
Banque de France Working Paper #685   

 

 
Classifying Patents Based on their 

Semantic Content 

Antonin Bergeaud1, Yoann Potiron2 
and Juste Raimbault3  

June. 2018, WP #685 

ABSTRACT 

In this paper, we extend some usual techniques of classification resulting from a large-
scale data-mining and network approach. This new technology, which in particular is 
designed to be suitable to big data, is used to construct an open consolidated database 
from raw data on 4 million patents taken from the US patent office from 1976 onward. 
To build the pattern network, not only do we look at each patent title, but we also 
examine their full abstract and extract the relevant keywords accordingly. We refer to this 
classification as semantic approach in contrast with the more common technological 
approach which consists in taking the topology when considering US Patent office 
technological classes. Moreover, we document that both approaches have highly different 
topological measures and strong statistical evidence that they feature a different model. 
This suggests that our method is a useful tool to extract endogenous information.     
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NON-TECHNICAL SUMMARY 

Patent data are commonly used in economics to measure innovation either in the IO 
literature to try to better understand strategies of firm regarding their investment in R&D 
and how they direct technical change or in the growth literature to measure technological 
progress. Patents are very convenient objects because they offer a wide range of 
information: when are they filed, who (which firm) owns the rights, where have they been 
granted and what patents are associated with related prior arts. One additional feature of 
the patent data is the underlying technological classification that has been widely studied 
to understand the lifecycle of some technologies. 
 

Example of network representation based on semantic proximity 

 
Source: authors’ computations using USPTO data. 

 
In this study, we propose an alternative classification based on semantic network analysis 
from patent and explore the new information emerging from it. In contrast with the 
regular technological classification which results from the choice of the patent reviewers, 
semantic classification is carried automatically based on the content of the patent abstract. 
Although patent officers are experts in their fields, the relevance of the existing 
classification is limited by the fact that it is based on the state of technology at the time 
the patent was granted and cannot anticipate the birth of new fields. In contrast we don't 
face this issue with the semantic approach. The semantic links can be clues of one 
technology taking inspiration from another and good predictors of future technology 
convergence. One can for instance consider the case of the word optic. Until more 
recently, this word was often associated with technologies such as photography or eye 
surgery, while it is now almost exclusively used in a context of transistor design and 
electro-optic. This semantic shift did not happen by chance but contains information on 
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the fact that modern electronic extensively uses technologies that were initially developed 
in optic.  
 
In our analysis, we consider all utility patents granted in the United States Patent and 
Trademark Office (USPTO) from 1976 to 2013. Just like academic articles, these patents 
have an abstract and a text which describe the invention that the applicant wishes to 
protect. For computational efficiency (there are more than 4 million patents) we had to 
restrict attention to abstracts in order to build our semantic network. 
 
Our contributions are manifolds. First we define how to build a network of patents based 
on a classification that uses semantic information from abstracts. We describe this new 
classification and show that it shares some similarities with the traditional technological 
classification, but also have distinct features. In particular, we develop a statistical test 
which suggests that this classification outperforms the technological one in the sense that 
patents that are in the same semantic class are more likely to cite each other. Second, we 
provide researchers with materials resulting from our analysis, which includes: (i) a 
database linking each patent with its set of semantic classes and the associated 
probabilities; (ii) a list of these semantic classes with a description based on the most 
relevant keywords; (iii) a list of patent with their topological properties in the semantic 
network (centrality, frequency, degree, etc.). 

 
 

Classer les brevets en fonction de leur 
contenu sémantique 

RÉSUMÉ 
Dans cet article, nous étendons certaines techniques habituelles de classification 
appliquées à une large base de données et à un réseau de grande échelle. Cette approche 
conçue en particulier pour être adaptée au big data, est utilisée ici pour construire une base 
de données consolidée à partir de données sémantiques extraites sur 4 millions de brevets 
provenant de l'Office américain des brevets depuis 1976. Pour construire ce réseau, non 
seulement nous examinons chaque titre de brevet, mais nous examinons également leur 
résumé complet et extrayons les mots-clés pertinents en conséquence. Nous nous 
référons à cette classification comme approche sémantique par opposition à l'approche 
technologique plus courante qui se base sur les classes technologiques des offices des 
brevets américains. De plus, nous documentons que les deux approches ont des mesures 
topologiques très différentes et suggérons plusieurs pistes pour exploiter ces différences 
dans le cadre de l’étude de la diffusion des technologies. 
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1 Introduction

Innovation and technological change have been described by many scholars as the main drivers of economic

growth as in Aghion and Howitt (1992) and Romer (1990). Griliches (1990) advertised the use of patents as an

economic indicator and as a good proxy for innovation. Subsequently, the easier availability of comprehensive

databases on patent details and the increasing number of studies allowing a more efficient use of these data

(e.g. Hall et al. 2001) have opened the way to a very wide range of analysis (see among many recent examples

Bloom et al. 2013, Aghion et al. 2018a or Aghion et al. 2018b). Most of the statistics derived from the patent

databases relied on a few key features: the identity of the inventor, the type and identity of the rights owner,

the citations made by the patent to prior art and the technological classes assigned by the patent office post

patent’s content review. Combining this information is particularly relevant when trying to capture the diffusion

of knowledge and the interaction between technological fields as studied in Youn et al. (2015). With methods

such as citation dynamics modeling discussed in Newman (2013) or co-authorship networks analysis in Sarigöl

et al. (2014), a large body of the literature such as Sorenson et al. (2006) or Kay et al. (2014) has studied

patents citation network to understand processes driving technological innovation, diffusion and the birth of

technological clusters. Finally, Bruck et al. (2016) look at the dynamics of citations from different classes to show

that the laser/ink-jet printer technology resulted from the recombination of two different existing technologies.

Consequently, technological classification combined with other features of patents can be a valuable tool for

researchers interested in studying technologies throughout history and to predict future innovations by looking

at past knowledge and interaction across sectors and technologies. But it is also crucial for firms that face

an ever changing demand structure and need to anticipate future technological trends and convergence (see,

e.g., Curran and Leker 2011) to adapt to the resulting increase in competition discussed in Katz (1996) and

to maintain market share. Curiously, and in spite of the large number of studies that analyze interactions

across technologies Furman and Stern (2011), little is known about the underlying “innovation network” (e.g.

Acemoglu and Kerr 2016).

In this monograph, we propose an alternative classification based on semantic network analysis from patent

abstracts and explore the new information emerging from it. In contrast with the regular technological clas-

sification which results from the choice of the patent reviewer, semantic classification is carried automatically

based on the content of the patent abstract. Although patent officers are experts in their fields, the relevance

of the existing classification is limited by the fact that it is based on the state of technology at the time the

patent was granted and cannot anticipate the birth of new fields.1 In contrast we don’t face this issue with

the semantic approach. The semantic links can be clues of one technology taking inspiration from another

and good predictors of future technology convergence (e.g. Preschitschek et al. 2013 study semantic similarities

from the whole text of 326 US-patents on phytosterols and show that semantic analysis have a good predicting

power of future technology convergence). One can for instance consider the case of the word optic. Until more

recently, this word was often associated with technologies such as photography or eye surgery, while it is now

almost exclusively used in a context of transistor design and electro-optic. This semantic shift did not happen
1To correct for this, the USPTO regularly make changes in its classification in order to adapt to technological change (for

example, the “nanotechnology” class (977) was established in 2004 and retroactively to all relevant previously granted patents).
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by chance but contains information on the fact that modern electronic extensively uses technologies that were

initially developed in optic.

