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ABSTRACT 

We propose a new approach to mixed-frequency regressions in a high-dimensional 
environment that resorts to Group Lasso penalization and Bayesian techniques for 
estimation and inference. To improve the sparse recovery ability of the model, we also 
consider a Group Lasso with a spike-and-slab prior. Penalty hyper-parameters governing 
the model shrinkage are automatically tuned via an adaptive MCMC algorithm. Simulations 
show that the proposed models have good selection and forecasting performance, even 
when the design matrix presents high cross-correlation. When applied to U.S. GDP data, 
the results suggest that financial variables may have some, although limited, short-term 
predictive content. 
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NON-TECHNICAL SUMMARY 

The outstanding increase in the availability of economic data has led econometricians to 
the development of new regression techniques based on Machine Learning algorithms, 
such as the family of penalized regressions. This consists in regressions with a modified 
objective function, such that coefficients estimated close to zero are shrunk to exactly zero, 
leading to simultaneous selection and estimation of coefficients associated to relevant 
variables only. While some of these techniques have been successfully applied to 
multivariate and usually highly parameterized macroeconomic models, such as VARs, only 
a few contributions in the literature have paid attention to mixed-frequency (MIDAS) 
regressions. In the classic MIDAS framework, the researcher can regress high-frequency 
variables (e.g. monthly variables such as surveys) directly on low-frequency variables (e.g. 
quarterly variables such as GDP) by matching the sampling frequency through specific 
aggregating (weighting) functions. The inclusion of many high-frequency variables into 
MIDAS regressions may nevertheless lead to overparameterized models, with poor 
predictive performance. This happens because the MIDAS regression approach can 
efficiently address the dimensionality issue arising from the number of high-frequency lags 
in the model, but not that arising from the number of high-frequency variables. Hence, 
recent literature has focused on MIDAS penalized regressions, based mainly on the so-
called Lasso and Elastic-Net penalizations.  
In the present paper, we propose a similar approach, but we depart from the existing 
literature on several points. First, we consider MIDAS regressions resorting to Almon lag 
polynomial weighting schemes, which depend only on a bunch of functional parameters 
governing the shape of the weighting function and keep linearity in the regression model. 
Second, we consider a Group Lasso penalty, which operates on distinct groups of 
regressors, and we set as many groups as the number of high-frequency predictors, 
allowing each group to include the entire Almon lag polynomial of each predictor. This 
grouping structure is motivated by the fact that if one high-frequency predictor is 
irrelevant, it should be expected that zero-coefficients occur in all the parameters of its lag 
polynomial. Third, we implement Bayesian techniques for the estimation of our penalized 
MIDAS regressions. The Bayesian approach offers two attractive features in our 
framework. The first one is the inclusion of spike-and-slab priors that, combined with the 
penalized likelihood approach, aim at improving the selection ability of the model by 
adding a probabilistic recovery layer to the hierarchy. The second one is the estimation of 
the penalty hyper-parameters through an automatic and data-driven approach that does not 
resort to extremely time consuming pilot runs. In this paper we consider an algorithm 
based on stochastic approximations, which consists in approximating the steps necessary to 
estimate the hyper-parameters in such a way that simple analytic solutions can be used. It 
turns out that penalty hyper-parameters can be automatically tuned with a small 
computational effort compared to existing and very popular alternative algorithms. We 
show through simple numerical experiments (see Figure below) that the suggested 
procedure works well in our framework: penalty hyper-parameters (𝜆𝜆) converge fairly 
quickly to their optimal values (first panel), such that the estimated coefficients (𝛽𝛽) for 
irrelevant predictors are correctly centered at zero with small variance (second panel). Most 
importantly, the results points to substantial computational gains compared to alternative 
algorithms that we evaluate by a factor of 1 over 15. 
We use our MIDAS models in an empirical forecasting application to U.S. GDP growth. 
We consider 42 real and financial indicators, sampled at monthly, weekly, and daily 
frequencies. We show that our models can provide superior point and density forecasts at 
short-term horizons (nowcasting and 1-quarter-ahead) compared to simple as well 
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sophisticated competing models. Further, the results suggest that high-frequency financial 
variables may have some, although limited, short-term predictive content for the GDP. 
 

Figure. Convergence of penalty hyper-parameters (𝜆𝜆) over Gibbs sampler iterations and 
posterior distributions of regression parameters (𝛽𝛽) 

 
 
 

 

Régressions pénalisées MIDAS bayésiennes : 
estimation, sélection et prévision 

RÉSUMÉ 
Nous proposons une nouvelle méthode pour modéliser et prévoir avec des régressions à 
fréquences mixtes (MIDAS) en présence d'un nombre important de prédicteurs. Notre 
méthode s’appuie sur des régressions pénalisées telles que le Group Lasso, ainsi que sur 
des techniques Bayésiennes pour l’estimation des paramètres. Pour améliorer la capacité de 
sélection des variables du modèle, nous considérons également un Group Lasso augmenté 
avec des à priori de type spike-and-slab. Les hyper-paramètres de pénalisation qui 
gouvernent la sélection des variables sont calibrés automatiquement à partir d’un 
algorithme MCMC adaptatif. Des simulations Monte Carlo montrent que les modèles 
proposés présentent des performances en- et hors-échantillon très satisfaisantes, y compris 
quand les régresseurs sont très corrélés. Dans une application empirique sur le PIB des 
Etats-Unis, les résultats suggèrent que des variables financières à haute-fréquence 
(journalière) peuvent contribuer, bien que de manière limitée, à la prévision de court terme 
du PIB. 
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1. Introduction

Mixed-data sampling (MIDAS) models (Ghysels et al., 2005; Andreou et al., 2010) have been

intensively used to forecast low frequency series, such as GDP, using monthly, weekly or daily predic-

tors (Clements and Galvão, 2008, 2009; Kuzin et al., 2011; Andreou et al., 2013). This success relies

mainly on the parsimonious and theoretically efficient treatment of the time-aggregation problem,

compared to a traditional equal-weight approach. Indeed, data sampled at different frequencies are

matched in a regression framework by using weighting schemes that resort to functional lag poly-

nomials, where only a small number of hyperparameters that govern the shape of the aggregation

function need to be estimated (Ghysels et al., 2007). However, one important issue with these mod-

els is the selection of predictors in presence of large datasets, as the inclusion of many high-frequency

variables into MIDAS regressions may easily lead to overparameterized models, in-sample overfit-

ting, and poor predictive performance. This happens because the MIDAS regression approach can

efficiently address the dimensionality issue arising from the number of high-frequency lags in the

model, but not that arising from the number of high-frequency variables. In the traditional MIDAS

framework, a solution to this problem would consist in exploring a sub-space of possible models and

selecting the best one according to some in-sample or out-of-sample criteria. However, this strat-

egy would typically result in a prohibitive task, as enumeration could inefficiently imply too many

models to explore. Hence, a number of alternative strategies have been proposed in the literature.

For instance, Castle et al. (2009), Castle and Hendry (2010), and Bec and Mogliani (2015) use un-

restricted MIDAS (U-MIDAS) regressions (Foroni et al., 2015) in a General-to-Specific framework

(GETS) to jointly select relevant predictors and high-frequency lags through an automatic model

reduction algorithm (Autometrics; Doornik, 2009). Marcellino and Schumacher (2010) suggest to

include into MIDAS regressions common factors (static or dynamic) extracted from high-frequency

variables (factor-MIDAS). Bessec (2013), Bulligan et al. (2015), and Girardi et al. (2017) pre-select

instead high-frequency variables according to hard- and soft-thresholding rules (Bai and Ng, 2008)

prior to factors extraction (targeted factor-MIDAS).

Recently, the literature has been increasingly focusing on Machine Learning and penalized re-

gressions techniques for macroeconomic applications with large or very large variable dimension

(Korobilis, 2013; Gefang, 2014; Koop et al., in press; Korobilis and Pettenuzzo, in press). Never-

theless, so far only a few contributions have paid attention to MIDAS regressions. For instance,

Marsilli (2014) proposes a functional MIDAS combined with a Lasso objective function, which is

solved in 1-step through a non-linear optimization algorithm. Siliverstovs (2017) proposes a 2-step

targeted factor-MIDAS approach in the spirit of Bai and Ng (2008), where the soft-thresholding

rule is built around U-MIDAS regressions combined with an Elastic-Net objective function. More

recently, Uematsu and Tanaka (in press) propose a theoretical framework for penalized regressions

with Lasso, SCAD, and MCP penalties in a general high-dimensional environment, where the num-

ber of predictors diverges sub-exponentially from the number of observations. In this framework,
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mixed-frequency regressions represent a special case of the general model. Indeed, Uematsu and

Tanaka (in press) focus on MIDAS regressions with unconstrained lag polynomials (U-MIDAS), such

that the number of parameters to estimate grows with both the number of high-frequency regressors

and the length of the unconstrained lag function. Compared to Marsilli (2014), the resulting model

is linear in parameters and it does not require the estimation of functional parameters for the dis-

tributed lag structure, which allows the model to deal with a large number of predictors. Further,

compared to Siliverstovs (2017), estimation of model parameters and selection of relevant predic-

tors/lags is performed in one step. However, the approach proposed by Uematsu and Tanaka (in

press) may suffer from two well-known limitations of the Lasso. First, the Lasso cannot select more

predictors than the number of observations. In many macroeconomic applications with monthly or

daily high-frequency predictors, this constraint could be easily saturated even when the underlying

U-MIDAS regression accounts only for a reasonable number of unrestricted lags. Second, and most

importantly, the Lasso might not be generally suited in a mixed-frequency framework, because lags

of the high-frequency predictors are by construction highly correlated, and hence the Lasso would

tend to randomly select one lag and shrink the remaining unrestricted lag coefficients to zero.

