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ABSTRACT 

Using several millions of daily prices collected over the period 2007-2018 in France, we 
investigate how gasoline retail prices respond to a common shock on marginal cost (i.e. the 
wholesale gasoline price quoted on the Rotterdam market). We find that the pass-through is 
complete: a 1% change in Rotterdam price translates to a change in retail price of 0.8%, in 
line with the share of the wholesale gasoline in total costs. The adjustment is gradual: the full 
pass through takes about 3 weeks. In a broad class of sticky price models, the ratio of the 
kurtosis over the frequency of price changes is shown to be a sufficient statistic for the 
cumulative impulse response of prices (CIRP) to a nominal shock. We provide evidence that 
the sufficient statistic prediction holds when we look at how gasoline prices respond to a 
common cost shock. Relating, at the gas station level, the CIRP to moments of the price 
change distribution, we find that the CIRP correlates with the ratio of kurtosis over 
frequency, but also with both frequency and kurtosis taken separately. The sign and the 
magnitude of the correlations are fully in line with theoretical predictions. We also show that 
other moments do not correlate with CIRP as robustly as the frequency and the kurtosis.3 
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NON-TECHNICAL SUMMARY 

Price rigidity is a key ingredient in standard macro models to generate short term real effects 
of monetary policy. A recent theoretical literature has shown that in a very broad class of 
sticky-price models, the cumulated responses of output to a monetary shock is proportional 
to the ratio of two moments of the observed price change distribution: the kurtosis of non-
zero price changes (i.e. a measure of “fat tails” of the distribution) and the frequency of price 
changes. This ratio is what we call a sufficient statistic for real effects of a monetary shock. 
The intuition behind this result is the following: when prices adjust very frequently, prices 
will respond quickly to the cost shock and the cumulative response of output will be smaller. 
For a given frequency of price changes, the size of price changes also matters: if firms 
adjusting their prices are the ones whose prices are the furthest away from the price that 
would have prevailed under price flexibility, the price response will be quicker and the 
cumulative real effects smaller. The kurtosis of price changes is shown to capture this “price 
selection effect” accelerating the price response to a shock. However, empirical evidence 
testing this sufficient statistic proposition is quite scarce. In this paper, we provide new 
empirical evidence supporting this prediction, focusing on the cumulated response of prices 
(CIRP). To do so, we use a dataset covering daily gasoline prices collected in about 10,000 
gas stations in France between 2007 and 2018.  
Gasoline offers a clean case study for testing the sufficient statistic prediction for at least two 
reasons: first, we can relate individual prices to observed variations in one of the main 
component of their costs (i.e. the wholesale gasoline traded on the Rotterdam market) and 
we are able to derive precise estimates of the price response to a cost shock at the gas station 
level; second, kurtosis often raises measurement issues because this statistic is quite sensitive 
to outliers and product heteregoneity. In our dataset, for each gas station, we observe several 
hundreds of price changes for a homogenous good, which helps us to obtain quite precise 
measures of kurtosis at the gas station level. We then rely on variation of kurtosis and 
frequency of price changes across gas stations to test the sufficient statistic prediction.  
First, we document that gasoline prices are sticky (relative to the high frequency of shocks): 
(i) while oil prices vary every day, the typical duration between two gasoline price changes is 
4 opening days, (ii) the distribution of gasoline price changes does not mirror the distribution 
of wholesale price changes: the former displays a two-peak distribution with few small price 
changes whereas the latter is close to a normal distribution centered around 0; (iii) relating 
prices to observed cost, we find persistent gaps between actual prices and prices that gas 
stations would charge if they passed changes in marginal cost into their prices every day; 
moreover, the probability of changing prices is an increasing function of this gap. 
We then estimate the reaction of gasoline prices to a marginal cost shock at both the 
aggregate and gas station levels. A 1% change in Rotterdam wholesale diesel price translates 
into a change in retail price of 0.8%, in line with the share of the wholesale gasoline in total 
costs and a full pass-through of costs to prices. The adjustment is gradual: the pass through 
takes about 3 weeks. We also find that shocks on the markup (proxied by the average local 
price changes) are transmitted immediately, with a much smaller pass-through (20%) that 
gradually fades out to become insignificant after 20 days. We do not find any evidence of 
asymmetric price reactions to negative or positive shocks. 
To test the sufficient statistic prediction, we relate the cumulative impulse response function 
of prices to marginal cost to the ratio of kurtosis over frequency calculated at the gas station 
level using two different empirical exercises. The first one is conducted pooling all price 
observations together, while the second exercise uses the cross sectional dispersion of both 
the cumulated price response and the ratio of the kurtosis to the frequency of price changes 
at the gas station level. Both empirical exercises provide robust and consistent evidence that 
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this ratio correlates negatively with CIRP as predicted by the sufficient statistic theory (Figure 
– left panel). The estimated coefficient relating CIRP and the ratio is also close to -0.167, the 
value predicted by the theory. Besides, both the frequency and the kurtosis of price changes 
taken separately correlate equally and significantly with CIRP and with the expected sign 
(Figure center and right panels). Other moments of the price change distribution do not 
show the same robust and significant relationship with CIRP as the one obtained for the 
ratio kurtosis over frequency.  
 