Previous research has already proposed to use semantic networks to study technological domains and detect

novelty. Yoon and Park (2004) was one of the first to enhance this approach with the idea of visualizing

keywords network illustrated on a small technological domain. The same approach can be used to help companies

identifying the state of the art in their field and avoid patent infringement as in Park and Yoon (2014) and

Yoon and Kim (2011). More closely related to our methodology, Gerken and Moehrle (2012) develop a method

based on patent semantic analysis of patent to vindicate the view that this approach outperform others in the

monitoring of technology and in the identification of novelty innovation. Semantic analysis has already proven

its efficiency in various fields, such as in technology studies (e.g. Choi and Hwang 2014 and Fattori et al. 2003)

and in political science (e.g. Gurciullo et al. 2015).

Building on such previous research, we make several contributions by fulfilling some shortcomings of existing

studies, such as for example the use of frequency-selected single keywords. First of all, we develop and implement

a novel fully-automatized methodology to classify patents according to their semantic abstract content, which

is to the best of our knowledge the first of its type. This includes the following refinements for which details can

be found in Section 3: (i) use of multi-stems as potential keywords; (ii) filtering of keywords based on a second-

order (co-occurrences) relevance measure and on an external independent measure (technological dispersion);

(iii) multi-objective optimization of semantic network modularity and size. The use of all this techniques in the

context of semantic classification is new and essential from a practical perspective.

Furthermore, most of the existing studies rely on a subsample of patent data, whereas we implement it on

the full US Patent database from 1976 to 2013. This way, a general structure of technological innovation can be

studied. We draw from this application promising qualitative stylized facts, such as a qualitative regime shift

around the end of the 1990s, and a significant improvement of citation modularity for the semantic classification

when comparing to the technological classification. These thematic conclusions validate our method as a useful

tool to extract endogenous information, in a complementary way to the technological classification.

Finally, the statistical model introduced in Section 4.4 seems to indicate that patents tend to cite more

similar patents in the semantic network when fitted to data. In particular, this propensity is shown to be

significantly bigger than the corresponding propensity for technological classes, and this seems to be consistent

over time. On the account of this information, we believe that patent officers could benefit very much from

looking at the semantic network when considering potential citation candidates of a patent in review.

The paper is organized as follows. Section 2 presents the patent data, the existing classification and provide

details about the data collection process. Section 3 explains the construction of the semantic classes. Section 4

tests their relevance by providing exploratory results. Finally, section 5 discusses potential further developments

and conclude. More details, including robustness checking, figures and technical derivations can be found in the

Appendix.
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2 Background

In our analysis, we will consider all utility patents granted in the United States Patent and Trademark Office

(USPTO) from 1976 to 2013. A clearer definition of utility patent is given in Appendix A. Also, additional

information on how to correctly exploit patent data can be found in Hall et al. (2001) and Lerner and Seru

(2015).

2.1 An existing classification: the USPC system

Each USPTO patent is associated with a non-empty set of technological classes and subclasses. There are

currently around 440 classes and over 150,000 subclasses constituting the United State Patent Classification

(USPC) system. While a technological class corresponds to the technological field covered by the patent,

a subclass stands for a specific technology or method used in this invention. A patent can have multiple

technological classes, on average in our data a patent has 1.8 different classes and 3.9 pairs of class/subclass.

At this stage, two features of this system are worth mentioning: (i) classes and subclasses are not chosen by

the inventors of the patent but by the examiner during the granting process based on the content of the patent;

(ii) the classification has evolved in time and continues to change in order to adapt to new technologies by

creating or editing classes. When a change occurs, the USPTO reviews all the previous patents so as to create

a consistent classification.

2.2 A bibliographical network between patents: citations

As with scientific publications, patents must give reference to all the previous patents which correspond to

related prior art. They therefore indicate the past knowledge which relates to the patented invention. Yet,

contrary to scientific citations, they also have an important legal role as they are used to delimit the scope of

the property rights awarded by the patent. One can consult OECD (2009) for more details about this. Failing

to refer to prior art can lead to the invalidation of the patent (e.g. DechezleprÃªtre et al. 2014). Another crucial

difference is that the majority of the citations are actually chosen by the examiners and not by the inventors

themselves. From the USPTO, we gather information of all citations made by each patent (backward citations)

and all citations received by each patent as of the end of 2013 (forward citations). We can thus build a complete

network of citations that we will use later on in the analysis.

Turning to the structure of the lag between the citing and the cited patent in terms of application date, we

see that the mean of this lag is 8.5 years and the median is 7 years. This distribution is highly skewed, the 95th

percentile is 21 years. We also report 164,000 citations with a negative time lag. This is due to the fact that

some citations can be added during the examination process and some patents require more time to be granted

than others.

In what follows, we choose to restrict attention to pairs of citations with a lag no larger than 5 years. We

impose this restriction for two reasons. First, the number of citations received peaks 4-5 years after application.

Second, the structure of the citation lag is necessarily biased by the truncation of our sample: the more recent

patents mechanically receive less citations than the older ones. As we are restricting to citations received no
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later than 5 years after the application date, this effect will only affect patents with an application date after

2007.

2.3 Data collection and basic description

Each patent contains an abstract and a core text which describe the invention.2 Although including the full

core texts would be natural and probably very useful in a systematic text-mining approach as done in Tseng

et al. (2007), they are too long to be included and thus we consider only the abstracts for the analysis. Indeed,

the semantic analysis counts more than 4 million patents, with corresponding abstracts with an average length

of 120.8 words (and a standard deviation of 62.4), a size that is already challenging in terms of computational

burden and data size. In addition, abstracts are aimed at synthesizing purpose and content of patents and

must therefore be a relevant object of study (see Adams 2010). The USPTO defines a guidance stating that an

abstract should be “a summary of the disclosure as contained in the description, the claims, and any drawings;

the summary shall indicate the technical field to which the invention pertains and shall be drafted in a way

which allows the clear understanding of the technical problem, the gist of the solution of that problem through

the invention, and the principal use or uses of the invention” (PCT Rule 8).

We construct from raw data a unified database. Data is collected from USPTO patent redbook bulk

downloads, that provides as raw data (specific dat or xml formats) full patent information, starting from 1976.

Detailed procedure of data collection, parsing and consolidation are available in Appendix B. The latest dump

of the database in Mongodb format is available at http://dx.doi.org/10.7910/DVN/BW3ACK. Collection and

homogenization of the database into a directly usable database with basic information and abstracts was an

important task as USPTO raw data formats are involved and change frequently.