In the present paper, we follow a similar strategy based on penalized regressions, but we propose

to address these two issues by resorting to Almon lag polynomials and Group Lasso penalty. Dis-

tributed Almon lags allow us to keep a linear and parsimonious framework, as under this weighting

scheme mixed-frequency regressions depend only on a bunch of functional parameters governing the

shape of the weighting structure and can be easily cast as linear regression models (direct method).

Further, linear restrictions on the lag polynomials can be placed to regularize the behavior of the

weighting structure, consistently with some expected features of macroeconomic data. The Group

Lasso penalty operates on distinct groups of regressors, rather than individual variables, where the

grouping structure is chosen ex-ante by the researcher, usually according to some prior knowledge

(common features, classification, etc.). In the present framework of distributed lags, we set as

many groups as the number of high-frequency predictors, i.e. we let each group include one lag

polynomial. This grouping structure is motivated by the fact that if one high-frequency predictor

is irrelevant, it should be expected that zero-coefficients occur in all the parameters of its lag poly-

nomial. Hence, unlike Uematsu and Tanaka (in press), selection is performed at the level of the

entire lag polynomial, rather than on individual terms of the lag weighting function, overcoming

the problem of extremely high correlation between lags.

A second contribution of the present paper is the implementation of Bayesian techniques for

the estimation of our penalized MIDAS regressions. Following the recent literature on Bayesian

penalized regressions and adaptive penalty schemes (Park and Casella, 2008; Wang and Leng, 2008;

Kyung et al., 2010; Leng et al., 2014), we introduce a Bayesian MIDAS Adaptive Group Lasso, which

under some conditions enjoys the oracle property by placing a different penalty term to each lag

polynomial. We show that the Bayesian framework provides a simple hierarchical representation of

this model, such that a Gibbs sampler can be used to draw efficiently from the posterior distribution
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of the parameters. Nonetheless, the Bayesian approach offers two additional attractive features in

our framework. The first one is the inclusion of spike-and-slab priors that, combined with the

penalized likelihood approach, aim at improving the sparsity recovery ability of the model (Zhang

et al., 2014; Zhao and Sarkar, 2015; Xu and Ghosh, 2015; Ročková and George, 2018). We hence

derive a Bayesian MIDAS Adaptive Group Lasso with spike-and-slab priors, which provides two

shrinkage effects (zero point mass at the spike part of the prior and Group Lasso at the slab part)

and it is expected to facilitate variable selection at the group level and shrinkage within the groups.

The second one is the estimation of the penalty hyper-parameters through an automatic and data-

driven approach that does not resort to extremely time consuming pilot runs. We depart from the

Monte Carlo EM algorithm (MCEM) proposed by Casella (2001), which complements the Gibbs

sampler and provides marginal maximum likelihood estimates of the hyper-parameters (Park and

Casella, 2008; Kyung et al., 2010; Leng et al., 2014), and we consider instead an adaptive MCMC

algorithm based on stochastic approximations to solve the maximization problem (Atchadé, 2011;

Atchadé et al., 2011). The algorithm consists in approximating both the E- and M-steps involved

in the MCEM procedure, such that simple analytic solutions can be derived from the full posterior

distribution of the unknown parameters of the Bayesian MIDAS model. Then, one step of the

gradient algorithm can be used to update the penalty hyper-parameters with a small computational

effort. We show through numerical experiments that substantial computational gains are obtained

compared to the MCEM algorithm.

Estimation, selection and predictive accuracy are assessed through Monte Carlo simulations.

Results show that the proposed models present very good in-sample and out-of-sample performance.

In particular, variable selection, evaluated using a credible interval approach (Group Lasso) or a

median estimator approach (Group Lasso with spike-and-slab), is achieved with high probability in a

very sparse setting. Results are quite robust to the size of the design matrix (up to 50 high-frequency

predictors in the Monte Carlo experiments) and to the choice of the shape of the weighting scheme

in the DGP. However, the estimation and selection performance generally deteriorates with very

high cross-correlation between the original high-frequency predictors. This outcome is nevertheless

consistent with the theory, as the Group Lasso is not designed to handle strong collinearity between

regressors. Finally, we illustrate our approach in an empirical forecasting application to U.S. GDP

growth with 42 real and financial indicators sampled at monthly, weekly, and daily frequencies.

We show that our models can provide superior point and density forecasts at short-term horizons

(nowcasting and 1-quarter-ahead) compared to simple as well sophisticated competing models, such

as Bayesian Model Averaging and optimally combined univariate Bayesian MIDAS models.

The paper is structured as follows. Sections 2 and 3 introduce the MIDAS penalized regressions

and the Bayesian MIDAS framework. In Section 4 we discuss the Empirical Bayes approach used

to automatically tune the penalty hyper-parameters. Section 5 investigates the estimation and

predictive features of our models via Monte Carlo simulations. In Section 6, we report an empirical

application to U.S. GDP. Finally, Section 7 concludes.
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2. MIDAS penalized regressions

2.1. Basic MIDAS setup

Consider the variable yt, which is observed at discrete times (i.e. only once between t − 1 and

t), and suppose that we want to use information stemming from a set of K predictors x
(m)
t =

(x
(m)
1,t , . . . , x

(m)
K,t )

′, which are observed m times between t − 1 and t, for forecasting purposes. The

variables yt and x
(m)
k,t , for k = 1, . . . ,K, are said to be sampled at different frequencies. For instance,

quarterly and monthly frequencies, respectively, in which case m = 3. Let us define the high-

frequency lag operator L1/m , such that L1/mx
(m)
k,t = x

(m)
k,t−1/m

. Further, let h = 0, 1/m, 2/m, 3/m, . . .

be an (arbitrary) forecast horizon, where h = 0 denotes a nowcast with high-frequency information

fully matching the low-frequency sample. The MIDAS approach plugs-in the high-frequency lagged

structure of predictors x
(m)
k,t−h in a regression model for the low-frequency response variable yt as

follows:

yt = α+
K∑
k=1

B
(
L1/m ;θk

)
x

(m)
k,t−h + εt, (1)

where εt is i.i.d. with mean zero and variance σ2 <∞, and B (L1/m ;θk) =
∑C−1

c=0 B (c;θk)L
c/m is a

weighting structure which depends on the weighting function B (c;θk), a vector of p+ 1 parameters

θk = (θk,0, θk,1, . . . , θk,p), and a maximum lag length C. Equation (1) can be also generalized to allow

for lags of the dependent variable, as well as additional predictors sampled at multiple frequencies,

including the same frequency as yt. Several functional forms for B (c;θk) have been proposed in the

literature, such as the exponential Almon or the Beta lag polynomials (Ghysels et al., 2007). In this

study, we consider the simple polynomial approximation of B (L1/m ;θk) provided by the Almon lag

polynomial B (c;θk) =
∑p

i=0 θk,ic
i. Under the so-called “direct method” (Cooper, 1972), Equation

(1) with Almon lag polynomials can be reparameterized as:

yt = α+
K∑
k=1

p∑
i=0

θk,iz
(m)
k,i,t−h + εt (2)

or in more compact form:

yt = α+ θ′Z
(m)
t−h + εt (3)

where θ = (θ1, . . . ,θK)′, Z
(m)
t =

(
z

(m)
1,t , . . . , z

(m)
K,t

)′
, and z

(m)
k,t is a vector of linear combinations of the

observed high-frequency regressors, z
(m)
k,t = Qx

(m)
k,t , with x

(m)
k,t =

(
x

(m)
k,t , x

(m)
k,t−1/m

, . . . , x
(m)
k,t−(C − 1)/m

)′
a
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(C × 1) vector of high-frequency lags and

Q =



1 1 1 · · · 1

0 1 2 · · · (C − 1)

0 1 22 · · · (C − 1)2

...
...

...
. . .

...

0 1 2p · · · (C − 1)p


(4)

a (p + 1 × C) polynomial weighting matrix. The h-step-ahead direct forecast ŷT can be hence

obtained using (3) and sample information known at time T − h:

ŷT = α̂+ θ̂
′
Z

(m)
T−h. (5)

The main advantage of the Almon lag polynomial is that (3) is linear and parsimonious, as

it depends only on K(p + 1) parameters, and can be estimated consistently and efficiently via

standard methods. However, two additional advantages make the Almon lag polynomial particularly

attractive in the present framework. First, linear restrictions on the value and slope of the lag

polynomial B (c;θk) may be placed for any c ∈ (0, C − 1) (Smith and Giles, 1976). Restrictions

such as B (c;θk) = 0 and ∇cB (c;θk) = 0, with c evaluated at C − 1, may be desirable and

economically meaningful, as they jointly constrain the weighting structure to tail off slowly to zero.

This can be obtained by modifying the Q matrix consistently with the form and the number of

restrictions considered. As a result, the number of parameters in (2) reduces from K(p + 1) to

K(p − r + 1), where r ≤ p is the number of restrictions. Second, a slope coefficient that captures

the overall impact of lagged values of x
(m)
k,t−h on yt can be easily computed as β̂k = ιCQ′θ̂

′
, where

ιC is a (C × 1) row vector of ones. This may be used to evaluate the statistical significance of each

predictor in the regression and to implement model selection.

