical method, we only give the results for one
pair of markets by considering the series X and Y of the American
market and the French market de�ned in their tail by the 0.9-quantile
threshold. The QQ-plots that correspond to the �ve Archimedean cop-
ulas G�, J�, D�, A� and F� are proposed in Figures 3, 4, 5, 6 and 7
respectively. We observe that we obtain the straightest line with the
Cook and Johnson copulas, see Figure 4.

With regards to Kendall's tau that we obtained in Table 14, we ob-
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Figure 7: QQ-plot for the Dependent copulas

serve that the tail structures of the various couples of indices are close
to independent structures. This explains the poor results we obtain
with the Gumbel copulas and the Dependent copulas since they have
upper tail dependence (due to a strictly positive �U) as we have seen
previously. We recall that we obtained the best approximation by using
either the Cook and Johnson copulas or the Ali-Mikhail-Haq copulas
that have no upper tail dependence, and this fact does not contradict
the independence structure obtained from the computation of Kendall's
tau.

6.2 Multivariate Archimedean Copulas

An m-variate family of Archimedean copulas is an extension of a bivariate
Archimedean family if all bivariate marginal copulas of the multivariate cop-
ulas are in the given bivariate family and if all multivariate marginal copulas
of order 3 to m� 1 have the same multivariate form. It is important to note
that there is no natural multivariate extension of a bivariate family.

To extend the notion of bivariate Archimedean copulas C� to the m di-
mensional framework, there is a degree of constraint on the dependence pa-
rameters �. For instance, let us consider the case m = 3 and assume that the
(i; j) bivariate margins (i 6= j 2 f1; 2; 3g) have dependence parameter �i;j.
If �2 > �1 with �1;2 = �2 and �1;3 = �2;3 = �1, then 3-variate Archimedean
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copulas can be expressed as follows:

C�1;�2(u1; u2; u3) = ��1�1 (��1 o �
�1
�2
(��2(u1) + ��2(u2)) + ��1(u3)): (25)

In the sequel, for two random variables X and Y , �(X; Y ) denotes the de-
pendence parameter deduced from Kendall's tau �(X; Y ) by means of the
formula (11). For a random vector (X; Y; Z)T with joint three dimensional
distribution H and margins F , G and J , we obtain from (25) the following
extension of Sklar Theorem in the trivariate case:

H(x; y; z) = C�1;�2

�
F (x); G(y); J(z)

�
= C�1

�
C�2

�
F (x); G(y)

�
; J(z)

�
(26)

if �2 � �1 with �2 = �(X; Y ) and �1 = �(X;Z) = �(Y; Z).

We aim to apply this theory to the three markets in order to adjust the
tail of their three dimensional joint distribution H by means of Archimedean
copulas. As previously, X, Y and Z denote the series of the log returns of the
MSCI indices of the American market, the French market and the Japanese
market respectively.

For the three markets, we choose to de�ne the tails with the thresholds
that correspond to the 0.95-quantiles. In order to be able to use (26), we
recall that the dependence parameters of two couples of markets de�ned in
the tails have to be equal. In Table 18, we recall the empirical dependence
parameters that we obtained for each couple of markets with the various
Archimedean laws.

Couple G� J� A� F� D�

(X; Y ) 1.0625 0.1250 0.2476 0.5357 0.7083
(X;Z) 0.9866 -0.0268 -0.0620 0.7452 0.6577
(Y; Z) 0.9364 -0.1271 -0.3295 0.8110 0.6243

Table 18: Parameters �̂ for the di�erent couples of markets (X=American
market, Y=French market, Z=Japanese market) considered in the tails
that correspond to the 0.95 quantiles relative to the various copulas.

For the Archimedean laws G�, J�, A� and D�, we note that the bigger
dependence parameter is obtained for the couple (X; Y ) and that the pa-
rameters are not equal for the two other couples (X;Z) and (Y; Z). For the
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Archimedean law F�, we obtain the higher parameter for the couple (Y; Z).
In spite of these results, we nevertheless decided to continue our empirical
study.