We count 4,666,365 utility patents with an abstract granted from 1976 to 2013.3 The number of patents

granted each year increases from around 70,000 in 1976 to about 278,000 in 2013. When distributed by the year

of application, the picture is slightly different. The number of patents steadily increase from 1976 to 2000 and

remains constant around 200,000 per year from 2000 to 2007. Restricting our sample to patent with application

date ranging from 1976 to 2007, we are left with 3,949,615 patents. These patents cite 38,756,292 other patents

with the empirical lag distribution that has been extensively analyzed in Hall et al. (2001). Conditioned on

being cited at least once, a patent receives on average 13.5 citations within a five-year window. 270,877 patents

receive no citation during the next five years following application, 10% of patents receive only one citation and

1% of them receive more than 100 citations. A within class citation is defined as a citation between two patents

sharing at least one common technological class. Following this definition, 84% of the citations are within class

citations. 14% of the citations are between two patents that share the exact same set of technological classes.
2To see what a patent looks like in practice, one can refer to the USPTO patent full-text database http://patft.uspto.gov/

netahtml/PTO/index.html or to Google patent which publishes USPTO patents in pdf format at https://patents.google.com.
3A very small number of patents have a missing abstract, these are patents that have been withdrawn and we do not consider

them in the analysis.
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2.4 Towards a Complementary Classification

Potentialities of text-mining techniques as an alternative way to analyze and classify patents are documented

in Tseng et al. (2007). The author’s main argument, in support of an automatic classification tool for patent, is

to reduce the considerable amount of human effort needed to classify all the applications. The work conducted

in the field of natural language processing and/or text analysis has been developed in order to improve search

performance in patent databases, build technology map or investigate the potential infringement risks prior

to developing a new technology (see Abbas et al. 2014 for a review). Text-mining of patent documents is

also widely used as a tool to build networks which carry additional information to the simplistic bibliographic

connections model as argued in Yoon and Park (2004). As far as the authors know, the use of text-mining as a

way to build a global classification of patents remains however largely unexplored. One notable exception can

be found in Preschitschek et al. (2013) where semantic-based classification is shown to outperform the standard

classification in predicting the convergence of technologies even in small samples. Semantic analysis reveals

itself to be more flexible and more quickly adaptable to the apparition of new clusters of technologies. Indeed,

as argued in Preschitschek et al. (2013), before two distinct technologies start to clearly converge, one should

expect similar words to be used in patents from both technologies.

Finally, a semantic classification where patents are gathered based on the fact that they share similar

significant keywords has the advantage of including a network feature that cannot be found in the USPC case,

namely that each patent is associated with a vector of probability to belong to each of the semantic classes

(more details on this feature can be found in Section 3.4). Using co-occurrence of keywords, it is then possible

to construct a network of patents and to study the influence of some key topological features. As reviewed

previously, the use of co-occurrences is the usual way to construct a semantic network. Other hybrid technique

such as bipartite semantic/authors networks, do not have the nice feature of relying solely on endogenous

semantic information contained in data.

3 Semantic Classification Construction

In this section, we describe methods and empirical analysis leading to the construction of semantic network and

the corresponding classification.

3.1 Keywords extraction

Let P be the set of patents, we first assign to a patent p ∈ P a set of potentially significant keywords K(p) from

its text A(p) (that corresponds to the concatenation of its own title and abstract). K(p) are extracted through

a similar procedure as the one detailed in Chavalarias and Cointet (2013):

1. Text parsing and Tokenization: we transform raw texts into a set of words and sentences, reading it

(parsing) and splitting it into elementary entities (words organized in sentences).

2. Part-of-speech tagging: attribution of a grammatical function to each of the tokens defined previously.
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3. Stem extraction: families of words are generally derived from a unique root called stem (for example

compute, computer, computation all yield the same stem comput) that we extract from tokens. At this

point the abstract text is reduced to a set of stems and their grammatical functions.

4. Multi-stems construction: these are the basic semantic units used in further analysis. They are constructed

as groups of successive stems in a sentence which satisfies a simple grammatical function rule. The length

of the group is between 1 and 3 and its elements are either nouns, attributive verbs or adjectives. We

choose to extract the semantics from such nominal groups in view of the technical nature of texts, which

is not likely to contain subtle nuances in combinations of verbs and nominal groups.

Text processing operations are implemented in python in order to use built-in functions nltk library for most

of above operations. This library supports most of state-of-the-art natural language processing operations.4

3.2 Keywords relevance estimation

Relevance definition Following the heuristic in Chavalarias and Cointet (2013), we estimate relevance score

in order to filter multi-stem. The choice of the total number of keywords to be extracted, which we shall denote

Kw, is important, too small a value would yield similar network structures but including less information

whereas very large values tend to include too many irrelevant keywords. We choose to set this parameter to

Kw = 100, 000. We first consider the filtration of k ·Kw (with k = 4) to keep a large set of potential keywords

but still have a reasonable number of co-occurrences to be computed. This step has only very marginal effects

on the nature of the final keywords but is necessary for computational purposes. The filtration is done on the

unithood ui, defined for keyword i as ui = fi · log (1 + li) where fi is the multi-stem’s number of apparitions over

the whole corpus and li its length in words. A second filtration of Kw keywords is done on the termhood ti, where

the formal definition can be found in (1). It is computed as a chi-squared score on the distribution of the stem’s

co-occurrences and then compared to a uniform distribution within the whole corpus. Intuitively, uniformly

distributed terms will be identified as plain language and they are thus not relevant for the classification. More

precisely, we compute the co-occurrence matrix (Mij), where Mij is defined as the number of patents where

stems i and j appear together. The termhood score ti is defined as

ti =
∑
j 6=i

(Mij −
∑

k Mik

∑
k Mjk)

2∑
k Mik

∑
k Mjk

. (1)

Moving window estimation The previous scores are estimated on a moving window with fixed time length

following the idea that the present relevance is given by the most recent context and thus that the influence

vanishes when going further into the past. Consequently, the co-occurrence matrix is chosen to be constructed

at year t restricting to patent which applied during the time window
[
t− T0; t

]
. Note that the causal property

of the window is crucial as the future cannot play any role in the current state of keywords and patents. This

way, we will obtain semantic classes which are exploitable on a T0 time span. For example, this enables us to
4Source code is openly available on the repository of the project: https://github.com/JusteRaimbault/PatentsMining
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compute the modularity of classes in the citation network as in section 4.3. In the following, we take T0 = 4

(which corresponds to a five year window) consistently with the choice of maximum time lag for citations made

in Section 2.2. Accordingly, the sensitivity analysis for T0 = 2 can be found in Appendix Network Sensitivity

Analysis. Accordingly, the sensitivity analysis for T0 = 2 can be found in Appendix Network Sensitivity Analysis.

3.3 Construction of the semantic network

We keep the set of most relevant keywords KW and obtain their co-occurrence matrix as defined in Section

3.2. This matrix can be directly interpreted as the weighted adjacency matrix of the semantic network. At this

stage, the topology of raw networks does not allow the extraction of clear communities. This is partly due to

the presence of hubs that correspond to frequent terms common to many fields (e.g. method, apparat) which

are wrongly filtered as relevant. We therefore introduce an additional measure to correct the network topology:

the concentration of keywords across technological classes, defined as:

ctech(s) =

N(tec)∑
j=1

kj(s)
2

(
∑

i ki(s))
2 ,

where kj(s) is the number of occurrences of the sth keyword in each of the jth technological class taken from

one of the N (tec) USPC classes. The higher ctech, the more specific to a technological class the node is. For

example, the terms semiconductor is widely used in electronics and does not contain any significant information

in this field. We use a threshold parameter, defined as θc, and keep nodes with ctech(s) > θc. Likewise, edges

with low weights correspond to rare co-occurrences and are considered to be noise. To account for this we define

the threshold parameter for edges θw, and we filter edges with a weight below θw, following the rationale that

two keywords are not linked “by chance” if they appear simultaneously a minimal number of time. To control for

size effect, we normalize by taking θw = θ
(0)
w ·NP where NP is the number of patents in the corpus (NP = |P|).