2.2. MIDAS penalized regressions

Although appealing, the MIDAS regression presented above may be easily affected by over-

parameterization and multicollinarity in presence of a large number of potentially correlated pre-

dictors.1 To achieve variable selection and parameter estimation simultaneously, Tibshirani (1996)

proposed the least absolute shrinkage and selection operator (Lasso). 2 In a nutshell, the Lasso is

a penalized least squares procedure, in which the loss function LT (θ) is minimized after setting a

constraint on the `1 norm of the vector of regression coefficients, where the amount of penalization

1The direct method used in regression (3) may be also hampered by multicollinearity in the artificial variables

Z
(m)
t (Cooper, 1972). However, if p is small, the imprecision arising from multicollinearity may be compensated by

the lower number of coefficients to be estimated.
2In the following discussion and in the next sections, we shall assume for convenience that yt is centered at 0 and

regressors Z
(m)
t−h are standardized.
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is controlled by a parameter λ. The objective function of the Lasso takes the form:

QL(θ) = T−1LT (θ) + λ‖θ‖1, (6)

where LT (θ) is the negative log-likelihood function, ‖θ‖1 =
∑K

k=1

∑p−r
i=0 |θk,i| denotes the `1 norm,

and λ ≥ 0.

However, it is well known (Zou, 2006; Zhao and Yu, 2006; Yuan and Lin, 2007) that the Lasso

estimator does not possess the oracle property, which guarantees that the estimator performs as well

as if the true model had been revealed to the researcher in advance by an oracle (Callot and Kock,

2014).3 This can be achieved if and only if the so-called irrepresentable condition on the design

matrix is satisfied and the penalization parameter λ is chosen judiciously.4 If this condition does

not hold, the Lasso estimator chooses the wrong model with non-vanishing probability, regardless

of the sample size and how λ is chosen. This happens because the Lasso estimator in (6) uses

the same amount of shrinkage for each regression coefficient, leading to estimation inefficiency and

selection inconsistency. To address this issue, Zou (2006) proposes the Adaptive Lasso (AL), where

a different amount of shrinkage (i.e. a different penalty term) is used for each individual regression

coefficient. The objective function of the AL takes the form:

QAL(θ) = T−1LT (θ) +

K∑
k=1

p−r∑
i=0

λk,i|θk,i| (7)

However, the AL may not be suited in the present framework, as lags of high-frequency predictors

are by construction highly correlated and hence the Lasso estimator would tend to select randomly

only one lag and shrink the remaining polynomial coefficients to zero. The theoretical rationale for

a failure in the selection ability of the AL in our mixed-frequency setting is similar to that pointed

out by Efron et al. (2004) and Zou and Hastie (2005), and it is mostly related to the lack of strict

convexity in the Lasso penalty. To address this issue, we propose a solution based on the Adaptive

Group Lasso (AGL) estimator outlined in Wang and Leng (2008), who extend to adaptive shrinkage

the Group Lasso estimator of Yuan and Lin (2006). This approach introduces a penalty to a group of

regressors, rather than a single regressor, that may lead (if the group structure is carefully set by the

researcher) to a finite sample improvement of the AL. In the present framework, it seems reasonable

to define a group as each of the k vectors of lag polynomials in the model. This grouping structure

3According to Fan and Li (2001), an estimator is said to possess the oracle property if i) it identifies the right

subset model, i.e. P (Â = A)→ 1 as T →∞, where A is the true active set of coefficients, and ii) it has the optimal

estimation rate
√
T (θ̂Â − θ

∗
A)

d→ N (0,ΣA) as T → ∞, i.e. it estimates the non-zero coefficients with the same rate
and asymptotic distribution as if only the relevant variables had been included in the model.

4The irrepresentable condition states that the predictors not in the model are not representable by predictors in
the true model (i.e. the irrelevant predictors are roughly orthogonal to the relevant ones). This represents a necessary
and sufficient condition for exact recovery of the non-zero coefficients, but it can be easily violated in cases where the
design matrix exhibits too strong (empirical) correlations (collinearity between predictors).
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is motivated by the fact that if one high-frequency predictor is irrelevant, it should be expected

that zero-coefficients occur in all the parameters of its lag polynomial. Hence, unlike the AL, the

AGL implies a single hyper-parameter associated to each high-frequency variable. This strategy

should overcome, at least in part, the limitation of the Lasso in presence of strong correlation in the

design matrix arising from the correlation among lags of the transformed high-frequency predictors.

Accordingly, let us partition the parameter vector θ into G disjoint groups, θj , for j = 1, . . . , G,

each of size gj . Despite the change in notation (necessary to avoid confusion), it is straightforward

that G = K, θj = θk, gj = p−r+1, and g̃ ≡
∑G

j=1 gj = K(p−r+1). Hence, the objective function

of the AGL takes the form:

QAGL(θ) = T−1LT (θ) +
G∑
j=1

λj‖θj‖2 (8)

where ‖θj‖2 = (θ′jθj)
1/2 denotes the `2 norm. As for the asymptotic properties, Wang and Leng

(2008) establish the consistency and the oracle property of the AGL. However, as suggested by

Callot and Kock (2014), the AGL possesses a variant of the oracle property if one correctly groups

the potential predictors. This happens because selection consistency concerns all groups consisting

only of parameters whose true value is zero, while for those parameters whose true value is zero

but are located in an active group, the oracle property states that their asymptotic distribution is

equivalent to the one of least squares including all variables. Hence, the AGL only performs better

than least squares including all variables if one is able to identify groups consisting of parameters

whose true value is zero. In the present framework, we expect that grouping lag polynomials should

attenuate this issue.

3. Bayesian MIDAS penalized regressions

Several approaches, such as the LARS (Efron et al., 2004) and the Group LARS (Yuan and

Lin, 2006) algorithms (further modified to account for adaptive shrinkage), have been proposed in

the literature to estimate penalized regressions. In this paper, we consider a Bayesian hierarchical

approach (Park and Casella, 2008; Kyung et al., 2010), which has several advantages compared to

the frequentist approach. First, Bayesian methods exploit model inference via posterior distributions

of parameters, which usually provide a valid measure of standard errors based on a geometrically

ergodic Markov chain (Khare and Hobert, 2013).5 Second, they provide a flexible way of estimating

the penalty parameters, along with other parameters in the model. Lastly, they provide forecasts

5It is nevertheless worth noting that the results in Khare and Hobert (2013) hold as long as the penalty hyper-
parameters are assumed fixed, while convergence properties of the MCMC algorithm for the full Bayesian penalized
regression models are still unknown (see also Roy and Chakraborty, 2017).

7



via predictive distributions. In what follows, we present in detail the hierarchical structure of the

proposed Bayesian MIDAS penalized models.

3.1. Bayesian MIDAS adaptive Group Lasso

As noted by Tibshirani (1996), the Lasso estimator can be interpreted as the Bayes posterior

mode using normal likelihood and independent Laplace (double-exponential) prior for the regression

coefficients. Accordingly, Park and Casella (2008) propose a Bayesian Lasso where the `1 penalty

corresponds to a conditional Laplace prior that can be represented as a scale mixture of Normals

with an exponential mixing density (Andrews and Mallows, 1974). For the Bayesian Group Lasso,

Kyung et al. (2010) consider a multivariate generalization of the double exponential prior and they

show that the conditional prior of θ can be expressed as a scale mixture of Normals with Gamma

hyper-priors:

π(θ|σ2) ∝ exp

− λ√
σ2

G∑
j=1

‖θj‖2


For the Bayesian Adaptive Group Lasso, the conditional prior for θ becomes:

π(θ|σ2) ∝
G∏
j=1

∫ ∞
0

(
1

2πσ2τ2
j

) gj+1

2

exp

(
−‖θj‖

2
2

2σ2τ2
j

)
fΓ

(
τ2
j ;

(gj + 1)

2
,
λ2
j

2

)
dτ2
j

∝ exp

− 1√
σ2

G∑
j=1

λj‖θj‖2

 (9)

where fΓ denotes the pdf of a Gamma distribution, with shape (gj + 1)/2 and rate λ2
j/2. This

suggests the following hierarchical representation of the Bayesian MIDAS Adaptive Group Lasso

model (BMIDAS-AGL):

y|Z,θ, σ2 ∼ N
(
θ′Z, σ2IT

)
θj |τ2

j , σ
2 ∼ N (0, σ2τ2

j Igj ) j = 1, . . . , G

τ2
j ∼ Gamma

(
gj + 1

2
,
λ2
j

2

)

σ2 ∼ iGamma (a1, b1)

where τ = (τ2
1 , . . . , τ

2
G), λ = (λ2

1, . . . , λ
2
G), and Igj is the identity matrix of order gj . The full

posterior distribution of all the unknown parameters conditional on the data and the penalty hyper-
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parameters is:

π(θ, τ , σ2|λ, y,Z) ∝
(
σ2
)−T+g̃−1

2
−a1−1

exp

[
− 1

2σ2
‖y − θ′Z‖22 −

b1
σ2

]

×
G∏
j=1

(
1

2πσ2τ2
j

) gj
2

exp

(
−‖θj‖

2
2

2σ2τ2
j

)

×
G∏
j=1

(
λ2
j

) gj+1

2
(
τ2
j

) gj+1

2
−1

exp

(
−
λ2
j

2
τ2
j

)
(10)

We use an efficient block Gibbs sampler (Hobert and Geyer, 1998) for simulating from this posterior

distribution. Let’s denote θ−j = (θ1, . . . ,θj−1,θj+1, . . . ,θG)′ the θ vector without the jth high-

frequency lag polynomial, and Zj and Z−j partitions of the design matrix corresponding to θj

and θ−j , respectively. With a conjugate Gamma prior placed on the penalty hyper-parameters,

λ2
j ∼ Gamma (a2, b2), the full conditional posteriors are:

θj |θ−j , σ2, τ ,λ, y,Z ∼ N
(
A−1
j Cj , σ

2A−1
j

)
τ−2
j |θ, σ

2,λ, y,Z ∼ iGaussian

(
λjσ

‖θj‖2
, λ2

j

)

σ2|θ, τ ,λ, y,Z ∼ iGamma

T + g̃ − 1

2
+ a1,

1

2
‖y − θ′Z‖22 +

1

2

G∑
j=1

‖θj‖22
τ2
j

+ b1


λ2
j |θ, σ2, τ , y,Z ∼ Gamma

(
gj + 1

2
+ a2,

τ2
j

2
+ b2

)

where Aj = Z′jZj + τ−2
j Igj , and Cj = Z′j

(
y − θ′−jZ−j

)
.