Figure: Correlation between the cumulative impuse response of gasoline prices to a cost 
shock (CIRP) and key moments of the price change distribution 

 
Note: correlations are calculated across gas stations; statistics are measured for every gas station in France 
based on a dataset of daily gasoline prices in France between 2007 and 2018 collected by the Ministry of 
Economy. 

 

Comment les prix à la pompe réagissent-ils 
à un choc sur le prix du pétrole ?   

RÉSUMÉ 
À partir de plusieurs millions de prix collectés quotidiennementsur la période 2007-2018 en France, 
nous étudions comment les prix de détail de l'essence réagissent à un choc commun sur le coût 
marginal (i.e. le prix de gros coté sur le marché de Rotterdam). La transmission est complète : une 
variation de 1 % du prix de gros se traduit par une variation du prix de détail de 0,8%, en ligne 
avec la part de l'essence vendue en gros dans les coûts totaux. L'ajustement est progressif : la 
transmission complète prend environ 3 semaines. Dans une large classe de modèles à prix rigides, 
il a été démontré que le ratio de la kurtosis sur la fréquence des changements des prix est une 
statistique suffisante de la réponse cumulée des prix à un choc nominal. En estimant, pour chaque 
station, la réaction des prix à un choc sur le prix de gros, et en liant le cumul de leur fonction de 
réponse aux moments de leur distribution de changements de prix, nous montrons que la 
prédiction théorique est vérifiée : le cumul de la fonction de réponse est corrélé au ratio kurtosis 
sur fréquence, mais également à la fréquence et à la kurtosis considérées séparément. Nous 
montrons que les autres moments de la distribution ne sont pas aussi fortement corrélés au cumul 
de la fonction de réponse que la fréquence et la kurtosis.  
 

Mots-clés : rigidité des prix, prix à la pompe, statistique suffisante.  
 

Les Documents de travail reflètent les idées personnelles de leurs auteurs et n'expriment pas 
nécessairement la position de la Banque de France. Ils sont disponibles sur publications.banque-france.fr 
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1. Introduction 

How do prices respond to a marginal cost shock? Recently, Alvarez et al. (2016) and Alvarez et al. 

(2021a) have theoretically shown that in a general class of sticky price models (nesting in particular 

the standard menu cost and the Calvo models), the cumulated output response to an aggregate 

nominal shock can be summarized by a sufficient statistic which is the ratio of kurtosis of non-zero 

price changes over the frequency of price changes. The intuition behind the result is quite simple. 

If prices are sticky, they respond slowly to a given shock (leading to real effects) and the frequency 

of price changes will capture the speed of price adjustment. For a given frequency, the size of price 

adjustment also matters. If firms adjusting their prices are the ones whose prices are the furthest 

from the price that would have prevailed under price flexibility, the price response will be larger 

and quicker and the cumulated output response will be smaller. The kurtosis of price changes 

captures this price selection effect accelerating the price response and reducing the real effects of a 

nominal shock.  

In this paper, we provide new empirical evidence testing this sufficient statistic property using a 

unique dataset containing several millions of gasoline retail prices collected daily by the 

Ministry of Economy and covering the universe of French gas stations over the period 2007-

2018.  

Gasoline prices offer a very clean case study for testing the sufficient statistic property for at 

least two reasons. First, the kurtosis of the price changes distribution is generally measured 

quite imprecisely because it is highly sensitive to outliers and to product heterogeneity. Our 

gasoline price data help us to overcome these measurement difficulties. First, gasoline is a very 

homogenous product and second, prices contain almost no measurement error since they are 

reported by stations themselves under the control of the Ministry of Economy. Besides, each 

gas station has a long time series with several years of daily prices, which allows us to compute 

a precise measure of kurtosis at the gas station level, using several hundreds of price changes 

for every gas station. We then rely on the variation of this statistic across gas stations to test the 

sufficient statistic property. A second reason why gasoline prices are a clean case study for 

testing the sufficient statistic is that we can measure quite precisely how gasoline prices respond 

to an observed marginal cost shock. To do this, we link daily gasoline price trajectories with 

the price change of wholesale diesel quoted daily on the Rotterdam wholesale market, which is 

a large cost component for gas stations. This shock is arguably exogenous and displays high-

frequency variation. Since each gas station has a relatively long time series, we can estimate for 
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every gas station an accurate measure of the cumulative impulse response function of gasoline 

prices to a marginal cost shock. We can then test the sufficient statistic prediction exploiting 

the variability of this measure across gas stations. 