For each Archimedean law, �̂2 equals the dependence parameter �̂ com-
puted for the couple (X; Y ) and �̂1 equals the dependence parameter �̂ com-
puted for the couple (X;Z) (we make the same choice for the law F� so that
we can compare the results). Then, using these parameters, we compute
the 3-variate Archimedean copulas (25) for each Archimedean law. For de-
termining the best Archimedean copulas C�1;�2 for adjusting the empirical
tail of the joint distribution function H of (X; Y; Z)T , we use the numerical
criteria D2 that corresponds to:

D2 =
X
x;y;z

���C�̂1

�
C�̂2

�
F̂ (x); Ĝ(y)

�
; Ĵ(z)

�
� Ĥ(x; y; z)

���2:

We report the results in Table 19.

G�1;�2 J�1;�2 A�1;�2 F�1;�2 D�1;�2

D2 26.5131 2.1215 2.1410 2.2540 914.7512

Table 19: Results for the distance D2 relative to the various copulas
(0.95-quantile)

Looking at the results, we obtain the best results using the 3-variate Cook
and Johnson copulas which are then chosen for modelizing the tail of the joint
distribution of the three markets.

7 Conclusion

In the literature, a question often raised is whether the correlation between
international markets increases in periods of high turbulence. However, we
have seen that international markets have recently grown more independent.
In this paper, we have tried to answer a number of questions linked to the
following issues:

� Are markets more highly correlated in periods of high volatility? Sec-
tions 4 and 5 show that it is very di�cult to answer. Using conditional
correlation implies a contradiction compared with the notion of con-
cordance.
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� Is the correlation higher when markets fall, rather than rise? Using
the transfer function in Section 3, we can distinguish the importance
of the correlation by examining the values of the �rst coe�cients, but
if the correlation appears higher after a shock, this is not true for all
the markets, and in particular when we compare the American market
and the Asian market.

� What is the in�uence of the business cycle? This question is not con-
sidered here.

In this paper, using daily data, we show that the di�erent measures of
interdependence do not always give identical information concerning the evo-
lution of the markets and their interdependence. If the notion of correlation
and cross correlation is restricted because it only takes into account the linear
characteristics of the data, we have seen that the conditional correlation can
introduce some mistakes in the interpretation. The result greatly depends
on the choice of the conditioning. Kendall's tau appears as an interesting
measure when we compare the general evolution of two markets over di�erent
periods, nevertheless it is quite di�cult to use Kendall's tau with more than
two markets. In this case, it is more useful to consider Archimedean copulas.
However, the di�culty with the copula is to obtain the best adjustment. In
this paper, we try to propose a method illustrated by the data sets under
consideration here.

Sections 5 and 6 discuss properties and characteristics of copulas. We
explain how to determine a copula and how the association structure of cop-
ulas can be summarized in terms of familiar measures of dependence. Recall
that copulas are useful in examining the dependence structure of multivari-
ate random vectors. Thus, we used copulas in Section 6 in order to compare
the three markets under consideration here. Note that other measures of
association only allow us to compare the markets by pair. This is one of the
main advantages of working with copulas.

Another problem that we have not addressed in this paper concerns the
same investigation with high frequency data. Some papers have already tried
to consider the notion of interdependence for this kind of data sets, see for
instance King and Wadhwani (1990) and Bertero and Mayer (1990). We will
discuss our approaches in a companion paper for the same data sets observed
with high frequency.
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8 Appendix: transfer function's models between

the three markets

8.1 Full period: 01/01/1985-31/12/2001 (4434 points)

� Xt and Yt.