3.2. Bayesian MIDAS adaptive Group Lasso with Spike and Slab Prior

A typical feature of the model outlined above is that a sparse solution cannot be perfectly

achieved, as the Bayesian approach provides a shrinkage of the coefficients towards zero, but usu-

ally not exactly to zero. Spike-and-slab methods (Mitchell and Beauchamp, 1988; George and

McCulloch, 1993) are well known approaches for probabilistic sparse recovery, where the prior for

the regression coefficients is specified as a mixture distribution taking various forms (e.g. two-point

uniform and degenerate, or multivariate Gaussian). These approaches differ substantially from

the penalized likelihood approach implemented so far in our setup, as the latter induces sparsity

through penalty functions whose geometry is exerted in constrained optimization (Ročková and

George, 2018). However, recent literature has increasingly focused on combining the potential ad-

vantages of the two methods by adding a point mass mixture prior to penalized regressions, and

9



letting the slab part in the prior be a Laplace distribution (Zhang et al., 2014; Zhao and Sarkar,

2015; Ročková and George, 2018). In the present study, we follow Xu and Ghosh (2015) and we

consider a Bayesian Group Lasso with spike-and-slab priors for group variable selection. Unlike the

group selection method described in Section 3.1, this prior provides two shrinkage effects: the point

mass at 0 (the spike part of the prior), which leads to exact zero coefficients, and the Group Lasso

prior on the slab part. The combination of these two components together is expected to facilitate

variable selection at the group level and to shrink coefficients in the selected groups simultaneously.

Similarly to the BMIDAS-AGL, the hierarchical Bayesian MIDAS Adaptive Group Lasso with

spike-and-slab priors (BMIDAS-AGL-SS) is:

y|Z,θ, σ2 ∼ N
(
θ′Z, σ2IT

)
θj |τ2

j , σ
2, π0 ∼ (1− π0)N (0, σ2τ2

j Igj ) + π0δ0(θj) j = 1, . . . , G

τ2
j ∼ Gamma

(
gj + 1

2
,
λ2
j

2

)

σ2 ∼ iGamma (a1, b1)

π0 ∼ Beta (c, d)

where δ0(θj) denotes a point mass at 0 ∈ Rgj . Note that we place a conjugate Beta prior on π0, i.e.

the prior probability to all sub-models, rather than a fixed value. We follow Castillo et al. (2015)

and Ročková and George (2018), and we set c = 1 and d = G. The full posterior distribution of all

the unknown parameters conditional on the data and the penalty hyper-parameters is:

π(θ, τ , σ2, π0|λ, y,Z) ∝
(
σ2
)−T+g̃−1

2
−a1−1

exp

[
− 1

2σ2
‖y − θ′Z‖22 −

b1
σ2

]
πc−1

0 (1− π0)d−1

×
G∏
j=1

π0

(
1

2πσ2τ2
j

) gj
2

exp

(
−‖θj‖

2
2

2σ2τ2
j

)
Iθj 6=0 + (1− π0)δ0(θj)


×

G∏
j=1

(
λ2
j

) gj+1

2
(
τ2
j

) gj+1

2
−1

exp

(
−
λ2
j

2
τ2
j

)
(11)

The full conditional posteriors are:

θj |θ−j , σ2, τ ,λ,γ,π, π0, y,Z ∼ γj N
(
A−1
j Cj , σ

2A−1
j

)
+ (1− γj) δ0(θj)

τ−2
j |θ, σ

2,λ,γ,π, π0, y,Z ∼ γj iGaussian

(
λjσ

‖θj‖2
, λ2

j

)
+ (1− γj) Gamma

(
gj + 1

2
,
λ2
j

2

)
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σ2|θ, τ ,λ,γ,π, π0, y,Z ∼ iGamma

T + G̃− 1

2
+ a1,

1

2
‖y − θ′Z‖22 +

1

2

G∑
j=1

‖θj‖22
τ2
j

+ b1


γj |θ, σ2, τ ,λ,π, π0, y,Z ∼ Bernoulli (πj)

λ2
j |θ, σ2, τ ,γ,π, π0, y,Z ∼ Gamma

(
gj + 1

2
+ a2,

τ2
j

2
+ b2

)

π0|θ, σ2, τ ,λ,γ,π, y,Z ∼ Beta

 G∑
j=1

γj + c,
G∑
j=1

(1− γj) + d


where Aj = Z′jZj + τ−2

j Igj , Cj = Z′j
(
y − θ′−jZ−j

)
, π = (π1, . . . , πG), γ = (γ1, . . . , γG), G̃ =∑G

j=1 gjγj , and

πj = π(θj 6= 0|θ−j , σ2, τ ,λ,γ, π0, y,Z) =
π0

[
(τ2
j )−

gj
2 |Aj |−

1
2 exp

(
1

2σ2 C′jA
−1
j Cj

)]
1− π0

[
1− (τ2

j )−
gj
2 |Aj |−

1
2 exp

(
1

2σ2 C′jA
−1
j Cj

)] .
4. Tuning the penalty hyper-parameters

The hierarchical models presented in Section 3 treat the penalty parameters as hyper-parameters,

i.e. as random variables with gamma prior distributions π(λ) and gamma posterior distributions

π(λ|y,φ), where φ = (θ, τ , σ2)′. However, the main drawback of this approach is that these

posterior distributions can be sensitive to the choice of the prior. An alternative approach resorts

to an Empirical Bayes estimation of the hyper-parameters, i.e. using the data to propose an

estimate of λ, which can be obtained through marginal maximum likelihood. However, in the

present framework, the marginal distribution π(y|λ) =
∫
fφ,λ(y)π(φ|λ)dφ, where fφ,λ(y) is the

likelihood, is not available in closed form. To deal with this issue, Park and Casella (2008) and

Kyung et al. (2010) suggest to implement the Monte Carlo EM algorithm (MCEM) proposed by

Casella (2001), which complements the Gibbs sampler and provides marginal maximum likelihood

estimates of the hyper-parameters. The idea is to treat the parameters φ as missing data and

then use an algorithm to iteratively approximate the hyper-parameters, substituting Monte Carlo

estimates for any expected values that cannot be computed explicitly. More specifically, the MCEM

algorithm of Casella (2001) uses N Monte Carlo iterations to maximize the marginal log-likelihood

log π(y|λ) and involves two steps. First (E-step), for each n = 1, . . . , N , an expectation function is

solved for a given λ(n):

Q(λ|λ(n)) =

∫
log [fφ,λ(y)π(φ|λ)]π(φ|y,λ(n))dφ

11



where π(y,φ|λ) = fφ,λ(y)π(φ|λ) is the joint density of the observed and missing data, respectively,

given λ, and π(φ|y,λ(n)) is the density of the missing data conditional on the observed data and λ(n)

(an initial value λ(0) is used to initialize the Monte Carlo). Then (M-step), Q(λ|λ(n)) is maximized

to give λ(n+1):

λ(n+1) = argmax
λ

Q(λ|λ(n))

For the models described in Section 3, simple analytic solutions can be used to compute λ(n+1)

(Park and Casella, 2008; Kyung et al., 2010). However, since π(φ|y,λ) is intractable, the algorithm

requires a simulation method to approximate the quantities of interest. A run of the Gibbs sampler

can then be used for this purpose.

From a computational point of view, the MCEM algorithm may be extremely expensive, as each

nth Monte Carlo iteration requires a fully converged Gibbs sampling from π(φ|y,λ(n)). Hence, a

serious trade-off between accuracy of the results (S Gibbs iterations) and computational efficiency

(N Monte Carlo iterations) may arise. In the present framework, careful attention must be paid to

this feature, because the computational burden implied by the Group Lasso increases dramatically

as the number of predictors increases (Yuan and Lin, 2006). To deal with this issue, in this work we

adopt an alternative Empirical Bayes approach that relies on a specific class of the so-called internal

adaptive MCMC algorithms, denoted controlled MCMC algorithm (see Atchadé et al., 2011). This

class makes use of stochastic approximation algorithms to solve maximization problems when the

likelihood function is intractable, by mimicking standard iterative methods such as the gradient

algorithm. This approach is therefore computationally efficient, because it requires only a single

Monte Carlo run (N = 1). Following Atchadé (2011), let us write the derivative of Q(λ|λ(s)) with

respect to λ as:

∇λQ(λ|λ(s)) =

∫
H(λ,φ)π(φ|y,λ(s))dφ

where H(λ,φ) = ∇λ log [fφ,λ(y)π(φ|λ)] = ∇λ log π(φ|λ), as the likelihood does not usually depend

on the hyper-parameters λ. Note the change in the superscript, from (n) Monte Carlo iteration

to (s) Gibbs sampler iteration, to avoid confusion. Using a stochastic approximation to solve the

maximization problem, i.e. replacing the full maximization of Q with one step of the gradient

algorithm, the solution to the EM algorithm takes the form:

λ(s+1) = λ(s) + a(s)∇λQ(λ(s)|λ(s))x = λ(s) + a(s)

∫
H(λ(s),φ)π(φ|y,λ(s))dφ

where a(s) is a step-size taking a Robbins-Monro form a(s) = 1/sq, with q ∈ (0.5, 1) (Lange,

1995). If the integral
∫
H(λ(s),φ)π(φ|y,λ(s))dφ is approximated by H(λ(s),φ(s+1)), we get an

approximate EM algorithm, where both E- and M-steps are approximately implemented. Hence,

12



marginal maximum likelihood estimates of the hyper-parameters, λ̂, and draws from the posterior

distribution of the parameters, π(φ|y, λ̂), are both obtained using a single run of the Gibbs sampler,

with s = 1, . . . , S. In the present framework, taking logs of the full posterior distributions (10) and

(11) and making the transformation ω = 1
2 log(λ), the function H(ω,φ) = ∇ω log π(φ|ω) takes the

form:

H(ω,φ) = (g + 1)− exp(2ω)� τ

where g = (g1, . . . , gG)′ and � is the element-wise product. Hence, the updating rule for ω is:

ω
(s+1)
j = ω

(s)
j + a(s)

[
(gj + 1)− exp

(
2ω

(s)
j

)
τ

2,(s+1)
j

]
from which we get λ(s+1) = exp(2ω(s+1)). The algorithm can be completed by allowing for a

stabilization procedure (e.g. truncation on random boundaries; Andrieu et al., 2005; Atchadé,

2011) ensuring the convergence of λ and the posterior distribution of φ towards λ̂ and π(φ|y, λ̂),

respectively. Details on the stabilization algorithm are reported in Appendix A.1.

4.1. Numerical illustration

We illustrate the main features and the computational advantage of the proposed methodology

using simulated data. For ease of exposition, the DGP follows a simple mixed-frequency model with

four predictors:

yt = β0 +
4∑

k=1

βk

C−1∑
c=0

B (c;ϑ)Lc/mx
(m)
k,t + εt,

where the regressors and the error term are iid draws from a standard normal distribution of length

T = 500. We set the true values (β0, β1, β2, β3, β4) = (1, 0, 1, 0, 0) and B (c;ϑ) is parameterized as

an exponential Almon lag function, with C = 12, m = 3, and ϑ = (0.10,−0.15), i.e. a fast-decaying

weighting function where about 90% of the weight is concentrated in the three most recent high-

frequency observations. We estimate the models presented in Section 3 using p = 3 and we tune

the penalty hyper-parameters λ using the stochastic approximation approach. We update λ in a

single run of the Gibbs sampler by drawing S = 400, 000 samples. The analysis is carried out using

MATLAB R2017a on a workstation with a 2.50GHz Intel Core i7-6500U CPU.

The evolution of λ across iterations (starting with λ
(0)
j = 1) is reported in the first panel of

Figure 1. Each point in the plots represents the 2000th update of λ provided by the stochastic

approximation approach for the BMIDAS-AGL model (solid line) and the BMIDAS-AGL-SS model

(dotted line). For both models, the hyper-parameters converge to fairly similar values. However,

while the convergence is steady and extremely fast for the active variable, the BMIDAS-AGL model

displays slower convergence for the penalty terms of the inactive set compared to the BMIDAS-
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Figure 1: Tuning the penalty hyper-parameters

Note: The first panel illustrates the evolution of the penalty hyper-parameters λ across iterations of the stochastic
approximation approach for BMIDAS-AGL (solid lines) and BMIDAS-AGL-SS model (dotted lines). The second
panel illustrates the posterior distributions of parameters β for BMIDAS-AGL (solid lines) and BMIDAS-AGL-SS
model (histogram) using the stochastic approximation approach, and the BIMDAS-AGL model using the MCEM
algorithm (dashed lines).

AGL-SS. Hence, it turns out that allowing for point mass at zero through the spike-and-slab prior

may not only improve the sparse recovery ability of the model but also enhance the convergence of

the penalty hyper-parameters. This is expected to reduce the variance of the posterior distribution

around the zero-point mass when draws of the coefficients belonging to the inactive set are assigned

(even with some low probability) to the slab part of the model. Results on the posterior densities

of β seem to confirm this expected feature. Posterior densities are identical for the active set and

display largest mass at zero for β1, β3, and β4, but the BMIDAS-AGL-SS model displays the lowest

variation around the point mass at exactly zero. Hence, by assigning small penalty (i.e. small

λs) to the relevant predictor and large penalty to the irrelevant predictors, both models display

correct variable selection and consistent estimates of the regression coefficients (Zou, 2006; Wang

and Leng, 2008; Zou and Zhang, 2009). Finally, these outcomes are compared to those obtained

by tuning the penalty hyper-parameters of the BMIDAS-AGL model using the MCEM algorithm

of Casella (2001) with a fairly reasonable amount of Monte Carlo runs (N = 200) and Gibbs draws

(S = 50, 000). A visual inspection of the second panel of Figure 1 suggests that posterior densities

from the MCEM algorithm are almost indistinguishable from those obtained using the stochastic

14



approximation approach, with the only exception of the coefficient β4. However, the computational

cost is substantially different across algorithms: for this simple simulation experiment and the

settings described above, the task is executed in less than 2 minutes with stochastic approximations,

against 30 minutes required by the MCEM algorithm.

5. Monte Carlo experiments

5.1. Design of the experiments

We evaluate the performance of the proposed models through Monte Carlo experiments. For

this purpose, we use the following DGP involving K = {30, 50} predictors sampled at frequency

m = 3 and T = 200 in-sample observations:

yt = α+
K∑
k=1

βk

C−1∑
c=0

B (c;ϑ)Lc/3x
(3)
k,t−h + εt

x
(3)
k,t = µ+ ρx

(3)
k,t−1/3

+ εk,t

B (c;ϑ) =
exp(ϑ1c+ ϑ2c

2)∑C−1
c=0 exp(ϑ1c+ ϑ2c2)

where B (c;ϑ) is parameterized as an exponential Almon lag function. Following Andreou et al.

(2010), we investigate three alternative weighting schemes that correspond to fast-decaying weights,

ϑ = (7 ∗ 10−4,−7 ∗ 10−2), slow-decaying weights, ϑ = (7 ∗ 10−4,−9 ∗ 10−3), and near-flat weights,

and ϑ = (0,−5 ∗ 10−4). In all simulations we set the lag length C = 24. Note that the same

weighting structure applies to all the predictors entering the active set. Further, for ease of analysis

we assume h = 0, i.e. a nowcasting model with fully available information on predictors in the

current period. In this specification, εt and εt are i.i.d. with distribution:(
εt

εt

)
∼ i.i.d.N

[(
0

0

)
,

(
σ2 0

0 Σε

)]
,

where Σε has elements σ
|k−k′|
ε , such that the diagonal elements are equal to one and the off-diagonal

elements control for the correlation between x
(3)
k,t and x

(3)
k′,t, with k 6= k′. We set σε = {0.50, 0.95}, i.e.

from moderate to extremely high correlation structure in the design matrix x
(3)
t . As for the param-

eters in the DGP, we choose α = 0.5, µ = 0.1, ρ = 0.9, and β = (0, 0.3, 0.5, 0, 0.3, 0.5, 0, 0, 0.8,0)′.

The latter implies that only five out of K predictors are relevant. Conditional on these parameters,

we set σ such that the noise-to-signal ratio of the mixed-frequency regression is 0.20.

We estimate mixed-frequency models on the data provided by the DGP above using the regres-

sion approaches described in Section 3. As for the functional form of the weighting structure, we

consider a restricted Almon lag polynomial as in (3), with p = 3 and r = 2 endpoint restrictions
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(both tail and derivative; see Section 2.1). The hyper-parameters λ are tuned using the stochastic

approximation approach described in Section 4, with step-size a(s) = 1/s0.8 (preliminary results

suggest that this sequence is sufficient to achieve convergence). We set the number of Monte Carlo

replications at R = 300. The Gibbs sampler is run for S = 250, 000 iterations, with the first 50, 000

used as a burn-in period, and every 10th draw is saved.

5.2. Variable selection

The penalized regression approach had originally been proposed as a variable selection method.

Indeed, the penalty terms in Equation (8) are intended to shrink the coefficients of irrelevant

predictors to zero, leading to a sparse solution. However, as noted in Section 3.2, this attractive

property vanishes in the Bayesian framework. Different approaches have been proposed in the

literature to evaluate variable selection for the models under analysis. For instance, Li and Lin

(2010) propose a scaled neighbourhood criterion, where a predictor is excluded if the posterior

probability in the neighbourhood [−σ
β̂k
, σ

β̂k
] of 0 exceeds a given probability threshold. Here we

rely on the simple credible interval criterion suggested by Kyung et al. (2010). According to this

criterion, a predictor k, for k = 1, . . . ,K, is excluded from the estimated active set if the credible

interval, at say 95% level, of the posterior distribution of the slope coefficient β̂k includes zero. For

the model including a spike-and-slab prior, we resort to the posterior median estimator (Barbieri

and Berger, 2004), that is, under some conditions, a soft thresholding estimator presenting model

selection consistency and optimal asymptotic estimation rate (Xu and Ghosh, 2015).