In this paper, we first document that if gasoline prices are updated much more frequently than 

other consumption goods, they are still sticky in comparison with the high frequency of shocks. 

On average, gas stations change their prices once a week, while the marginal cost changes every 

day. Second, the distribution of price changes displays some specific patterns. In particular, 

there are very few small price changes and the distribution of price changes is M-shaped, while 

the distribution of marginal cost shock is close to a normal distribution centered around 0. For 

most gas stations, we find that the kurtosis of price changes ranges between 1 and 6, which 

corresponds to the two “extreme” values predicted by the theoretical model of Alvarez et al. 

(2021a) (1 in a standard menu cost model and 6 in a Calvo model). We also find that the average 

kurtosis across gas stations is about 3, suggesting some moderate degree of price selection. 

Since we observe quite precisely a large component of the marginal cost of gasoline at a daily 

frequency, we can also compute the generalized adjustment hazard function relating the 

probability of price changes to the gap between the actual price and the price that would have 

been observed under perfect flexibility. We find that this function is monotonically increasing 

in the absolute value of the price gap. This result is quite consistent with predictions of random 

menu-cost models of price rigidity and Alvarez et al. (2021a) show that the sufficient statistic 

holds when we observe such patterns in the generalized hazard function.  

We then show that gasoline prices do not respond immediately to a marginal cost shock. To do 

this, we estimate the average reaction of gasoline retail prices to a change in the wholesale price 

of diesel quoted in the international market, using a flexible local projection methodology 

(Jordà, 2005). This estimation method is particularly useful in our case since it imposes a 

minimal structure on the dynamics of the response, it does not require assuming any constraint 

on the long-run pass-through and allows us to estimate the impulse response function of prices 

to the cost shock for quite long horizons. We find that a 1%-variation in the Rotterdam 

wholesale price of diesel is gradually transmitted to gasoline prices within 3 weeks, and that 

the long-run pass-through is of 80%, in line with the share of marginal cost in the total cost of 

a gas station. The protracted adjustment of prices to the shock confirms the presence of 

significant price stickiness. We also document strong heterogeneity depending on station 

characteristics: stations with lower prices (which are also more likely to be supermarkets) show 

a larger pass-through; conversely, stations using more often psychological prices (ending with 
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a 0 or a 9) have a lower pass-through. Finally, we do not find any evidence of asymmetric 

reactions between positive and negative shocks.  

Using this empirical model to derive the cumulative impulse response of prices to a cost shock, 

we can investigate the sufficient statistic prediction. Here we follow closely the empirical 

strategy developed by Alvarez et al. (2021b): using sectoral French data, they relate the 

cumulative impulse response of prices (CIRP) to the ratio kurtosis over frequency. In our case, 

the identifying variability will come from variations across several thousands of gas stations. 

We rely on two different empirical exercises. First, pooling all gas stations together, we can 

include in our baseline local projection empirical model an interaction term between the 

common cost shock and the ratio kurtosis over frequency at the gas station level. In a second 

exercise, we estimate for each gas station of our sample the impulse response function of prices 

to a marginal cost shock. We then normalize the long-run pass-through across gas stations so 

that we calculate the CIRP at different horizons for an equivalent nominal shock of 1%. We 

finally investigate the relationship across gas stations between CIRP and moments of the price 

distribution under the restrictions implied by the theory and as developed in Alvarez et al. 

(2021b).  

In both empirical approaches, our results provide evidence strongly supporting the sufficient 

statistic property. As predicted by the theory, the CIRP to a positive marginal cost shock is 

negatively related to the ratio of kurtosis over frequency. This result is robust to a variety of 

robustness checks and to considering different measures of the cost shock. We find that the 

magnitude of the coefficient associated with the ratio is in line with predictions of the model. 

The estimated coefficients vary between -0.1 and -0.15 according to specifications, whereas the 

standard predicted value is -0.167. Another finding is that both frequency and kurtosis are 

correlated with the CIRP with the expected sign, and the magnitude of the coefficients is also 

fully in line with the theoretical predictions. Interestingly, we also obtain that for both frequency 

and kurtosis, T-statistics associated with estimated coefficients are quite high and similar, 

suggesting that both moments contribute as much to the cross-sectional dispersion of CIRP. 

Besides, we find that other moments of the price distribution do not correlate as robustly as the 

frequency and the kurtosis of price changes. We obtain that T-statistics associated with these 

moments are much lower and that depending on the specification or the sample we consider the 

magnitude and even the sign of the regression coefficients associated with other moments can 

vary. In the empirical exercise where we pool all gas stations together, interaction terms 
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corresponding to other moments of the price change distribution are not statistically significant 

for long-term horizons (at which the theoretical prediction is supposed to hold).  