Over the full period, we obtain the following models:

Xt = �0:05Xt�2 � 0:04Xt�3 + "t

and
Yt = 0:06Yt�1 + �t:

For all the parameters the standard deviation is equal to 0:01. We obtain
the following model for the cross-correlation between �t and "t:

�t = 0:34"t + 0:24"t�1 + e1t :

The standard deviation for the both parameters is equal to 0.01. We adjust
the following model for e1t :

e1t = �0:06e1t�1 + e2t :

The standard deviation of the parameter is equal to 0.01. Finally, using these
di�erent modelizations, we obtain the model relating Yt, Xt and e2t :

Yt = 0:34Xt + 0:26Xt�1 + 0:03Xt�2 + 0:02Xt�3 + 0:01Xt�4 + e2t :

Series mean standard de-
viation

skewness kurtosis

Xt 4.34 10�4 1.04 10�2 -2.67 59.93
"t 2.77 10�7 1.00 10�2 -2.88 62.07
Yt 5.27 10�4 1.23 10�2 -0.37 7.03
�t 1.34 10�7 1.20 10�2 -0.33 7.05
e1t 8.03 10�7 1.14 10�2 -0.18 6.33
e2t 6.79 10�7 1.10 10�2 -0.21 6.32

Table A1: Statistics on the returns Xt and Yt and their residuals, and on
the two residuals e1t and e2t

� Xt and Zt.
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Over the full period, we obtain the following models:

Xt = �0:05Xt�2 � 0:04Xt�3 + "t

and
Zt = �0:05Zt�6 + �t:

For all the parameters the standard deviation is equal to 0:01. We obtain
the following model for the cross-correlation between "t and �t:

�t = 0:36"t�1 + e1t :

The standard deviation for the parameter is equal to 0.02. Finally, using
these di�erent modelizations, we obtain the model relating Zt, Xt and e1t :

Zt = 0:36Xt�1 + 0:02Xt�3 + 0:01Xt�4 � 0:02Xt�7 + e1t � 0:05e1t�6:

Series mean standard de-
viation

skewness kurtosis

Xt 4.34 10�4 1.04 10�2 -2.67 59.93
"t 2.77 10�7 1.00 10�2 -2.88 62.07
Zt 1.94 10�4 1.47 10�2 -0.10 12.69
�t -2.57 10�7 1.43 10�2 -0.08 12.74
e1t -6.35 10�7 1.40 10�2 0.32 7.93

Table A2: Statistics on the returns Xt and Zt and on the residuals "t, �t
and e1t

� Yt and Zt.

Over the full period, we obtain the following models:

Yt = 0:06Yt�1 + �t

and
Zt = �0:05Zt�6 + �t:

For all the parameters the standard deviation is equal to 0:01. We obtain
the following model for the cross-correlation between �t and �t:

�t = 0:30�t + 0:18�t�1 + e1t :

The standard deviation for the both parameters is equal to 0.02. Finally,
using these di�erent modelizations, we obtain the model relating Zt, Yt and
e1t :

Zt = 0:30Yt + 0:16Yt�1 � 0:01Yt�2 � 0:02Yt�6 � 0:01Yt�7 + e1t � 0:05e1t�6:
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Series mean standard de-
viation

skewness kurtosis

Yt 5.27 10�4 1.23 10�2 -0.37 7.03
�t 1.34 10�7 1.20 10�2 -0.33 7.05
Zt 1.94 10�4 1.47 10�2 -0.10 12.69
�t -2.57 10�7 1.43 10�2 -0.08 12.74
e1t -7.05 10�9 1.40 10�2 0 10.90

Table A3: Statistics on the returns Yt and Zt and on the residuals �t, �t
and e1t

8.1.1 Subperiods

a) October, 1987

� Before the crash Xt and Yt (22/07/1987 - 13/10/1987 (60 points)).