5.3. Forecasting

Forecasts are obtained from the following posterior predictive density for yT :

p(yT |D) =

∫
p(yT |φ,λ,D)p(φ,λ|D)dφdλ (12)

where φ = (θ, τ , σ2)′ and p(φ,λ|D) denotes the joint posterior distribution of the BMIDAS parame-

ters conditional on past available information, D. According to the framework described in Sections

3 and 4, draws y
(s)
T from the predictive distribution can be obtained from the Gibbs sampler, for

s = s̄+1, . . . , S and s̄ the last burn-in iteration.6 This leads to a distribution of predictions that can

be used for out-of-sample evaluation of the model. Point forecasts are computed by averaging over

these draws, i.e. ŷT = (S − s̄+ 1)−1
∑S

s=s̄+1 y
(s)
T , and evaluated through the average mean squared

forecast error (MSFE) and the average mean absolute forecast error (MAFE) over the R Monte

Carlo replications. However, since draws from the predictive density are available, an evaluation of

the entire predictive distribution is performed through the (negative) average log-score (−LS), i.e.

6It is worth noting that we do not condition on a fixed value λ̂, such as the maximum likelihood estimate that
can be obtained, for instance, by averaging over the Gibbs samples of λ, because this would ignore the uncertainty
around the estimate of the penalty parameters.
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the average of the log of the predictive likelihood evaluated at the out-turn of the forecast (Mitchell

and Wallis, 2011), and the average continuously ranked probability score (CRPS), which measures

the average distance between the empirical CDF of the out-of-sample observations and the empirical

CDF associated with the predictive density of each model (Gneiting and Raftery, 2007).

5.4. Monte Carlo results

Simulation results for our penalized estimators are reported in Table 1. We compute the average

mean squared error (MSE), the average variance (VAR), and the average squared bias (BIAS2) over

R Monte Carlo replications and the full set of K estimated parameters β̂ in the model.7 Further,

we evaluate the selection ability of the models by computing the True Positive Rate (TPR), the

False Positive Rate (FPR), and the Matthews correlation coefficient (MCC), the latter measuring

the overall quality of the classification. Results point to a number of interesting features. First, the

models perform overall quite similarly in terms of MSE, although the BMIDAS-AGL-SS seems to

perform somewhat better across DGPs by mainly providing the smallest bias. This leads to highest

TPR and lowest FPR for this model, entailing better classification of the active and inactive sets

across simulations. Second, the MSE increases substantially with the degree of correlation in the

design matrix (governed by the value of σε), but it tends to decrease with more irrelevant predictors.

To understand the latter result, it is useful to look at the breakdown of the MSE in both the active

(A) and inactive set (Ac) reported in Figure 2. For comparison purpose, we also report results for

the Oracle BMIDAS, estimated using the algorithm described in Pettenuzzo et al. (2016) on the set

of relevant variables only.8

It turns out that while the share of variance and bias in the inactive set is broadly stable across

simulations, the shares in the active set decrease substantially when K increases. It follows that

the performance of the models in selecting and estimating the coefficients of the relevant variables

holds the same regardless the increase in the degree of sparsity, and hence the decrease in the share

of variance and bias can be mainly attributed to the decrease in their relative weight (number of

active predictors over K) in the total variance and bias. This result is confirmed by the TPR,

which is relatively high and hovers around 80-90% for moderate correlation, and it’s overall stable

across the different values of K, suggesting that the models can select the correct sparsity pattern

with a high probability even in finite samples. However, it is worth noting that the TPR drops

7For R Monte Carlo replications, K variables, and S Gibbs draws, we have that:

MSE = VAR + BIAS2 =
1

RKS

R∑
r=1

K∑
k=1

S∑
s=1

[
β̂
(s)
k − E

(
β̂k
)]2

+
1

RK

R∑
r=1

K∑
k=1

[
E
(
β̂k
)
− βk

]2
where E

(
β̂k
)

= 1
S

∑S
s=1 β̂

(s)
k and β̂k = ιCQ′θ′k. Note that for the BMIDAS-AGL-SS model we use the median

estimator.
8We consider the same restricted Almon lag polynomial as for our models. Further, we follow Pettenuzzo et al.

(2016) and we use relatively diffuse priors on both the coefficient covariance matrix and the regression variance. As
for the prior mean coefficients, we set all the coefficients but the intercept to zero.
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Table 1: Monte Carlo simulations

K σε E (σ) MSE VAR BIAS2 TPR FPR MCC MSFE MAFE −LS CRPS

DGP 1: ϑ = (7 ∗ 10−4,−7 ∗ 10−2)

BMIDAS-AGL

30 0.50 1.3 4.4E-03 1.4E-03 3.0E-03 0.95 0.03 0.90 2.12 1.17 1.79 0.83
0.95 2.1 7.0E-02 1.3E-02 5.7E-02 0.35 0.04 0.41 6.20 1.99 2.32 1.40

50 0.50 1.3 4.7E-03 1.1E-03 3.7E-03 0.92 0.04 0.82 2.50 1.24 1.89 0.89
0.95 2.1 4.7E-02 8.6E-03 3.9E-02 0.36 0.03 0.41 5.20 1.82 2.23 1.28

BMIDAS-AGL-SS

30 0.50 1.3 3.4E-03 1.3E-03 2.1E-03 0.95 0.01 0.94 2.09 1.14 1.78 0.81
0.95 2.1 6.6E-02 1.4E-02 5.3E-02 0.37 0.02 0.47 6.36 1.95 2.32 1.40

50 0.50 1.3 2.7E-03 8.8E-04 1.8E-03 0.92 0.01 0.92 2.53 1.25 1.89 0.89
0.95 2.1 3.9E-02 8.8E-03 3.1E-02 0.36 0.01 0.50 5.19 1.82 2.23 1.28

DGP 2: ϑ = (7 ∗ 10−4,−9 ∗ 10−3)

BMIDAS-AGL

30 0.50 1.1 2.7E-03 8.4E-04 1.9E-03 0.98 0.02 0.92 1.49 0.96 1.61 0.68
0.95 1.8 4.6E-02 7.0E-03 3.9E-02 0.48 0.04 0.54 3.37 1.47 2.02 1.03

50 0.50 1.1 2.5E-03 6.3E-04 1.9E-03 0.97 0.03 0.87 1.57 0.99 1.62 0.70
0.95 1.8 3.3E-02 4.9E-03 2.8E-02 0.44 0.03 0.48 3.74 1.49 2.08 1.08

BMIDAS-AGL-SS

30 0.50 1.1 2.0E-03 7.7E-04 1.2E-03 0.98 0.01 0.96 1.48 0.96 1.60 0.68
0.95 1.8 6.1E-02 1.1E-02 5.0E-02 0.43 0.03 0.52 3.44 1.47 2.02 1.04

50 0.50 1.1 1.9E-03 5.6E-04 1.3E-03 0.97 0.01 0.96 1.47 0.96 1.59 0.68
0.95 1.8 3.8E-02 6.7E-03 3.2E-02 0.42 0.01 0.54 3.54 1.45 2.05 1.05

DGP 3: ϑ = (0,−5 ∗ 10−4)

BMIDAS-AGL

30 0.50 1.0 1.2E-02 1.3E-03 1.1E-02 0.83 0.15 0.60 1.70 1.04 1.71 0.74
0.95 1.6 1.0E-01 1.2E-02 9.2E-02 0.34 0.11 0.25 4.02 1.62 2.13 1.15

50 0.50 1.0 1.5E-02 1.2E-03 1.4E-02 0.74 0.16 0.43 1.81 1.10 1.74 0.77
0.95 1.6 9.0E-02 9.4E-03 8.1E-02 0.29 0.10 0.18 4.29 1.62 2.17 1.17

BMIDAS-AGL-SS

30 0.50 1.0 8.8E-03 1.3E-03 7.5E-03 0.84 0.07 0.74 1.63 1.01 1.66 0.72
0.95 1.6 7.4E-02 1.1E-02 6.3E-02 0.31 0.04 0.36 3.84 1.58 2.10 1.12

50 0.50 1.0 7.9E-03 9.7E-04 6.9E-03 0.79 0.06 0.67 1.72 1.05 1.69 0.74
0.95 1.6 4.8E-02 6.6E-03 4.1E-02 0.28 0.02 0.36 3.88 1.55 2.09 1.11

Notes: BMIDAS-AGL and BMIDAS-AGL-SS refer to the models described in Section 3.
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Figure 2: Breakdown of MSE by active (A) and inactive set (Ac)
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Note: The oracle BMIDAS denotes the output from a regression including only the active set and using the algorithm
described in Pettenuzzo et al. (2016) for parameters estimation.
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Table 2: Monte Carlo simulations: constrained vs unconstrained weighting schemes

BMIDAS-AGL BMIDAS-AGL-SS

K σε TPR FPR MCC TPR FPR MCC

DGP 1: ϑ = (7 ∗ 10−4,−7 ∗ 10−2)

30 0.50 0.16 -0.02 0.15 0.13 -0.01 0.11
0.95 0.06 -0.01 0.08 0.05 0.00 0.05

50 0.50 0.21 -0.02 0.20 0.12 0.00 0.09
0.95 0.08 0.00 0.09 0.06 0.00 0.08

DGP 2: ϑ = (7 ∗ 10−4,−9 ∗ 10−3)

30 0.50 0.10 -0.02 0.11 0.07 0.00 0.07
0.95 0.11 -0.01 0.13 0.07 0.00 0.06

50 0.50 0.18 -0.03 0.19 0.07 0.00 0.06
0.95 0.10 0.00 0.11 0.08 0.00 0.07

DGP 3: ϑ = (0,−5 ∗ 10−4)

30 0.50 -0.10 0.11 -0.26 -0.10 0.05 -0.18
0.95 -0.08 0.06 -0.20 -0.10 0.02 -0.13

50 0.50 -0.12 0.11 -0.31 -0.13 0.05 -0.23
0.95 -0.11 0.07 -0.27 -0.12 0.01 -0.16

Notes: See Table 1.

to 30-50% for very high correlation, while the the FPR remains overall very low. This result is

nevertheless not unexpected, as the Group Lasso can address the issue of strong collinearity within

the lag polynomials but is not designed to handle strong collinearity between the high-frequency

regressors.