We run several robustness exercises using different measures of shocks, different horizons for 

the calculation of long-term pass-through and the CIRP, different samples of gas stations, or 

alternative measure of kurtosis taking into account possible heterogeneity. They all confirm that 

the sufficient statistic prediction holds: the ratio of kurtosis over frequency correlates 

significantly with CIRP and both moments taken separately are also correlated with equal 

importance and significance with CIRP. 

Our paper is a contribution to the very recent but growing literature testing the sufficient statistic 

prediction of Alvarez et al. (2016, 2021a). Using French sectoral data, Alvarez et al. (2021b) 

propose to investigate empirically this prediction and provide an empirical framework for these 

tests. We here build on this first contribution and follow closely their empirical framework to 

document new empirical evidence focusing on a specific product for which we have more 

precise information both on the marginal cost and on moments of the price change distribution. 

Contrary to Alvarez et al. (2021b), we do not look at monetary policy shock but to an observed 

marginal cost shock common to all gas stations. As underlined in Alvarez et al. (2021b), the 

theory applies to any common shock shifting the marginal costs of all firms the same way; the 

wholesale price of diesel here affects all gas stations at the same time. We can then use the 

heterogeneity of CIRP across gas stations to test the sufficient statistic predictions. Since 

gasoline is a quite homogenous product and we have daily observations, we are able to compute 

higher moments of price changes with less serious measurement issues than in other empirical 

settings. In a related contribution to this literature testing the sufficient statistic, Hong et al. 

(2021) on US producer price data find that frequency is the only moment which is robustly 

related to the price response to a monetary shock whereas Henkel (2020) documents that 

sectoral heterogeneity in the response to a monetary shock can be related to cross-sectoral 

dispersion in the frequency of price changes. We here emphasize that the frequency is not the 

only moment which can be related to the cumulated price response to a marginal cost shock, 

the kurtosis also matters as predicted by the theoretical result of Alvarez et al. (2016, 2021a).  

Our work is also related to a very large literature focusing on how gasoline prices respond to 

an oil price shock (see Hosken et al. 2008 for instance). In particular, Davis and Hamilton 

(2004) or Douglas and Herrera (2010) both investigate price stickiness of gasoline prices in the 
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United States looking at the determinants of the probability of price changes.1 Gautier and Le 

Saout (2015) have used similar micro data as the ones we use in this paper on a much shorter 

period of time and have investigated how the probability but also the size of price changes are 

related to marginal cost shocks. They have estimated station-specific models of price rigidity 

to derive aggregate implications for the price dynamics. They conclude that individual price 

responses to a cost shock are consistent with a model of random menu cost and that the response 

to a shock is gradual.2 Our contribution to this empirical literature is to provide estimates of the 

impulse response function of gasoline prices to a cost shock using a very flexible empirical 

model with a minimal structure (see also Balleer and Zorn (2019) and Dedola et al. (2020) for 

a similar empirical approach on producer price data or Karadi et al. (2019) on consumer scanner 

data). In particular, we do not impose any constraint on the long run response or on the shape 

of the price dynamics.3 Moreover, this method and the long-time dimension of the data allow 

us to estimate the impulse response function at every day after the shock and over a long horizon 

(relative to the half-life of the impulse response). 

The remainder of the paper is as follows. In section 2, we describe the main characteristics of 

our dataset and we document that gasoline prices are sticky at daily frequency. In section 3, we 

present the empirical model we use to estimate the price response to a marginal cost shock and 

we describe the results. In Section 4, we test the sufficient statistic theory by relating the 

cumulative impulse response of prices to the moments of the price change distribution and we 

document the main empirical results of this test. In Section 5, we present results of robustness 

exercises. Section 6 concludes. 

2. Micro dataset and stylized facts on price stickiness 

In this section, we present our micro dataset and we document the main stylized facts on the 

relative stickiness of retail gasoline prices. 

2.1  Daily micro-data  

Our dataset consists of individual prices reported by all gas stations selling gasoline in France. 

Since January 1st 2007, all gas stations selling more than 500 m3 in a year have to report the 

                                                           
1
 Carlsson (2017), using Swedish PPI, relates marginal cost to the probability of PPI price changes on annual 

data for a very large number of manufacturing sectors. 
2
 See also Cardenas et al. (2017) for another empirical study using these data to investigate price convergence. 

3
 Eckert (2013) has pointed the importance of high-frequency station-level data whereas Deltas and Polemis (2020) 

report a large set of methods and data to review the strengths and weaknesses of usual estimates. 
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prices of their fuels to the Ministry of Economy every time they update these prices. All prices 

collected are then made available for free to consumers on a governmental web site 

http://www.prix-carburants.gouv.fr.4 We use daily historical data extracted between January 1st 

2007 and December 31st 2018. Overall, our dataset contains about 30 million price quotes. 