θ
(0)
w is thus a varying parameter interpreted as a noise threshold per patent. Communities are then extracted

using a standard modularity maximization procedure as described in Clauset et al. (2004) to which we add the

two constraints captured by θw and θc, namely that edges must have a weight greater than θw and nodes a

concentration greater than θc. At this stage, both parameters θc and θ
(0)
w are unconstrained and their choice is

not straightforward. Indeed, many optimization objectives are possible, such as the modularity, network size or

number of communities. We find that modularity is maximized at a roughly stable value of θw across different

θc for each year, corresponding to a stable θ
(0)
w across years, which leads us to choose θ

(0)
w = 4.1 · 10−5. Then for

the choice of θc, different candidates points lie on a Pareto front for the bi-objective optimization on number

of communities and network size. There is a priori no reason to choose any specific point among the different

optimums. Consequently, we have tried the analysis with all the candidate values for θc and found that the

results are the most reasonable when taking θc = 0.06 (see Figure 1).
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FIGURE 1: Sensitivity analysis of network community structure to filtering parameters.

Note: This figure considers a specific window 2000-2004 and the obtained plots are typical. (Left panel) plots the number of
communities as a function of the edge threshold parameter θw for different values of the node threshold parameter θc. The
maximum is roughly stable across θc (dashed red line). (Right panel) To choose θc, we do a Pareto optimization on communities
and network size: the compromise point (red overline) on the Pareto front (purple overline: possible choices after having fixed θ

(0)
w ;

blue level gives modularity) corresponds to θc = 0.06.

3.4 Characteristics of Semantic Classes

For each year t, we define as N
(sem)
t the number of semantic classes which have been computed by clustering

keywords from patents appeared during the period
[
t − T0, t

]
(we recall that we have chosen T0 = 4). Each

semantic class k = 1, · · · , N (sem)
t is characterized by a set of keywords K(k, t) which is a subset of KW selected

as described in Section 3.1 to Section 3.3. The cardinal of K(k, t) distribution across each semantic class k

is highly skewed with a few semantic classes containing over 1, 000 keywords, most of them with roughly the

same number of keywords. In contrast, there are also many semantic classes with only two keywords. There

are around 30 keywords by semantic class on average and the median is 2 for any t. Figure 3 shows that the

average number of keywords is relatively stable from 1976 to 1992 and then picks around 1996 prior to going

down.

Title of semantic classes USPC technological classes are defined by a title and a highly accurate definition

which help retrieve patents easily. The title can be a single word (e.g.: class 101: “Printing”) or more complex

(e.g.: class 218: “High-voltage switches with arc preventing or extinguishing devices”). As our goal is to release

a comprehensive database in which each patent is associated with a set of semantic classes, it is necessary to

give an insight on what these classes represent by associating a short description or a title as in Tseng et al.

(2007). In our case, such description is taken as a subset of keywords taken from K(k, t). For the vast majority

of semantic classes that have less than 5 keywords, we decide to keep all of theses keywords as a description. For

the remaining classes which feature around 50 keywords on average, we rely on the topological properties of the

semantic network. Yang et al. (2000) suggest to retain only the most frequently used terms in K(k, t). Another

possibility is to select 5 keywords based on their network centrality with the idea that very central keywords are

the best candidates to describe the overall idea captured by a community. For example, the largest semantic

9



FIGURE 2: An example of semantic network visualization.

Note: This figure shows the network obtained for the window 2000-2004, with parameters θc = 0.06 and θw = θ
(0)
w · NP =

4.5e−5 · 9.1e5. The corresponding file in a vector format (.svg), that can be zoomed and explored, is available as Supplementary
Material.
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FIGURE 3: Keywords by semantic class

Note: This figure plots the average number of keywords by semantic class for each time window [t− 4; t] from t = 1980 to t = 2007.

class in 2003-2007 is characterized by the keywords: Support Packet; Tree Network; Network Wide; Voic

Stream; Code Symbol Reader.

Size of technological and semantic classes We consider a specific window of observations (for example

2000-2004), and we define Z the number of patents which appeared during that time window. For each patent

i = 1, · · · , Z we associate a vector of probability where each component p(sem)
ij ∈

[
0, 1

]
, with j = 1, · · · , N(sem)

and where5

N(sem)∑
j=1

p
(sem)
ij = 1.

On average across all time windows, a patent is associated to 1.8 semantic classes with a positive probability.

Next we define the size of a semantic class as

S
(sem)
j =

Z∑
i=1

p
(sem)
ij .

Correspondingly, we aim to provide a consistent definition for technological classes. For that purpose, we follow

the so-called “fractional count” method, which was introduced by the USPTO and consists in dividing equally

the patents between all the classes they belong to. Formally, we define the number of technological classes as

N (tec) (which is not time dependent contrary to the semantic case) and for j = 1, · · · , N (tec) the corresponding

5When there is no room for confusion, we drop the subscript t in N
(sem)
t .
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FIGURE 4: Sizes of classes.

Note: This figure plots for each year t = 1980 to t = 2007, the size of semantic classes (left-side) and technological classes (right-
side) for the corresponding time window [t − 4, t], from the biggest to the smallest. The formal definition of size can be found
in Section 3.4. Each color corresponds to one specific year. Yearly semantic classes and technological classes present a similar
hierarchical structure which confirms the comparability of the two classifications. This feature is crucial for the statistical analysis
in Section 4.4. Over time, curves are translated and levels of hierarchy stays roughly constant.

matrix of probability is defined as

p
(tec)
ij =

Bij

N(tec)∑
k=1

Bik

,

where Bij equals 1 if the ith patent belongs to the jth technological class and 0 if not. When there is no room

for confusion, we will drop the exponent part and write only pij when referring to either the technological or

semantic matrix. Empirically, we find that both classes exhibit a similar hierarchical structure in the sense of

a power-law type of distribution of class sizes as shown in Figure 4. This feature is important, it suggests that

a classification based on the text content of patents has some separating power in the sense that it does not

divide up all the patents in one or two communities.

3.5 Potential Refinements of the Method

Our semantic classification method could be refined by combining it with other techniques such as Latent

Dirichlet Allocation which is a widely used topic detection method (e.g. Blei et al. (2003)), already used on

patent data as in Kaplan and Vakili (2015) where it provides a measure of idea novelty and the counter-

intuitive stylized facts that breakthrough invention are likely to come out of local search in a field rather

than distant technological recombination. Using this approach should first help further evaluate the robustness

of our qualitative conclusions (external validation). Also, depending on the level of orthogonality with our

classification, it can potentially bring an additional feature to characterize patents, in the spirit of multi-
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modeling techniques where neighbor models are combined to take advantage of each point of view on a system.

Our use of network analysis can also be extended using newly developed techniques of hyper-network analysis.

Indeed, patents and keywords can for example be nodes of a bipartite network, or patents be links of an hyper-

network, in the sense of multiple layers with different classification links and citation links. The combination of

citation network modeling by Stochastic Block Modeling with topic modeling was studied for scientific papers

by Zhu et al. (2013), outperforming previous link prediction algorithms. Iacovacci et al. (2015) provide a

method to compare macroscopic structures of the different layers in a multilayer network that could be applied

as a refinement of the overlap, modularity and statistical modeling studied in this paper. Furthermore, is has

recently been shown that measures of multilayer network projections induce a significant loss of information

compared to the generalized corresponding measure De Domenico et al. (2015), which confirms the relevance of

such development that we left for further research.

An other potential research development would be to further exploit the temporal structure of our dataset.

Indeed, large progress have recently been made in complex network analysis of time-series data (see Gao et al.

2017 for a review). For example, Gao et al. (2015) develops a method to construct multiscale network from

time series, which could in our case be a solution to identify structures in patents trajectories at different levels,

and be an alternative to the single scale modularity analysis we use.