We obtain the following models:

Xt = �0:30Xt�5 + 0:31Xt�7 + "t

and
Yt = 0:44Yt�1 + �t:

The standard deviation of both parameters is equal to 0.13. We obtain the
following model for the cross-correlation between "t and �t:

�t = �0:28"t�2 + e1t :

The standard deviation of the parameter is equal to 0.11. The process e1t is
a white noise process.
Finally, using these di�erent modelizations, we obtain the model relating Yt,
Xt and e1t :

Yt = 0:28Xt�2 + 0:12Xt�3 � 0:05Xt�4 + 0:03Xt�5 + 0:01Xt�6

+0:08Xt�7 + 0:04Xt�8 � 0:11Xt�9 � 0:04Xt�10 + 0:02Xt�11

+e1t + 0:44e1t�1 � 0:19e1t�2 + 0:09e1t�3 + 0:04e1t�4 + 0:01e1t�5:
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Series mean standard de-
viation

skewness kurtosis

Xt 3.63 10�4 1.03 10�2 0 3.28
"t -7.58 10�4 9.80 10�3 -0.38 2.97
Yt -3.50 10�4 9.78 10�3 0 3.37
�t -2.44 10�4 8.80 10�3 0.17 2.94
e1t -2.39 10�4 8.36 10�3 0 3.64

Table A4: Statistics on the series Xt, Yt, �t and e1t

� After the crash Xt and Yt (23/10/1987 - 14/01/1988 (60 points)).

We obtain the following model for the cross-correlation between the two
series:

Yt = 0:55Xt + e1t :

The standard deviation of the parameter is equal to 0.12. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Xt -2.49 10�4 2.29 10�2 -1.11 5.32
Yt -2.07 10�3 2.50 10�2 -0.21 5.38
e1t 0 2.16 10�2 -0.43 5.03

Table A5: Statistics on the returns Xt and Yt and on the residual e1t

� Including the crash Xt and Yt (22/07/1987 - 14/01/1988 (127 points)).

We obtain the following model for the cross-correlation between the two
series:

Yt = 0:37Xt + e1t :

The standard deviation of the parameter is equal to 0.05. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Xt -1.80 10�3 2.88 10�2 -3.85 32.20
Yt -2.15 10�3 2.07 10�2 -0.63 7.62
e1t 0 1.77 10�2 -0.39 6.55

Table A6: Statistics on the returns Xt and Yt and on the residual e1t
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� Before the crash Xt and Zt (22/07/1987 - 13/10/1987 (60 points)).

We obtain an independent evolution between both series.

� After the crash Xt and Zt (23/10/1987 - 14/01/1988 (60 points)).

We obtain the following model on Zt:

Zt = �0:31Zt�2 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between Xt and �t:

�t = 0:20Xt�1 + e1t :

The standard deviation of the parameter is equal to 0.12. The process e1t
is a white noise. Finally, using these di�erent modelizations, we obtain the
model relating Zt, Xt and e1t :

Zt = 0:20Xt�1 � 0:06Xt�3 + 0:02Xt�5

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

Series mean standard de-
viation

skewness kurtosis

Xt -2.49 10�4 2.29 10�2 -1.11 5.32
Zt 1.31 10�3 1.74 10�2 0.45 3.55
�t -2.93 10�5 1.60 10�2 0.30 3.82
e1t 5.68 10�4 1.54 10�2 0.28 3.72

Table A7: Statistics on the returns Xt, Zt, �t and on the residual e1t

� Including the crash Xt and Zt (22/07/1987 - 14/01/1988 (127 points)).

We obtain the following model for the cross-correlation between the two
series:

Zt = 0:58Xt�1 + e1t :

The standard deviation of the parameter is equal to 0.06. The process e1t is
not a white noise. Then, we obtain the following model on e1t :

e1t = �0:21e1t�1 + e2t
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where the standard deviation of the parameter is equal to 0.08. Finally, using
these di�erent modelizations, we obtain the model relating Zt, Xt and e2t :

Zt = 0:58Xt�1 + e2t � 0:21e2t�1 + 0:04e2t�2 � 0:01e2t�3:

Series mean standard de-
viation

skewness kurtosis

Xt -1.80 10�3 2.88 10�2 -3.85 32.20
Zt 1.12 10�3 2.45 10�2 -2.84 28.97
e1t -1.92 10�4 1.80 10�2 0.58 6.06
e2t -2.49 10�4 1.76 10�2 0.25 5.05

Table A8: Statistics on the returns Xt, Zt, e
1
t and e2t

� Before the crash Yt and Zt (22/07/1987 - 13/10/1987 (60 points)).