These data cover more than 10,000 stations.5 Price quotes contained in this dataset have also 

been used by Insee (French National Statistical Institute) since 2017 to calculate the official 

monthly consumer price index for gasoline, which supports that price information contained in 

this dataset can be considered as highly reliable.  

The main variables contained in the dataset are as follows: (i) an identification number for each 

retailer, with detailed information on location, brand name, type of available services (shop,…); 

(ii) the price of a liter of diesel including all taxes, and expressed in euros with three decimals 

(as posted publicly outside the station); (iii) the exact date (DD/MM/YYYY) of the price update 

(see also Appendix A for more details on data cleaning). Prices are directly collected at the gas 

station since they are reported by the gas station owner under the administrative control of the 

Ministry of Economy. Prices are displayed on a public web site and the accuracy of the 

information can be easily checked (by customers and the Ministry of Economy). However, 

some prices might be subject to measurement errors, mainly related to the dates at which gas 

stations are closed, sometimes very temporarily. We focus on gas stations opening more than 

500 days (2 years of opening days) with continuous price observations. We also drop price 

observations on the weekends because there is no Rotterdam price change during the weekends 

and because there is almost no gas station changing its prices on Sunday. Overall, our data 

sample contains about 15 millions of prices. 

Every gas station reports prices for a maximum of four types of gasoline: diesel, super unleaded 

petrol SP95, super unleaded petrol SP95-E10 and super unleaded petrol SP98. In this paper, we 

focus on diesel prices for two reasons. First, over our sample period, diesel has the highest 

market share among gasoline products, representing about 60% of the value of household 

consumption of road fuels (according to the HICP weights). Second, diesel prices are available 

                                                           
4
 This obligation is legally binding. A ministerial decree dated December 12, 2006 provides details on this 

obligation and states that any failure to comply with this obligation is punishable by a fine. Price updates are 
reported by gas station managers through a specific and secured IT platform with a restricted access. The French 
competition authority (DGCCRF) is in charge of controlling the accuracy of the information provided by gas 
stations and run on-site controls. Consumers are also invited to report to the control authority any inaccurate 
information reported on the web site where prices are publicly available. 
5
 The data set is not exhaustive in terms of gas stations since there is a threshold requirement for participation, but 

still covers a large majority of gas stations operating in France. 
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over the whole sample period, which is not the case for other types of gasoline products sold in 

France over the same period.6 

Our dataset contains prices as they are publicly displayed by gas stations, i.e. in euros with three 

decimals and including consumption taxes. Two taxes are paid on gasoline prices: TICPE (Taxe 

Intérieure de Consommation sur les Produits Énergétiques, i.e. carbon tax) is a lump sum tax 

that can vary over years and possibly across regions (in 2018, this tax was about 0.6 euros in 

most regions); Value Added Tax (VAT) whose standard rate was 19.6% until January 2014, 

and 20% afterwards. VAT applies on the sum of pre-tax price and carbon tax. In the rest of the 

paper, we will use pre-tax prices that can be recovered following the formula: 

��� = ���
(	
���) − �����   (1) 

where PBT represents the price before taxes, and PAT  represents the price all taxes included (as 

displayed by gas stations). In our sample, the average price after all taxes is about 1.25 euros 

whereas the average price before taxes is about 0.56 euros. Overall, taxes represent about 55% 

of the price after taxes (Table A.1 in the Appendix for a complete decomposition of gasoline 

prices).  

Figure A.2 in the Appendix plots the average daily price of gasoline in our dataset and compares 

it with the “official” gasoline price series (computed and released by the Ministry of Economy, 

using the same data source), as well as with the price of crude oil (Brent, in euros) and of the 

wholesale diesel price quoted on the Rotterdam market (in euros). As expected, our average 

price series and the “official” price series are highly similar and the average retail price co-

moves very closely with crude oil or wholesale gasoline prices quoted on international markets.  

2.2 Are gasoline prices sticky? 

We provide two sets of stylized facts consistent with some price stickiness of retail gasoline 

prices at a daily frequency. 

Frequency and size of and price changes 

First, retail gasoline prices do not change every day contrary to oil prices or wholesale diesel 

prices quoted on international markets. For each gas station of our sample, we have calculated 

the frequency of price changes. Table 1 reports the results. The frequency of price change of 

                                                           
6
 Unleaded petrol SP98 is only available since 2013; the number of stations selling unleaded petrol SP95 has 

been sharply decreasing over the last 10 years since unleaded petrol SP95-E10 has been progressively replacing 
SP95 in many stations (and these two types of gasoline have different prices). 
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the median gas station is 27%, implying a price duration of a little less than 4 opening days. 

There is some heterogeneity across gas stations: one quarter of gas stations have frequencies 

lower than 21% (i.e. price durations longer than 5 days) while for one quarter of stations this 

frequency is larger than 36% (i.e. price durations shorter than 3 days) (Figure 1a and Table 1). 