4 Results

In this section, we present some key features of our resulting semantic classification showing both complementary

and differences with the technological classification. We first present several measures derived from this semantic

classification at the patent level: Diversity, Originality, Generality (Section 4.1) and Overlapping (Section 4.2).

We then show that the two classifications show highly different topological measures and strong statistical

evidence that they feature a different model (Sections 4.3 and 4.4).

4.1 Patent Level Measures

Given a classification system (technological or semantic classes), and the associated probabilities pij for each

patent i to belong to class j (that were defined in Section 3.4), one can define a patent-level diversity measure

as one minus the Herfindhal concentration index on pij by

D
(z)
i = 1−

N(z)∑
j=1

p2ij , with z ∈ {tec, sem}.

We show in Figure 5 the distribution over time of semantic and technological diversity with the corresponding

mean time-series. This is carried with two different settings, namely including/not including patents with zero

diversity (i.e. single class patents). We call other patents “complicated patents” in the following. First of all, the

presence of mass in small probabilities for semantic but not technological diversity confirms that the semantic

classification contains patent spread over a larger number of classes. More interestingly, a general decrease of

diversity for complicated patents, both for semantic and technological classification systems, can be interpreted
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as an increase in invention specialization. This is a well-known stylized fact as documented in Archibugi and

Pianta (1992). Furthermore, a qualitative regime shift on semantic classification occurs around 1996. This can

be seen whether or not we include patents with zero diversity. The diversity of complicated patents stabilizes

after a constant decrease, and the overall diversity begins to strongly decrease. This means that on the one

hand the number of single class patents begins to increase and on the other hand complicated patents do not

change in diversity. It can be interpreted as a change in the regime of specialization, the new regime being

caused by more single-class patents.

More commonly used in the literature are the measures of originality and generality. These measures follow

the same idea than the above-defined diversity in quantifying the diversity of classes (whether technological or

semantic) associated with a patent. But instead of looking at the patent’s classes, they consider the classes of

the patents that are cited or citing. Formally, the originality Oi and the generality Gi of a patent i are defined

as

O
(z)
i = 1−

N(z)∑
j=1


∑
i′∈Ii

pi′j

N(z)∑
k=1

∑
i′∈Ii

pi′k



2

and G
(z)
i = 1−

N(z)∑
j=1


∑
i′∈Ĩi

pi′j

N(z)∑
k=1

∑
i′∈Ĩi

pi′k



2

,

where z ∈ {tec, sem}, Ii denotes the set of patents that are cited by the ith patent within a five year window

(i.e. if the ith patent appears at year t, then we consider patents on [t− T0, t]) when considering the originality

and Ĩi the set of patents that cite patent i after less than five years (i.e. we consider patents on [t, t + T0])

in the case of generality. Note that the measure of generality is forward looking in the sense that G
(z)
i used

information that will only be available 5 years after patent applications. Both measures are lower on average

based on semantic classification than on technological classification. Fig. 6 plots the mean value of O
(sem)
i ,

O
(tec)
i , G(sem)

i and G
(tec)
i .

4.2 Classes overlaps

A proximity measure between two classes can be defined by their overlap in terms of patents. Such measures

could for example be used to construct a metrics between semantic classes. Intuitively, highly overlapping

classes are very close in terms of technological content and one can use them to measure distance between two

firms in terms of technology as done in Bloom et al. (2013). Formally, recalling the definition of (pij) as the

probability for the ith patent to belong to the jth class and NP as the number of patents it writes

Overlapjk =
1

NP
·
NP∑
i=1

pijpik. (2)

The overlap is normalized by patent count to account for the effect of corpus size: by convention, we assume

the overlap to be maximal when there is only one class in the corpus. A corresponding relative overlap is

computed as a set similarity measure in the number of patents common to two classes A and B, given by
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FIGURE 5: Patent level diversities.

Note: Distributions of diversities (Left column) and corresponding mean time-series (Right column) for t = 1980 to t = 2007 (with
the corresponding time window [t−4, t]). The first row includes all classified patents, whereas the second row includes only patents
with more than one class (i.e. patents with diversity greater than 0).

FIGURE 6: Patent level originality and generality

Note: Originality (left hand side) and generality (right hand side) for t = 1980 to t = 2007 (with the corresponding time window
[t− 4, t]) as defined in subsection 4.1.
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o(A,B) = 2 · |A∩B|
|A|+|B| .

Intra-classification overlaps The study of distributions of overlaps inside each classification, i.e. between

technological classes and between semantic classes separately, reveals the structural difference between the two

classification methods, suggesting their complementary nature. Their evolution in time can furthermore give

insights into trends of specialization. We show in Figure 7 distributions and mean time-series of overlaps for

the two classifications. The technological classification globally always follow a decreasing trend, corresponding

to more and more isolated classes, i.e. specialized inventions, confirming the stylized fact obtained in previous

subsection. For semantic classes, the dynamic is somehow more intriguing and supports the story of a qualitative

regime shift suggested before. Although globally decreasing as technological overlap, normalized (resp. relative)

mean overlap exhibits a peak (clearer for normalized overlap) culminating in 1996 (resp. 1999). Looking at

normalized overlaps, classification structure was somewhat stable until 1990, then strongly increased to peak

in 1996 and then decrease at a similar pace up to now. Technologies began to share more and more until a

breakpoint when increasing isolation became the rule again. An evolutionary perspective on technological inno-

vation Ziman (2003) could shed light on possible interpretations of this regime shift: as species evolve, the fitness

landscape first would have been locally favorable to cross-insemination, until each fitness reaches a threshold

above which auto-specialization becomes the optimal path. It is very comparable to the establishment of an

ecological niche Holland (2012), the strong interdependency originating here during the mutual insemination

resulting in a highly path-dependent final situation.

FIGURE 7: Intra-Classification overlaps

Note: Distribution of overlaps Oij for all i 6= j (zero values are removed because of the log-scale) and corresponding mean
time-series. (First row) Normalized overlaps. (Second row) Relative overlaps.
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Inter-classification overlaps Overlaps between classifications are defined as in (2), but with j standing

for the jth technological class and k for the kth semantic class: pij are technological probabilities and pik

semantic probabilities. They describe the relative correspondence between the two classifications and are a

good indicator to spot relative changes, as shown in Figure 8. Mean inter-classification overlap clearly exhibits

two linear trends, the first one being constant from 1980 to 1996, followed by a constant decrease. Although

difficult to interpret directly, this stylized fact clearly unveils a change in the nature of inventions, or at least in

the relation between content of inventions and technological classification. As the tipping point is at the same

time as the ones observed in the previous section and since the two statistics are different, it is unlikely that

this is a mere coincidence. Thus, these observations could be markers of a hidden underlying structural changes

in processes.

FIGURE 8: Distribution of relative overlaps between classifications.

Note: Distribution of overlaps at all time steps and corresponding mean time-series. The decreasing trend starting around 1996
confirms a qualitative regime shift in that period.

4.3 Citation Modularity

An exogenous source of information on relevance of classifications is the citation network described in Section 2.2.