We obtain the following model on Yt:

Yt = 0:44Yt�1 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between �t and Zt:

Zt = 0:46�t + e1t :

The standard deviation of the parameter is equal to 0.19. Finally, using these
di�erent modelizations, we obtain the model relating Yt, Zt and e1t :

Zt = 0:46Yt � 0:20Yt�1 + e1t :

Series mean standard de-
viation

skewness kurtosis

Yt -3.50 10�4 9.78 10�3 0 3.37
�t -2.44 10�4 8.80 10�3 0.17 2.94
Zt 3.41 10�3 1.35 10�2 0.77 5.20
e1t -1.23 10�4 1.28 10�2 0.65 4.51

Table A9: Statistics on the series Yt, �t, Zt and e1t

� After the crash Yt and Zt (23/10/1987 - 14/01/1988 (60 points)).
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We obtain the following model on Zt:

Zt = �0:31Zt�2 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between Yt and �t:

�t = 0:20Yt + 0:29Yt�1 + e1t :

The standard deviation of the both parameters is equal to 0.07. The process
e1t is a white noise. Finally, using these di�erent modelizations, we can give
the model relating Yt, Zt and e1t :

Zt = 0:20Yt + 0:29Yt�1 � 0:06Yt�2 � 0:09Yt�3 + 0:02Yt�4 + 0:03Yt�5

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

Series mean standard de-
viation

skewness kurtosis

Yt -2.07 10�3 2.50 10�2 -0.21 5.38
Zt 1.31 10�3 1.74 10�2 0.45 3.55
�t -2.93 10�5 1.60 10�2 0.30 3.82
e1t 3.47 10�4 1.36 10�2 0.60 3.51

Table A10: Statistics on the returns Yt, Zt, �t and on the residual e1t

� Including the crash Yt and Zt (22/07/1987 - 14/01/1988 (127 points)).

We obtain the following model for the cross-correlation between the two
series:

Zt = 0:38Yt + 0:50Yt�1 + e1t :

The standard deviation of the parameter is equal to 0.06. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Yt -2.15 10�3 2.07 10�2 -0.63 7.62
Zt 1.12 10�3 2.45 10�2 -2.84 28.97
e1t -1.47 10�4 2.09 10�2 -1.27 18.44

Table A11: Statistics on the series Yt, Zt and e1t
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b) Asian crisis 1997

� Before the crash Xt and Yt (25/07/1997 - 16/10/1997 (60 points)).

Since, Xt and Yt are white series, we obtain the following model for the
cross-correlation between these two series:

Yt = 0:36Xt�1 + e1t :

The standard deviation of the parameter is equal to 0.14. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Xt 2.21 10�4 9.84 10�3 0.27 4.01
Yt 7.36 10�4 1.07 10�2 0.18 2.99
e1t 2.84 10�5 1.02 10�2 0.30 2.91

Table A12: Statistics on the series Xt, Yt and e1t

� After the crash Xt and Yt (28/10/1997 - 19/01/1998 (60 points)).

Since, Xt and Yt are white series, we obtain the following model for the
cross-correlation between these two series:

Yt = 0:52Xt + 0:33Xt�1 + e1t :

The standard deviation of the both parameters is equal to 0.10. The process
e1t is a white noise.

Series mean standard de-
viation

skewness kurtosis

Xt 7.54 10�4 1.07 10�2 -0.20 3.04
Yt 1.12 10�3 1.23 10�2 0.81 6.58
e1t -8.96 10�4 7.68 10�3 -0.27 2.45

Table A13: Statistics on the series Xt, Yt and e1t

� Including the crash Xt and Yt (25/07/1997 - 19/01/1998 (127 points)).