[Table 1] 

[Figure 1] 

Second, the distribution of price changes displays a two-peak distribution with fewer small 

price changes while the distribution of daily changes in the wholesale gasoline prices is close 

to a normal distribution centered around 0 (Figure 2). This M-shaped distribution of price 

changes is quite in line with the prediction of a menu-cost model where small price changes are 

quite rare. In a typical menu cost model, this relative low proportion of small price changes can 

be explained by the fact that prices are more likely to be updated when they are far from the 

price that would have prevailed under price flexibility. This leads to a selection of prices that will 

adjust, and price changes are more likely to be large. According to Alvarez et al. (2021a), 

kurtosis of non-zero price changes can capture this selection effect (a very high selection effect 

corresponds to a small kurtosis equal to 1 while the absence of selection effect as in the Calvo 

setting corresponds to the largest kurtosis of 6). However, in practice, this statistic is usually 

hard to measure accurately and empirical measures of kurtosis are often very far from typical 

values predicted by theory and so, hard to relate to standard theoretical model predictions. 

Interestingly, we find that for a large majority of gas stations of our sample, kurtosis ranges 

between 1 and 6, which supports that our gasoline price data are reliable to investigate the 

sufficient statistic prediction. We find that the average kurtosis across gas stations is about 3 

but as for the frequency, it is also quite heterogeneous across gas stations (Table 1 and Figure 1 

– panel b).  

[Figure 2] 

Overall, price changes are quite infrequent and kurtosis values at the gas-station level suggest 

that there is some selection in price changes.  

Adjustment hazards 

If prices are not perfectly flexible, the price ����	 (set at the date of the last price adjustment) 

differs from the current frictionless price ���∗  and there is a price gap ��� = ����	 − ���∗ , the 

markup deviating from the one that would exist when a firm maximizes its profits. The gap will 
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be closed only if firms can adjust their prices, so that ∆��� = ∆���∗ . Following Alvarez et al. 

(2021a), in a general class of sticky-price models, the optimal decision to change prices can be 

summarized by the general hazard function which relates the price gap to the probability of 

price adjustment. In a pure time-dependent model, this probability of price adjustment is the 

same whatever the value of ���  can be. In a random menu-cost model, the probability of price 

adjustment is expected to increase monotonically with ���  in absolute values (Caballero and 

Engel, 1999, 2007).  

[Figure 3] 

In practice, the price gap is often hard to measure since ���∗   cannot be directly observed and the 

literature often use the average price of competitors as a proxy for this frictionless price (see 

for instance Gagnon et al. 2012 or Karadi et al.2019) whereas Eichenbaum et al. (2011) 

construct a measure of costs relying on data on profits and sales in different stores. In our case, 

we can use a proxy of a large component of marginal cost of gas station to approximate more 

direclty ���∗   and the price gap. We have computed ���   for all gas stations of our sample, as the 

difference between the observed price � at time (t-1) and wholesale price observed at Rotterdam 

market ��  at time t.7 We have then calculated the probability of price change at date t as a 

function of this difference. First, on the distribution of ��� , the first and third quartiles of ���  

are respectively -2.7% and 2.6% whereas more than 90% of observations are between -7.1% 

and 7.3%. Figure 3 plots the probability of price changes depending on the value of ��� . We 

find that for low values of x in absolute value terms (between -2% and 2%), the probability of 

price changes is quite flat around 20%. When x increases, the probability of price changes is 

higher: for x equal to 5% in absolute value terms, the probability of price changes is close to 

0.25. On the bottom panel of Figure 3, we plot separately the probability of price increases and 

decreases depending on the value of x. We find that the relation between the price gap and the 

probability of price increases is quite linear whereas the probability of price decreases is a little 

less responsive to negative price gaps than to positive price gaps. Overall, the main patterns of 

the adjustment hazard function are quite typical of a random menu cost model and are very in 

                                                           
7 For each gas station, we estimate a simple linear regression between actual retail price and wholesale Rotterdam 
price. We use the estimated coefficient to calculate for each gas stations the difference between the actual price 
and the Rotterdam price multiplied by the estimated coefficient of the linear regression. We have then demeaned 
this difference. 
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line with the theoretical setting of Alvarez et al. (2021a) where the sufficient statistic prediction 

is shown to hold. 

3. Assessing the impact of a shock on retail gasoline prices 

In this section, we investigate how marginal cost shocks are transmitted to retail gasoline prices. 

We present our empirical model based on a standard local projection method, we then estimate 

the model on all prices and then for each gas station of our sample. Using these results obtained 

at the gas station level, we can compute for every gas station an accurate measure of the 

cumulated impulse response of prices (CIRP) to a cost shock. 