The correspondence between citation links and classes should provide a measure of accuracy of classifications,

in the sense of an external validation since it is well-known that citation homophily is expected to be quite

high (see, e.g, Acemoglu and Kerr 2016). This section studies empirically modularities of the citation network

regarding the different classifications. To corroborate the obtained results, we propose to look at a more rigorous

framework in Section 4.4. Modularity is a simple measure of how communities in a network are well clustered

(see Clauset et al. (2004) for the accurate definition). Although initially designed for single-class classifications,

this measure can be extended to the case where nodes can belong to several classes at the same time, in our

case with different probabilities as introduced in Nicosia et al. (2009). The simple directed modularity is given

in our case by

Q
(z)
d =

1

NP

∑
1≤i,j≤NP

[
Aij −

kini koutj

NP

]
δ(ci, cj),

with Aij the citation adjacency matrix (i.e. Aij = 1 if there is a citation from the ith patent to the jth patent,

and Aij = 0 if not), kini = |Ii| (resp. kouti =
∣∣∣Ĩi∣∣∣) in-degree (resp. out-degree) of patents (i.e. the number of
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citations made by the ith patent to others and the number of citations received by the ith patent). Qd can be

defined for each of the two classification systems: z ∈ {tec, sem}. If z = tec, ci is defined as the main patent

class, which is taken as the first class whereas if z = sem, ci is the class with the largest probability.

Multi-class modularity in turns is given by

Q(z)
ov =

1

NP

N(z)∑
c=1

∑
1≤i,j≤NP

[
F (pic, pjc)Aij −

βout
i,c kouti βin

j,ck
in
j

NP

]
,

where

βout
i,c =

1

NP

∑
j

F (pic, pjc) and βin
j,c =

1

NP

∑
i

F (pic, pjc).

We take F (pic, pjc) = pic ·pjc as suggested in Nicosia et al. (2009). Modularity is an aggregated measure of how

the network deviates from a null model where links would be randomly made according to node degree. In other

words it captures the propensity for links to be inside the classes. Overlapping modularity naturally extends

simple modularity by taking into account the fact that nodes can belong simultaneously to many classes. We

document in Figure 9 both simple and multi-class modularities over time. For simple modularity, Q
(tec)
d is

low and stable across the years whereas Q
(sem)
d is slightly greater and increasing. These values are however

low and suggest that single classes are not sufficient to capture citation homophily. Multi-class modularities

tell a different story. First of all, both classification modularities have a clear increasing trend, meaning that

they become more and more adequate with citation network. The specializations revealed by both patent level

diversities and classes overlap is a candidate explanation for this growing modularities. Secondly, semantic

modularity dominates technological modularity by an order of magnitude (e.g. 0.0094 for technological against

0.0853 for semantic in 2007) at each time. This discrepancy has a strong qualitative significance. Our semantic

classification fits better the citation network when using multiple classes. As technologies can be seen as a

combination of different components as shown by Youn et al. (2015), this heterogeneous nature is most likely

better taken into account by our multi-class semantic classification.

FIGURE 9: Temporal evolution of semantic and technological modularities of the citation network.

Note: Simple directed modularity, computed with patent main classes (main technological class and semantic class with larger
probability) and Multi-class modularity, computed following Nicosia et al. (2009)
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4.4 Statistical Model

In this section, we develop a statistical model aimed at quantifying performance of both technological and

semantic classification systems. In particular, we aim at corroborating findings obtained in Section 4.3. The

mere difference between this approach and the citation modularity approach lies in the choice of the underlying

model, and the according quantities of interest. In addition for the semantic approach, we want to see if when

restricting to patents with higher probabilities to belong to a class, we obtain better results. To do that, we

choose to look at within class citations proportion (for both technological and semantic approaches). We provide

two obvious reasons why we choose this. First, the citations are commonly used as a proxy for performance

as mentioned in Section 4.3. Second, this choice is “statistically fair” in the sense that both approaches have

focused on various goals and not on maximizing directly the within class proportion. Nonetheless, the within

class proportion is too sensitive to the distribution of the shape of classes. For example, a dataset where patents

for each class account for 10% of the total number of patents will mechanically have a better within class

proportion than if each class accounts for only 1%. Consequently, an adequate statistical model, which treats

datasets fairly regardless of their distribution in classes, is needed. This effort resembles to the previous study of

citation modularity, but is complementary since the model presented here can be understood as an elementary

model of citation network growth. Furthermore, the parameters fitted here can have a direct interpretation as

a citation probability.

We need to introduce and recall some notations. We consider a specific window of observations
[
t− T0, t

]
,

and we define Z the number of patents which appeared during that time window. We let t1, · · · , tZ their

corresponding appearance date by chronological order, which for simplicity are assumed to be such that t1 <

· · · < tZ . For each patent i = 1, · · · , Z we consider Ci the number of distinctive couples {cited patent, cited

patent’s class} made by the ith patent (for instance if the ith patent has only made one citation and that the

cited patent is associated with three classes, then Ci = 3). Let z ∈ {tec, sem}, we define N
(z)
i the number of

patents associated to at least one of the ith classes at time ti−1. For l = 1, · · · , Ci we consider the variables Bl,i,

which equal 1 if the cited patent’s class is also common to the ith patent. We assume that Bl,i are independent

of each other and conditioned on the past follow Bernoulli variables

B
(
min

{
1,

N
(z)
i

i− 1
+ θ(z)

})
,

where the parameter 0 ≤ θ(z) ≤ 1 indicates the propensity for any patent to cite patents of its own technological

or semantic class. When θ(z) = 0, the probability of citing patents from its own class is simply N
(z)
i (i − 1)−1,

which corresponds to the observed proportion of patents which belong to at least one of the ith patent’s classes.

Thus this corresponds to the estimated probability of citing one patent if we assume that the probability of

citing any patent k = 1, · · · , i − 1 is uniformly distributed, which could be a reasonable assumption if classes

were assigned randomly and independently from patent abstract contents. Conversely if θ(z) = 1, we are in the

case of a model where there are 100% of within class citations. A reasonable choice of θ(z) lies between those

two extreme values. Finally, we assume that the number of distinctive couples Ci are a sequence of independent

and identically distributed random variables following the discrete distribution C, and also independent from
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the other quantities.

We estimate θ(z) via maximum likelihood, and obtain the corresponding maximum likelihood estimator

(MLE) θ̂(z). The likelihood function, along with the standard deviation expression and details about the

test, can be found in D. The fitted values, standard errors and p-values corresponding to the statistical test

θ(sem) = θ(tec) (with corresponding alternative hypothesis θ(sem) > θ(tec)) on non-overlapping blocks from the

period 1980-20076 are reported on Table 1. Semantic values are reported for four different chosen thresholds

p− = .04, .06, .08, .1. It means that we restricted to the couples (ith patent, jth class) such that pij ≥ p−.

The choice of considering non-overlapping blocks (instead of overlapping blocks) is merely statistical. Ulti-

mately, our interest is in the significance of the test over the whole period 1980-2007. Thus, we want to compute

a global p-value. This can be done considering the local p-values (by local, we mean for instance computed on

the period 2001-2005) assuming independence between them. This assumption is reasonable only if the blocks

are non-overlapping. All of this can be found in D. Finally, note that from a statistical perspective, including

overlapping blocks wouldn’t yield more information.

The values reported in Table 1 are overwhelmingly against the null hypothesis. The global estimates of θ(sem)

are significantly bigger than the estimate of θ(tec) for all the considered thresholds. Although the corresponding

p-values (which are also very close to 0) are not reported, it is also quite clear that the bigger the threshold, the

higher the corresponding θ(sem) is estimated. This is consistently seen for any period, and significant for the

global period. This seems to indicate that when restricting to the couples (patent, class) with high semantic

probability, the propensity to cite patents from its own class θ(sem) is increasing. We believe that this might

provide extra information to patent officers when making their choice of citations. Indeed, they could look first

to patents which belong to the same semantic class, especially when patents have high probability semantic

values.