Third, not surprisingly, the in-sample results deteriorate when the DGP with near-flat weights

is considered, and mostly when σε = 0.95. This happens because the linear restrictions imposed on

the lag polynomials incorrectly force the weighting structure to tail off to zero, while the weighting

scheme under the null is almost uniform over the lag window C. It follows that relaxing the

restrictions on the lag polynomial should lead to an improvement of the results under DGP 3.

However, it is not clear how much those linear restrictions actually contribute to the selection

results under DGPs 1 and 2. Table 2 provides an answer to these questions by reporting the

difference in TPR, FPR, and MCC obtained with restricted (r = 2) and unrestricted (r = 0)

lag polynomials. For DGPs with fast- or slow-decaying wights, the results suggest that imposing

correct linear restrictions that are valid under the null seems to improve the selection ability of

the models. The gain in terms of TPR ranges 10-20 percentage points for moderate correlation

and 5-10 percentage points for very high correlation in the design matrix, while the gain in terms

of FPR ranges 1-3 percentage point. Interestingly enough, the results reveal that the BMIDAS-

AGL-SS model is relatively less affected than the BMIDAS-AGL model by the inclusion of linear

restrictions. For the DGP with near-flat weights we observe an opposite outcome, as expected.
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However, the magnitude of these results must be considered with care, as the number of relevant

and irrelevant predictors in the true model is strongly asymmetric.

Finally, looking at the forecasting performance, the results are broadly in line with the in-sample

analysis and suggest that the models perform overall quite similarly in terms of point and density

forecasts, although the BMIDAS-AGL-SS model seems to perform best overall. The performance

of the models deteriorates substantially with higher correlation in the design matrix, although a

higher average variance in the error process, E (σ), must be discounted to explain the large differences

highlighted in Table 1, but it is relatively stable with K increasing.

6. Empirical application

We apply the proposed Bayesian MIDAS penalized regression approaches to US GDP data.

Following the literature, we consider the annualized quarterly growth rate of GDP. As for the pre-

dictors, we consider a subset of 33 macroeconomic series extracted from the FRED-MD database

(McCracken and Ng, 2016) and selected to provide high-frequency information on potential pre-

dictors of GDP, such as output and income, labor, housing, consumption, and orders. Further,

we also consider a set of daily and weekly financial data, which have proven to improve short- to

medium-term macro forecasts (Andreou et al., 2013; Pettenuzzo et al., 2016; Adrian et al., in press):

the effective Federal Funds rate; the interest rate spread between the 10-year government bond rate

and the Federal Funds rate; returns on the portfolio of small minus big stocks considered by Fama

and French (1993); returns on the portfolio of high minus low book-to-market ratio stocks stud-

ied by Fama and French (1993); returns on a winner minus loser momentum spread portfolio; the

Chicago Fed National Financial Conditions Index (NFCI), and in particular its three sub-indexes

(risk, credit and leverage). Finally, we consider the Aruoba-Diebold-Scotti (ADS) daily business

conditions index (Aruoba et al., 2009) to track the real business cycle at high frequency. To match

the sample frequencies, we consider again a restricted Almon lag polynomial, with p = 3 and r = 2

endpoint restrictions, and twelve months of past high-frequency observations (C = 12). Overall,

the total number of predictors entering the models is K = 42 (the full list of predictors is reported

in Appendix A.2). The data sample starts in 1980Q1, and we set T = 2000Q1 and T = 2017Q4

the first and last out-of-sample observations, respectively. Estimates are carried-out recursively

using an expanding window, and h-step-ahead posterior predictive densities are generated from

(12) through a direct forecast approach. We hence dispose of (T − T + 1) = 72 out-of-sample

observations. We consider three forecast horizons, namely the nowcast (h = 0), and 1-quarter and

4-quarters ahead forecasts (h = 1 and h = 4, respectively). For ease of analysis, we do not take into

account real-time issues (ragged/jagged-edge data, revisions) and we compile the dataset using the

latest vintages available at the time of writing.
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Forecasts are compared to those from a benchmark model represented by a simple random-walk

(RW). Point forecasts are evaluated by the means of relative RMSFE ratios:

∆RMSFE =

√√√√√ ∑T
t=T e

2
t∑T

t=T e
2
RW,t

where eRW,t denotes the forecast error generated by the benchmark model. Hence, values less

than one suggest that our penalized mixed-frequency models outperform (in a point forecast sense)

the RW. Density forecasts (generated by the draws from the posterior predictive distribution) are

evaluated by the means of the average log-score differential:

∆LS = (T − T + 1)−1
T∑
t=T

(LSt − LSRW,t)

Positive values of ∆LS indicate that our models produce more accurate density forecasts than the

RW. Further, we compute the average continuously ranked probability score (CRPS) ratio:

∆CRPS =

∑T
t=T CRPSt∑T

t=T CRPSRW,t

where values less than one suggest that our models outperform (in a density forecast sense) the

benchmark model. Further, to account for sample uncertainty underlying the observed forecast

differences, we report results for the Diebold and Mariano (1995) and West (1996) test (DMW

hereafter), which posits the null hypothesis of an unconditional equal predictive accuracy between

each model and the benchmark random-walk. The resulting test statistic is computed using HAC

standard errors (for h = 4) and a small-sample adjustment to the consistent estimate of the variance,

and compared with critical values from the Student’s t distribution with (T −T ) degrees of freedom

(Harvey et al., 1997). As a robustness check, we further consider forecasts from the following

competing models:

• AR(1) model.

• Combination of K single-indicator Bayesian MIDAS models as in Pettenuzzo et al. (2016)

(BMIDAS-comb), where the combination weights are computed using a discounted version

of the optimal prediction pool proposed by Geweke and Amisano (2011). The historical

performance of each individual model is hence accounted for by attaching a greater weight

to recent predictive outcomes through a discount factor δ < 1, that we set at 0.9 (Stock and

Watson, 2004; Andreou et al., 2013). Note that δ = 1 (no discounting) corresponds to the

Geweke and Amisano (2011) optimal prediction pool.
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Table 3: Out-of-sample forecast performance

h = 0 h = 1 h = 4
∆RMSFE ∆LS ∆CRPS ∆RMSFE ∆LS ∆CRPS ∆RMSFE ∆LS ∆CRPS

BMIDAS-AGL 0.61
(0.00)

0.54
(0.00)

0.59
(0.00)

0.74
(0.00)

0.33
(0.00)

0.72
(0.00)

0.82
(0.10)

0.24
(0.07)

0.81
(0.06)

BMIDAS-AGL-SS 0.57
(0.00)

0.58
(0.00)

0.56
(0.00)

0.70
(0.00)

0.39
(0.00)

0.68
(0.00)

0.81
(0.10)

0.24
(0.06)

0.77
(0.03)

AR(1) 0.85 0.16 0.82 0.85 0.16 0.82 0.80 0.22 0.76
BMIDAS-comb (δ = 0.9) 0.66 0.44 0.65 0.77 0.30 0.74 0.78 0.27 0.76
BMS-ADMH 1.18 -0.67 1.32 1.12 -0.15 1.15 0.85 0.18 0.87
BMA (g-BRIC) 0.61 0.48 0.59 0.76 0.30 0.73 0.84 0.16 0.80

Notes: predictive performance of model i compared to the random-walk benchmark. Bold values denote
the best outcomes. In parentheses, p-values for the test of the null hypothesis of equal predictive accuracy
at 10% level according to the one-sided t-statistic version of the DMW test.

• Bayesian model selection approach of Lamnisos et al. (2013), where an Adaptive Metropolis-

Hastings algorithm is implemented to tune automatically the model proposals and achieve

a targeted acceptance rate (BMS-ADMH). We use the default priors set by Lamnisos et al.

(2013), and we select those variables displaying a posterior probability of inclusions greater

than 50%.

• Bayesian model averaging (BMA), as in Rossi and Sekhposyan (2014), estimated using a

standard g-BRIC prior, where g = max(T,K2), and a reversible-jump MC3 algorithm.

Both BMS-ADMH and BMA algorithms are here modified to account for groups of lag poly-

nomials in their addition/deletion/swaption moves, to ensure that model proposals are based on

selection of individual predictors rather than isolated terms of the lag polynomials. Further, all

the models considered in the application always include a lag of the growth rate of GDP, which

is hence excluded from the selection procedures. As for the MCMC, the Gibbs sampler is run

for S = 300, 000 iterations, with the first 100, 000 used as a burn-in period, and every 10th draw

is saved. For the BMS-ADMH and BMA, we increase the number of iterations to 2, 000, 000, in

order to let the algorithms sufficiently explore the model space, which is fairly vast in the current

application (2K = 4.4e+12).

Results are reported in Table 3. Considering point forecasts, our findings suggest that the

penalized BMIDAS models outperform the benchmark RW at all the horizons, with statistically

significant (at 10% level) predictive gains hovering around 40% for h = 0, 30% for h = 1, and 20%

for h = 4. The results for density forecasts are broadly in line with those for point forecasts, with

statistically significant predictive gains decreasing almost linearly with the increase in the number

of steps-ahead. When compared to the set of alternative models, our penalized BMIDAS models

display predictive gains at h = 0 and h = 1. At these horizons, both point and density gains hover

around 15-30% against the AR(1), but this rate decreases when more sophisticated benchmarks are

considered. In particular, the BMA and the combined univariate BMIDAS models appear overall

the best competitors, while the results from the BMS are disappointing. At the longer-horizon

(h = 4), the predictive performance of most of the alternative competing models is only slightly
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Figure 3: Variable selection
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superior or inferior to that of our penalized regressions, with combined univariate BMIDAS models

providing the best outcome.