3.1 Empirical model  

Our empirical model derives from a standard theoretical model of price setting. Under imperfect 

monopolistic competition and if prices were flexible, at every date, firms would set their price 

���∗  as a markup (��� ) over their marginal cost (����). In log terms, we can write: 

���∗ = ���� + ���  (2) 

One key determinant of marginal cost is here easily observable since a large share of the 

production cost of gas stations consists of the wholesale price of diesel bought by gas companies 

either on international markets or to local refineries in France. We here use the price of the 

wholesale diesel sold on the Rotterdam market as a proxy for this wholesale price and so as a 

proxy for the marginal cost of diesel retail prices (Figure A.2 in Appendix).8 We can write the 

marginal cost as: 

���� = φ�� + "��     (3) 

where φ is the share of wholesale diesel �� in overall marginal cost and "��  corresponds other 

components of the marginal cost which can include labour costs or rents for instance. 

In a similar set-up, Amiti et al. (2019) show that we can then express price changes as a 

combination of a change in the marginal cost and a change in the price of competitors: 

∆���∗ = $∆���� + %∆���� + &��      (4) 

                                                           
8
 There are several arguments supporting this point: the Rotterdam price is the opportunity cost for a refinery of 

an integrated oil company; production and sales are often different divisions within oil companies, and the 
Rotterdam price can be used as an internal transfer price; finally, a little less than 50% of diesel is directly imported 
from abroad, traded on this international market and not refined in France (see also Asplund et al. (2000) or Faber 
and Janssen (2019) for a more detailed discussion). 
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where ∆�(�� is the average price change of competitors and capture markup changes, $ is the 

average cost pass-through of the firm whereas % measures the importance of strategic 

complementarities in price setting (since it represents the elasticity of prices of firm i to its own 

competitors). In our case, we observe all gas stations with their exact geographical position. 

This means that we can define competitors as the closest gas stations using distance in 

kilometers and compute average price changes of closest neighbors as a proxy for competitors’ 

price changes.9 We can then decompose more explicitly the marginal cost (combining equations 

(3) and (4)): 

∆���∗ = $)φ∆�� + ∆"�� * + %∆���� + &��        (5) 

This leads us to the following relation that could be estimated using our observable variables 

(retail gasoline price changes, wholesale price changes and local competitors’ price changes): 

∆���∗ = ,∆�� + %∆���� + -��         (6) 

where , will be equal to the share of wholesale diesel in overall costs times the degree of cost 

pass-through (i.e. the share of wholesale diesel in total costs). 

If prices are sticky, prices charged by gas stations are not always equal to ���∗  (i.e. the price 

maximizing profits in a flexible price model) and it will take some time for a shock to be fully 

transmitted to retail prices. In that case, we need to take into account for a possible delay in the 

price response to shocks.  

Our baseline empirical exercise will consist in estimating the previous equation using the local 

projection methodology described by Jordà (2005). Using this methodology, we can compute 

the full impulse response function of retail diesel prices to shocks in the Rotterdam wholesale 

price (see also Balleer and Zorn (2019) and Dedola et al. (2020) for a similar empirical approach 

using producer price data or Karadi et al. (2019) on scanner data). Our baseline regression for 

a given horizon h days after the shock is as follows: 

∆��/01,/34 = �5 + 65∆���	,� + 75∆���	,��� + 8�4 + 95� + :�,�4       (7) 

where ∆��/01,/34 is the before-tax log price difference for diesel between days t-1 and day t+h 

in station i, ∆���	,� is the log price difference of Rotterdam wholesale gasoline price between 

                                                           
9 One difference here is that we cannot weight prices by market shares as suggested by Amiti et al. (2019) since 
we do not have any information on the sales of gas stations. 
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day t-1 and day t, ∆���	,���  is the average price change of local competitors of the gas station i 

(we consider here an average of the 10 closest gas stations of station i), 8�4 are time (horizon 

specific) controls including the lags of Rotterdam price changes, average diesel price changes 

in France and average local price changes at date t (we here use controls for five lags to control 

for all other common shocks at date t other than Rotterdam price shock). More precisely, the 

term 8�4 is specified as 8�4 = <5(∆���=�	,��= , ∆���=�	,��= , ∆���=�	,��=�� )|=?	,..,A where <5 is a 

linear function whose parameters will be estimated jointly with all other parameters of the 

regression. Finally, 9�5 are gas-station- and horizon-specific fixed effects.  

We run one OLS regression for each time horizon h, and at each period t+h, our parameters of 

interest are 65, which yields the overall variation of diesel prices in reaction to the shock and 

75 which captures the reaction of prices to a markup shock. Given that Rotterdam prices are 

listed only from Monday to Friday, Saturdays and Sundays are de facto excluded from our 

analysis (the shock variable being not defined on these days). On Mondays, the shock variable 

is then defined as the log variation between the price of wholesale gasoline observed on Monday 

and the one observed on Friday the week before.  