Note that the introduced model can be seen as a simple model of citations network growth conditional to a

classification, which can be expressed as a stochastic block model (e.g. Decelle et al. 2011, Valles-Catala et al.

2016). The parameters are estimated computing the corresponding MLE. In view of Newman (2016), this can

be thought as equivalent to maximizing modularity measures.

6Note that the estimation included patents up until 2010 in the period 2006-2007 and not the patents from 1980 in the period
1980-1985 for homogeneity in size with other periods. This doesn’t affect the significativity of the results.
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TABLE 1: Estimated values of θ(tec) and θ(sem) and corresponding standard errors obtained from a Maximum
Likelihood estimator as presented in section 4.4.

Approach Estimated Value st. er. p-value
1980-1985 period

technological .664 .008
semantic p− = .04 .741 .047 .053
semantic p− = .06 .799 .081 .049
semantic p− = .08 .828 .126 .097
semantic p− = .10 .834 .166 .153

1986-1990 period
technological .634 .007

semantic p− = .04 .703 .022 .001
semantic p− = .06 .768 .040 .0004
semantic p− = .08 .804 .069 .007
semantic p− = .10 .832 .114 .041

1991-1995 period
technological .619 .006

semantic p− = .04 .655 .009 .0004
semantic p− = .06 .713 .017 9e-08
semantic p− = .08 .731 .025 7e-06
semantic p− = .10 .750 .037 9e-06

1996-2000 period
technological .551 .003

semantic p− = .04 .585 .002 ≈ 0
semantic p− = .06 .638 .004 ≈ 0
semantic p− = .08 .660 .006 ≈ 0
semantic p− = .10 .686 .008 ≈ 0

2001-2005 period
technological .567 .003

semantic p− = .04 .621 .004 ≈ 0
semantic p− = .06 .676 .007 ≈ 0
semantic p− = .08 .701 .010 ≈ 0
semantic p− = .10 .710 .013 ≈ 0

2006-2007 period
technological .600 .007

semantic p− = .04 .683 .016 1e-06
semantic p− = .06 .732 .025 2e-07
semantic p− = .08 .760 .036 6e-06
semantic p− = .10 .782 .048 9e-05

1980-2007 global period
technological .606 .002

semantic p− = .04 .665 .009 8e-11
semantic p− = .06 .721 .017 9e-12
semantic p− = .08 .747 .025 9e-09
semantic p− = .10 .782 .035 3e-07

5 Conclusion

The main contribution of this study was twofold. First we have defined how we built a network of patents

based on a classification that uses semantic information from abstracts. We have shown that this classification

share some similarities with the traditional technological classification, but also have distinct features. Second,

we provide researchers with materials resulting from our analysis, which includes: (i) a database linking each
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patent with its set of semantic classes and the associated probabilities; (ii) a list of these semantic classes with

a description based on the most relevant keywords; (iii) a list of patent with their topological properties in the

semantic network (centrality, frequency, degree, etc.). The availability of this data suggests new avenues for

further research. Linking our dataset with existing open ones can lead to various powerful developments. For

example, using it together with the disambiguated inventor database provided by Li et al. (2014) could be a way

to study semantic profiles of inventors, or of cities as inventor addresses are provided. The investigation of spatial

diffusion of innovation between cities, which is a key component of Pumain’s Evolutive Urban Theory Pumain

(2010), would be made possible.

A first potential application is to use the patents’ topological measures inherited from their relevant keywords.

The fact that these measures are backward-looking and immediately available after the publication of the patent

information is an important asset. It would for example be very interesting to test their predicting power to

assess the quality of an innovation, using the number of forward citations received by a patent, and subsequently

the future effect on the firm’s market value. Regarding firm innovative strategy, a second extension could be

to study trajectories of firms in the two networks: technological and semantic. Merging these information with

data on the market value of firms can give a lot of insight about the more efficient innovative strategies, about

the importance of technology convergence or about acquisition of small innovative firms. It will also allow to

observe innovation pattern over a firm life cycle and how this differ across technology field. A third extension

would be to use dig further into the history of innovation. USPTO patent data have been digitized from the

first patent in July 1790. However, not all of them contain a text that is directly exploitable. We consider that

the quality of patent’s images is good enough to rely on Optical Character Recognition techniques to retrieve

plain text from at least 1920. With such data, we would be able to extend our analysis further back in time

and to study how technological progress occurs and combines in time. Akcigit et al. (2013) conduct a similar

work by looking at recombination and apparition of technological subclasses. Using the fact that communities

are constructed yearly, one can construct a measure of proximity between two successive classes. This could

give clear view on how technologies converged over the year and when others became obsolete and replaced by

new methods.
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A Definition of utility patent

A utility patent at the USPTO is a document providing intellectual property and protection of an invention. It

excludes others to making, using, or selling the invention the same invention in the United States in exchange for

a disclosure of the patent content. The protection is granted for 20 years since 1995 (it was 17 years before that

from 1860) starting from the year the patent application was filled, but can be interrupted before if its owner

fails to pay the maintenance fees due after 3.5, 7.5 and 11.5 years. Utility patents are by far the most numerous,

with more than 90% of the total universe of USPTO patents.7 According to the Title 35 of the United States

Codes (35 USC) section 101: “Whoever invents or discovers any new and useful process, machine, manufacture,

or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to

the conditions and requirements of this title.”8 In practice however, other types of invention including algorithms

can also be patented.9 The two following sections of the 35 USC defined the condition an invention must meet

to be protected by the USPTO: (i) novelty: the claimed invention cannot be already patented or described

in a previous publication (35 USC section 102); (ii) obviousness: “differences between the claimed invention

and the prior art must not be such that the claimed invention as a whole would have been obvious before the

effective filing date of the claimed invention to a person having ordinary skill in the art to which the claimed

invention pertains”. (35 USC section 103). After review from the USPTO experts, an application satisfying

these requirements will be accepted and a patent granted. The average time lag for such a review is on average

a little more than 2 years since 1976, with some patents being granted after much more than two years.10

Sample restriction As explained briefly before, we consider every patent granted by the USPTO between

1976 and 2013. For each patent, we gather information on the year of application, the year the patent was

granted, the name of the inventors, the name of the assignees and the technological fields in which the patent

has been classified (we get back to what these fields are below). We restrict attention to patents applied for

before 2007. The choice of the year 2007 is due to the truncation bias: we only want to use information on

granted patents and we get rid of all patents that were rejected by the USPTO. However, in order to date them

as closely as possible to the date of invention, we use the application date as a reference. As a consequence,

as we approach the end of the sample, we only observe a fraction of the patents which have been granted by

2013. Looking at the distribution of time lag between application and grant in the past and assuming that this

distribution is complete in time, we can consider that data prior to 2007 are almost complete and that data for

2007 are complete up to 90%.
7Other categories are Plant patents, Design patents and Reissue patents.
8Patent laws can be found in http://www.uspto.gov/web/offices/pac/mpep/mpep-9015-appx-l.html#d0e302376
9A notable example is the patent US6285999 protecting the Page Rank algorithm invented by Larry Page in 1998 which was

the genesis of Google.
10This time lag, sometimes called the grant lag, is highly heterogeneous across technological fields. In addition, it cannot be

considered as totally random. For example, if the patent is really disruptive some competitors might have some incentive in delaying
the process by disputing the validity of the patent, for more details see Régibeau and Rockett (2010).
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B Data collection procedure

Data Collection Procedure

Raw version of USPTO redbook with abstracts are available for years 1976-2014 starting from bulk download

page at https://bulkdata.uspto.gov/. A script first automatically downloads files. Before being automati-

cally processed, a few error in files (corresponding to missing end of records probably due to line dropping during

the concatenation of weekly files) had to be corrected manually. Files are then processed with the following

filters transforming different format and xml schemes into a uniform dictionary data structure :

• dat files (1976-2000): handmade parser

• xml files (2001-2012): xml parser, used with different schemas definitions.