The variables selected overtime by our models are reported in Figure 3. For ease of exposition,

we consider only the short-term horizons. The selection patterns show a systematic inclusion of

the ADS index and, although sporadically, a bunch of real high-frequency indicators related to

the real personal consumption expenditures and the housing market. Further, selection appears

more parsimonious and stable over the out-of-sample for the BMIDAS-AGL-SS model. Interestingly

enough, virtually no financial indicators are selected by our models at h = 0. This can be attributed

to the fact that the empirical analysis is carried out with information available over the whole quarter

and by abstracting from real-time conditions, such that real hard- and soft-data may possibly convey
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enough information. However, this feature tends to attenuate for h = 1, where some high-frequency

financial indicators, such as the the portfolio Hml and Mom indicators, are selected. All in all, this

result is broadly in line with recent literature (Andreou et al., 2013) and suggests that financial

variables may convey some, although limited, short-term leading information which goes beyond

the predictive content of real indicators.

7. Concluding remarks

We proposed a new approach to modeling and forecasting mixed-frequency regressions (MIDAS)

that addresses the issue of simultaneously estimating and selecting relevant high-frequency predic-

tors in a high-dimensional environment. Our approach is based on MIDAS regressions resorting to

Almon lag polynomials and an adaptive penalized regression approach, namely the Group Lasso

objective function. The proposed models rely on Bayesian techniques for estimation and inference.

In particular, the penalty hyper-parameters driving the model shrinkage are automatically tuned

via an Empirical Bayes algorithm based on stochastic approximations. Simulations show that the

proposed models present very good in-sample and out-of-sample performance. When applied to a

forecasting model of U.S. GDP with high-frequency real and financial predictors, the results suggest

that our models produce significant out-of-sample short-term predictive gains compared to several

alternative models. Further, our findings are broadly in line with the existing literature, in the

extent that high-frequency financial variables have non-zero, although limited, short-term predic-

tive content. The models presented in the present paper could be extended in several ways. We

nonetheless believe that considering a time-varying process of the parameters characterizing the lag

polynomials as well as stochastic volatility error dynamics (Carriero et al., 2015; Schumacher, 2015;

Pettenuzzo et al., 2016), or a quantile specification of the mixed-frequency regression, represent

interesting paths for future research.
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Appendix

A.1. Stabilization algorithm

The stabilization algorithm used in the paper is a slightly modified version of the algorithm

proposed in Andrieu et al. (2005) and discussed in Atchadé (2011), which uses re-projections on

randomly varying compact sets. Recall that the updating (approximate EM) algorithm described

in Section 4 is:

ω(s+1) = ω(s) + a(s)H(ω(s),φ(s+1))

where we use the transformation ω = 0.5 log(λ). Let {a(s), s ≥ 0} and {e(s), s ≥ 0} be two

monotone non-increasing sequences of positive numbers. Here we choose a(s) = 1/sq, with q = 0.8,

and e(s) = e+(1−e)(1−ς−αe
s ), with e = 3 and αe = 0.1. Let {K(s), s ≥ 0} be a monotone increasing

sequence of compact subsets of Ω such that
⋃
s≥0 K

(s) = Ω. Here we set compact subsets of the

form K(s) = [max(−κs − 1,−c), κs + 1], where c > 0. To avoid unstable outcomes due to extremely

small numbers in λ, we set c = 5. Let Ω̃× Φ̃ ⊂ K(s)×Φ and Π : Ω×Φ→ Ω̃× Φ̃ be a re-projection

function, such as Ω̃× Φ̃ = (φ̃, ω̃) for an arbitrary point (ω̃, φ̃) ∈ K(s)× Φ̃. Let ϕ be a function such

that ϕ(w) = 1− w, for all w ≥ 0.

Algorithm 1 Stochatistic approximation with truncation on random boundaries

Set κ0 = 0, ν0 = 0, ς0 = 0, ω(0) ∈ Ω, and φ(0) ∈ Φ(0).

For s ≥ 1, compute:

(a) φ ∼ Pω(s−1)(φ(s−1), ·)

(b) ω = ω(s−1) + a(ςs−1+1)H(ω(s−1),φ),

where Pω is the Markov kernel.

if ω ∈ K(κs−1) and |ω − ω(s−1)| ≤ e(ςs−1) then

(ω(s),φ(s)) = (ω,φ)

κs = κs−1, νs = νs−1 + 1, ςs = ςs−1 + 1

else

(ω(s),φ(s)) = (ω̃, φ̃) ∈ Ω̃× Φ̃

κs = κs−1 + 1, νs = 0, ςs = ςs−1 + ϕ(νs−1)

end

With this algorithm, κs is the index of the active truncation set (also equal to the number of

restarts before s), νs is the number of iterations since the last restart, and ςs is the current index

in the step-size sequence. We set ϕ(w) = 1 for all w ∈ N, such that ςs = s. Hence, if ω /∈ K(κs−1)
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or |ω − ω(s−1)| > e(ςs−1), we re-initialize the algorithm starting from (ω̃, φ̃), which are obtained by

drawing from:

ω̃ ∼ Uniform
(

min(ω(s−1),K(s−1)
u ),max(ω(s−1),K(s−1)

u )
)

if ω ≥ K(s−1)
u

ω̃ ∼ Uniform
(

min(ω(s−1),K
(s−1)
l ),max(ω(s−1),K

(s−1)
l )

)
if ω < K

(s−1)
l

where K
(s−1)
u = κs−1 +1 and K

(s−1)
l = max(−κs−1−1,−c), and parameters φ|ω̃ are drawn from the

prior distributions described in Sections 3.1 and 3.2. We then iterate until the acceptance conditions

stated in the algorithm are met. Finally, we set the new compact subsets to K(κs−1+1) and the new

sequence of step-size.
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A.2. US Data

Code Description Frequency Transformation
FF Effective Federal Funds rate Daily ∆xt
T10YFF Spread 10-year government bond rate and Federal Funds rate Daily xt
ADS Aruoba-Diebold-Scotti (ADS) daily business conditions index Daily xt
SMB Returns on the portfolio of small minus big stocks Daily xt
HML Returns on the portfolio of high minus low book-to-market ratio stocks Daily xt
MOM Returns on a winner minus loser momentum spread portfolio Daily xt
NFCI LEV Chicago Fed National Financial Conditions Index - Leverage Weekly xt
NFCI CRED Chicago Fed National Financial Conditions Index - Credit Weekly xt
NFCI RISK Chicago Fed National Financial Conditions Index - Risk Weekly xt
RPI Real Personal Income Monthly ∆ log(xt)
W875RX1 Real personal income ex transfer receipts Monthly ∆ log(xt)
DPCERA3M086SBEA Real personal consumption expenditures Monthly ∆ log(xt)
CMRMTSPLx Real Manu. and Trade Industries Sales Monthly ∆ log(xt)
RETAILx Retail and Food Services Sales Monthly ∆ log(xt)
INDPRO IP Index Monthly ∆ log(xt)
IPFPNSS IP: Final Products and Nonindustrial Supplies Monthly ∆ log(xt)
IPFINAL IP: Final Products (Market Group) Monthly ∆ log(xt)
IPCONGD IP: Consumer Goods Monthly ∆ log(xt)
IPBUSEQ IP: Business Equipment Monthly ∆ log(xt)
IPMAT IP: Materials Monthly ∆ log(xt)
IPMANSICS IP: Manufacturing (SIC) Monthly ∆ log(xt)
IPB51222S IP: Residential Utilities Monthly ∆ log(xt)
CUMFNS Capacity Utilization: Manufacturing Monthly ∆xt
HWIURATIO Ratio of Help Wanted/No. Unemployed Monthly ∆xt
CLF16OV Civilian Labor Force Monthly ∆ log(xt)
CE16OV Civilian Employment Monthly ∆ log(xt)
UNRATE Civilian Unemployment Rate Monthly ∆xt
UEMPMEAN Average Duration of Unemployment (Weeks) Monthly ∆xt
CLAIMSx Initial Claims Monthly ∆ log(xt)
PAYEMS All Employees: Total nonfarm Monthly ∆ log(xt)
CES0600000007 Avg Weekly Hours : Goods-Producing Monthly xt
AWOTMAN Avg Weekly Overtime Hours : Manufacturing Monthly ∆xt
AWHMAN Avg Weekly Hours : Manufacturing Monthly xt
HOUST Housing Starts: Total New Privately Owned Monthly log(xt)
PERMIT New Private Housing Permits (SAAR) Monthly log(xt)
AMDMNOx New Orders for Durable Goods Monthly ∆ log(xt)
ANDENOx New Orders for Nondefense Capital Goods Monthly ∆ log(xt)
AMDMUOx Unfilled Orders for Durable Goods Monthly ∆ log(xt)
ISRATIOx Total Business: Inventories to Sales Ratio Monthly ∆xt
CES0600000008 Avg Hourly Earnings : Goods-Producing Monthly ∆2 log(xt)
CES2000000008 Avg Hourly Earnings : Construction Monthly ∆2 log(xt)
CES3000000008 Avg Hourly Earnings : Manufacturing Monthly ∆2 log(xt)
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