We obtain the following model on Xt:

Xt = 0:28Xt�10 + "t:
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The standard deviation of the parameter is equal to 0.09. We obtain the
following model for the cross-correlation between "t and Yt:

Yt = 0:35"t + 0:50"t�1 + e1t :

The standard deviation for the both parameters is equal to 0.07, and e1t is a
white noise.
Finally, using these di�erent modelizations, we obtain the model relating Yt,
Xt and e1t :

Yt = 0:35Xt + 0:50Xt�1 � 0:10Xt�10 � 0:14Xt�11 + e1t :

Series mean standard de-
viation

skewness kurtosis

Xt 1.91 10�4 1.27 10�2 -0.83 9.79
"t -4.01 10�5 1.23 10�2 -1.09 11.00
Yt -4.48 10�5 1.20 10�2 0.38 5.03
e1t 5.80 10�5 9.86 10�3 0.25 3.05

Table A14: Statistics on the series Xt, "t, Yt, �t and e1t

� Before the crash Xt and Zt (25/07/1997 - 16/10/1997 (60 points)).

Since, Xt and Zt are white series, we obtain the following model for the
cross-correlation between these two series:

Zt = 0:58Xt�1 + e1t :

The standard deviation of the parameter is equal to 0.18. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Xt 2.21 10�4 9.84 10�3 0.27 4.01
Zt -2.10 10�3 1.45 10�2 0.33 2.66
e1t -1.27 10�4 1.35 10�2 0.68 3.32

Table A15: Statistics on the series Xt, Zt and e1t

� After the crash Xt and Zt (28/10/1997 - 19/01/1998 (60 points)).
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We obtain the following model on Zt:

Zt = �0:31Zt�2 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between the series Xt and �t:

�t = 0:78Xt�1 + e1t :

The standard deviation of the both parameters is equal to 0.20. The process
e1t is a white noise. Finally, using these di�erent modelizations, we obtain
the model relating Xt, Zt and e1t :

Zt = 0:78Xt�1 � 0:24Xt�3 + 0:08Xt�5 � 0:02Xt�7

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6:

Series mean standard de-
viation

skewness kurtosis

Xt 7.54 10�4 1.07 10�2 -0.20 3.04
Zt -1.17 10�3 2.56 10�2 0.34 3.81
�t -4.19 10�4 2.44 10�2 0.71 4.27
e1t -8.83 10�4 2.29 10�2 0.88 4.66

Table A16: Statistics on the series Xt, Zt, �t and e1t

� Including the crash Xt and Zt (25/07/1997 - 19/01/1998 (127 points)).

We obtain the following models on Xt and Zt:

Xt = 0:28Xt�10 + "t

and
Zt = �0:26Zt�2 + �t:

The standard deviation of the both parameters is equal to 0.09. We obtain
the following model for the cross-correlation between "t and �t:

�t = 0:56"t�1 + e1t :

The standard deviation for the parameter is equal to 0.14, and e1t is a white
noise.
Finally, using these di�erent modelizations, we obtain the model relating Yt,
Zt and e1t :

Zt = 0:56Xt�1 � 0:15Xt�3 + 0:04Xt�5 � 0:01Xt�7 + 0:16Xt�11 � 0:04Xt�13

+e1t � 0:26e1t�2 + 0:07e1t�4 � 0:02e1t�6:
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Series mean standard de-
viation

skewness kurtosis

Xt 1.91 10�4 1.27 10�2 -0.83 9.79
"t -4.01 10�5 1.23 10�2 -1.09 11.00
Zt -2.26 10�3 2.06 10�2 0.43 4.75
�t -1.70 10�4 1.99 10�2 0.71 5.13
e1t 5.80 10�5 9.86 10�3 0.25 3.05

Table A17: Statistics on the series Xt, "t, Zt, �t and e1t

� Before the crash Yt and Zt (25/07/1997 - 16/10/1997 (60 points)).

Since, Yt and Zt are white series, we obtain the following model for the
cross-correlation between these two series:

Zt = 0:35Yt�1 + e1t :

The standard deviation of the parameter is equal to 0.17. The process e1t is
a white noise.