Everything is stored into a MongoDB database, which latest dump is available at http://dx.doi.org/10.

7910/DVN/BW3ACK

Processing Workflow

The source code for the full workflow is available at https://github.com/JusteRaimbault/PatentsMining.

A simplified shell wrapper is at Models/fullpipe.sh. Note that keywords co-occurrence estimation requires

a memory amount in O(N2) (although optimized using dictionaries) and the operation on the full database

requires a consequent infrastructure. Launch specifications are the following :

Setup Install the database and required packages.

• Having a running local mongod instance

• mongo host, port, user and password to be configured in conf/parameters.csv

• raw data import from gz file : use mongorestore -d redbook -c raw –gzip $FILE

• specific python packages required : pymongo, python-igraph, nltk (with resources punkt, averaged_per-

ceptron_tagger,porter_test)

Running The utility fullpipe.sh launches the successive stages of the processing pipe.

Options this configuration options can be changed in conf/parameters.csv

• window size in years

• beginning of first window

• beginning of last window

• number of parallel runs
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• kwLimit : total number of keywords KW

• edge_th : θw pre-filtering for memory storage purposes

• dispth : θc

• ethunit : θ
(0)
w

Tasks The tasks to be done in order : keywords extraction, relevance estimation, network construction,

semantic probas construction, are launched with the following options :

1. keywords : extracts keywords

2. kw-consolidation : consolidate keywords database (techno disp measure)

3. raw-network : estimates relevance, constructs raw network and perform sensitivity analysis

4. classification : classify and compute patent probability, keyword measures and patent measures ; here

parameters (θw, θc) can be changed in configuration file.

Classification Data The data resulting from the classification process with parameters used here is available

as csv files at http://dx.doi.org/10.7910/DVN/ZULMOY. Each files are named according to their content

(keywords, patent probabilities, patent measures) and the corresponding time window. The format are the

following :

• Keywords files : keyword ; community ; termhood times inverse document frequency ; technological

concentration ; document frequency ; termhood ; degree ; weighted degree ; betweenness centrality ;

closeness centrality ; eigenvector centrality

• Patents measures : patent id ; total number of potential keywords ; number of classified keywords ; same

topological measures as for keywords

• Patent probabilities : patent id ; total number of potential keywords ; id of the semantic class ; number

of keywords in this class. Probabilities have to be reconstructed by extracting all the lines corresponding

to a patent and dividing each count by the total number of classified keywords.

Analysis The results of classification has to be processed for analysis (construction of sparse matrices for

efficiency e.g.), following the steps:

• from classification files to R variables with Semantic/semanalfun.R

• from csv technological classes to R-formatted sparse Matrix with Techno/prepareData.R

• from csv citation file to citation network in R-formatted graph and adjacency sparse matrix with Citation/constructNW.R

Analyses are done in Semantic/semanalysis.R.
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C Network Sensitivity Analysis

C.1 Network Sensitivity

The example of Fig.1 in main text for a given year yielded the same qualitative behavior for all years, as shown

in Fig. 10, 11 and 12 here. We also show an other point of view over the Pareto optimization, that is the third

plot giving the values of normalized objectives as a function of θc.

C.2 Time-window size sensitivity

We show in Fig. 13, 14 and 15 the sensitivity plots used for semantic network construction optimization, for

a different time window with T0 = 2. The same qualitative behavior is observed (with different quantitative

values, as typically θ
(0)
w is for example expected to vary with document number and semantic regime, thus with

window size), what confirms that the method is valid across different time windows.
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FIGURE 10: Sensitivity plots for T0 = 4 : Number of communities as a function of θw, for each year.
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FIGURE 11: Sensitivity plots for T0 = 4 : Pareto plots of number of communities and number of vertices, for
each year.
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FIGURE 12: Sensitivity plots for T0 = 4 : normalized objective as a function of θc, for each year.
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FIGURE 13: Sensitivity plots for T0 = 2 : Number of communities as a function of θw, for each year.
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FIGURE 14: Sensitivity plots for T0 = 2 : Pareto plots of number of communities and number of vertices, for
each year.
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FIGURE 15: Sensitivity plots for T0 = 2 : normalized objective as a function of θc, for each year.
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D Statistical definitions and derivations

D.1 Likelihood expression

We define Fi the filtration which corresponds to the time ti. With this notation L(X|Fi−1) simply means

the likelihood of X conditioned on the past. We consider θ̂(z) the MLE11 of θ(z), where the corresponding

log-likelihood of the model can be expressed up to constant terms as

Z∑
i=2

Ci∑
l=1

logL
(
Bl,i|Fi−1

)
.

Recalling that Bl,i are independent of each other and conditioned on the past follow Bernoulli variables

B
(
min

{
1,

N
(z)
i

i− 1
+ θ(z)

})
,

the log-likelihood of the model can be expressed as

Z∑
i=2

Ci∑
l=1

Bl,i log
(
min

{
1,

N
(z)
i

i− 1
+ θ(z)

})
+ (1−Bl,i) log

(
1−min

{
1,

N
(z)
i

i− 1
+ θ(z)

})
. (3)

In practice, the user can easily implement the formula (3) for any 0 ≤ θ(z) ≤ 1, and maximize it over a predefined

grid to obtain θ̂(z).

D.2 Standard errors of the estimated values

Under some assumptions, it is possible to show the asymptotic normality of θ̂(z) and to compute the asymptotic

variance. For simplicity of exposition, we assume that we restrict to θ(z) such that we have N
(z)
i

i−1 + θ(z) < 1 for

any i = 2, · · · , Z. The central limit theorem can be expressed as

√
ZE[C](θ̂(z) − θ(z))

L→ MN
(
0,

∫
(p+ θ(z))(1− (p+ θ(z)))dπ(z)(p)

)
, (4)

where MN stands for a multinormal distribution and π(z) for the asymptotic limit distribution of the quantity
N

(z)
i

i−1 +θ(z). Note that the variance term in (4) is equal to an aggregate version of the Fisher information matrix.

The proof of such statement is beyond the scope of this paper. On the basis of (4), we provide a variance

estimator as

v(z) =
1

Ck − 1

Ck∑
i=2

N
(z)
ik

i− 1
+ θ̂(z),

where ik is such that the ikth patent corresponds to the kth couple. This estimator was used to compute the

standard deviation in Table 1.
11Apparently, this MLE is a partial MLE, but we will not refer to partial for simplicity.
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Test statistic

The test statistic used is a mean difference test statistic between θ̂(tec) and θ̂(sem), where the formal expression

can be found in (5). We assume independence between both quantities and thus under the null hypothesis, we

have that

θ̂(tec) − θ̂(sem)→MN(0, V ),

where V =
∫
(p+ θ(tec))(1− (p+ θ(tec)))dπ(tec)(p) +

∫
(p+ θ(sem))(1− (p+ θ(sem)))dπ(sem)(p) can be estimated

by V̂ = v(sem) + v(tec). Then, we obtain that

A =
θ̂(tec) − θ̂(sem)

V̂
≈ N (0, 1), (5)

where A is the mean difference test static.
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