Series mean standard de-
viation

skewness kurtosis

Yt 7.36 10�4 1.07 10�2 0.18 2.99
Zt -2.10 10�3 1.45 10�2 0.33 2.66
e1t -8.53 10�6 1.41 10�2 0.46 2.60

Table A18: Statistics on the series Yt, Zt and e1t

� After the crash Yt and Zt (28/10/1997 - 19/01/1998 (60 points)).

We obtain the following model on Zt:

Zt = �0:31Zt�2 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between the series Yt and �t:

�t = 1:01Yt + e1t :

The standard deviation of the parameter is equal to 0.22. The process e1t
is a white noise. Finally, using these di�erent modelizations, we obtain the
model relating Yt, Zt and e1t :

Zt = 1:01Yt � 0:31Yt�2 + 0:10Yt�4 � 0:03Xt�6 + 0:01Xt�8

+e1t � 0:31e1t�2 + 0:10e1t�4 � 0:03e1t�6 + 0:01e1t�8:
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Series mean standard de-
viation

skewness kurtosis

Yt 1.12 10�3 1.23 10�2 0.81 6.58
Zt -1.17 10�3 2.56 10�2 0.34 3.81
�t -4.19 10�4 2.44 10�2 0.71 4.27
e1t -4.19 10�4 2.10 10�2 0.37 3.42

Table A19: Statistics on the series Yt, Zt, �t and e1t

� Including the crash Yt and Zt (25/07/1997 - 19/01/1998 (127 points)).

We obtain the following model on Zt:

Zt = �0:26Zt�2 + �t:

The standard deviation of the parameter is equal to 0.09. We obtain the
following model for the cross-correlation between Yt and �t:

�t = 0:70Yt + e1t :

The standard deviation for the parameter is equal to 0.13, and e1t is a white
noise.
Finally, using these di�erent modelizations, we obtain the model relating Yt,
Zt and e1t :

Zt = 0:70Yt � 0:18Yt�2 + 0:05Yt�4 � 0:01Yt�6 + e1t � 0:26e1t�2 + 0:07e1t�4 � 0:02e1t�6:

Series mean standard de-
viation

skewness kurtosis

Yt -4.48 10�5 1.20 10�2 0.38 5.03
Zt -2.26 10�3 2.06 10�2 0.43 4.75
�t -1.70 10�4 1.99 10�2 0.71 5.13
e1t -1.70 10�4 1.80 10�2 0.50 4.30

Table A20: Statistics on the series Yt, Zt, �t and e1t

c) Russian crisis 1998

� Before the crash Xt and Yt (04/06/1998 - 26/08/1998 (60 points)).

We obtain the following model on Xt:

Xt = 0:32Xt�8 + "t:
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The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between "t and Yt:

Yt = 0:67"t + e1t :

The standard deviation of the parameter is equal to 0.16. The process e1t
is a white noise. Finally, using these di�erent modelizations, we obtain the
model relating Yt, Xt and e1t :

Yt = 0:67Xt � 0:21Xt�8 + e1t :

Series mean standard de-
viation

skewness kurtosis

Xt -2.57 10�5 1.10 10�2 -0.63 3.61
"t 1.11 10�4 1.04 10�2 -0.39 3.09
Yt -1.46 10�3 1.44 10�2 -0.18 2.81
e1t -7.44 10�5 1.26 10�2 -0.44 2.83

Table A21: Statistics on the returns Xt and Yt and on the residual e1t

� After the crash Xt and Yt (08/09/1998 - 30/11/1998 (60 points)).

We obtain the following model for the cross-correlation between Xt and
Yt:

Yt = 0:74Xt + e1t :

The standard deviation of the parameter is equal to 0.14. The process e1t is
a white noise process.

Series mean standard de-
viation

skewness kurtosis

Xt 2.31 10�3 1.43 10�2 -0.16 3.38
Yt 5.99 10�4 1.86 10�2 -0.22 2.96
e1t 0 1.53 10�2 0.33 3.62

Table A22: Statistics on the returns Xt, Yt and e1t

� Including the crash Xt and Yt (04/06/1998 - 30/11/1998 (127 points)).

We obtain the following model for the cross-correlation between Xt and
Yt:

Yt = 0:55Xt + e1t :

The standard deviation for the parameter is equal to 0.08, and e1t is a white
noise.
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Series mean standard de-
viation

skewness kurtosis

Xt 5.99 10�4 1.53 10�2 -0.61 6.48
Yt -2.69 10�4 1.67 10�2 -0.25 3.18
e1t 0 1.44 10�2 0.11 3.31

Table A23: Statistics on the series Xt, Yt, "t, �t and e1t

� Before the crash Xt and Zt (04/06/1998 - 26/08/1998 (60 points)).

We obtain an independent evolution between both series.

� After the crash Xt and Zt (08/09/1998 - 30/11/1998 (60 points)).

We obtain an independent evolution between both series.

� Including the crash Xt and Zt (04/06/1998 - 30/11/1998 (127 points)).

We obtain an independent evolution between both series.

� Before the crash Yt and Zt (04/06/1998 - 26/08/1998 (60 points)).

We obtain the following model on Zt:

Zt = 0:31Zt�1 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between Yt and �t:

�t = 0:61Yt + e1t :

The standard deviation of the parameter is equal to 0.14. Finally, using these
di�erent modelizations, we obtain the model relating Zt, Yt and e1t :

Zt = 0:61Yt + 0:19Yt�1 � 0:06Yt�2 + 0:02Yt�3

+e1t + 0:31e1t�1 � 0:10e1t�2 + 0:03e1t�3:

Series mean standard de-
viation

skewness kurtosis

Yt -1.46 10�3 1.44 10�2 -0.18 2.81
Zt -1.69 10�3 1.85 10�2 0.76 3.30
�t -4.31 10�5 1.76 10�2 0.36 2.81
e1t -4.31 10�5 1.53 10�2 0.59 3.30

Table A24: Statistics on the returns Yt, Zt and on the residuals �t and e1t
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� After the crash Yt and Zt (08/09/1998 - 30/11/1998 (60 points)).

We obtain the following models on Zt:

Zt = �0:29Zt�5 + �t:

The standard deviation of the parameter is equal to 0.13. We obtain the
following model for the cross-correlation between Yt and �t:

�t = 0:38Yt + 0:40Yt�1 + e1t :

The standard deviation of the both parameters is equal to 0.16. Moreover,
we adjust the following model for e1t :

e1t = �0:31e1t�4 + e2t :

The standard deviation of the parameter is equal to 0.13. Using these mod-
elizations, we obtain the following model between Yt and Zt:

Zt = 0:38Yt + 0:40Yt�1 � 0:11Yt�5 � 0:12Yt�6 + 0:03Yt�10 + 0:03Yt�11

+e2t � 0:31e2t�4 � 0:29e2t�5 + 0:10e2t�8 + 0:09e2t�9:

Series mean standard de-
viation

skewness kurtosis

Yt 5.99 10�4 1.86 10�2 -0.22 2.96
Zt 1.33 10�3 2.71 10�2 1.48 7.90
�t 9.35 10�5 2.60 10�2 1.16 6.49
e1t 8.28 10�4 2.27 10�2 0.91 5.53
e2t 1.36 10�3 2.16 10�2 1.45 7.35

Table A25: Statistics on the series Yt, Zt, �t, e
1
t and e2t

� Including the crash Yt and Zt (04/06/1998 - 30/11/1998 (127 points)).

We obtain the following model for the cross-correlation between Yt and
Zt:

Zt = 0:44Yt + 0:38Yt�1 + e1t :

The standard deviation of the both parameters is equal to 0.11.

Series mean standard de-
viation

skewness kurtosis

Yt -2.69 10�4 1.67 10�2 -0.25 3.18
Zt 4.31 10�4 2.36 10�2 1.33 7.38
e1t 9.83 10�5 2.13 10�2 1.00 6.58

Table A26: Statistics on the series Yt, Zt and e1t
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