As robustness, we also report results considering a different measure for Rotterdam price shocks 

using daily deviations from a 3-week moving-average of log Rotterdam prices calculated as 

∆��B = �� − ∑ D/04
EE

E	5?F . This measure can help us to define the shock as a price deviation from 

a recent trend observed by gas stations.10  

3.2 Aggregate Results  

We look at aggregate results obtained by pooling all gas stations together. We first describe the 

average response of retail prices to a cost shock, then we document some heterogeneity of the 

price response across gas stations and according to the sign of the shock. 

3.2.1 – Baseline results 

Figure 4 plots the impulse response functions to a shock on Rotterdam wholesale price and to 

a shock on the average local price change in our baseline case. 

Cost shock. We first present results associated with the response to the cost shock (red solid 

line, Figure 4). We find a delayed response of retail diesel prices to variation in the Rotterdam 

                                                           
10

 Other measures of exogenous oil shocks are available in the literature, at a monthly frequency as in Baumeister 
and Hamilton (2019) or Känzig (2021); to our knowledge yet, there is no variable of exogenous oil shock available 
at a daily frequency, which is the relevant frequency in our study. 
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wholesale price. It takes approximately 10 open days (i.e. excluding Saturdays and Sundays) 

for a cost shock to be transmitted at 90% into retail prices and a little more than 20 days for a 

full transmission. More specifically, there is almost no response at dates 0 and 1 and then the 

impulse response function increases pretty quickly. The long-term (40 open days after the 

shock, i.e. about 8 weeks) value of the elasticity of retail prices to the Rotterdam wholesale 

price is close to 0.8. This estimated value is consistent with the share of raw materials over total 

production in the sector of retail gasoline, which is estimated to be 81% using average price 

values of our sample (Table A.1 in the Appendix). This result implies a full pass through of the 

cost shock to retail prices: in the long term, stations pass on the entire increase in the commodity 

cost in proportion to its share in total costs. If we reason in price level terms, a 1% increase in 

the price of imported diesel (for an initial price of EUR 0.45 in early 2018 – see Figure A.2 in 

Appendix) is equivalent to EUR 0.45 cent and results in an identical increase over time for the 

diesel price excluding taxes (i.e. 0.8% of the initial price of diesel, equal to EUR 0.55 in early 

2018, this latter price including other costs like transportation costs, labour costs…). 

[Figure 4] 

We run a robustness exercise where we use a different measure for the Rotterdam price shock. 

Instead of using the log difference in wholesale Rotterdam prices, we define the shock as the 

deviation from a 3-week moving average. In this case, the impulse response function is very 

close to our baseline estimate and a similar long run pass through of Rotterdam prices to retail 

prices. Finally, using the price of crude oil (Brent) instead of Rotterdam wholesale price leads 

to very similar results (Figure B.5 in Appendix). The impulse response function to the oil price 

shows similar patterns: a delayed response to the shock and a full pass-through after about 3 

weeks. The long-term effect is smaller than the long-term response of prices to Rotterdam (0.7 

versus 0.8), and the ratio of the two elasticities (about 0.9) should give the elasticity of 

wholesale price to Brent oil prices.  

Competitors’ prices and strategic complementarities. Our second main finding concerns 

how gasoline prices react to an exogenous change in prices of the closest neighbor gas stations 

(blue line - Figure 4). We obtain that retail gasoline prices do respond to the average price 

change of local competitors. This response decreases over time: a 1% change in local price 

changes increases retail prices by 0.2% but the impact is close to 0 and non-significant after 3 

weeks. This would suggest that in the short run, markups of gas stations move in response to 

competitors’ prices but these movements are quite limited and in the long run, the pass-through 
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is full. This result provides evidence in favor of some limited strategic complementarities 

among gas stations. Alvarez et al (2021a) sufficient statistic result holds in a model with no 

strategic complementarities. Our results show that there are some strategic complementarities 

in our case-study, but that this is a quite limited issue. Controlling for shocks on crude oil 

(Brent) rather than Rotterdam wholesale price, the response of prices to local price changes is 

almost unchanged (Figure B.5 in Appendix). 

3.2.2 – Heterogeneity and asymmetry 
 

Heterogeneity. We document some heterogeneity across gas stations in the transmission of the 

cost shock. We first investigate whether responses of prices depend on their relative position of 

the gas station in the price distribution. We have classified all gas stations according to their 

most frequent position in the price distribution into four groups (defined using quartiles of the 

price change distribution (calculated day by day)): “very low price”, “low price”, “high price” 

and “very high price”. Using our baseline specification, we run separate regressions on stations 

belonging to the four different categories. Figure B.1 in Appendix plots the impulse response 

function for Rotterdam price changes and local average price changes for the 4 groups of gas 

stations. We find that the main difference in the pass-through of Rotterdam price changes to 

retail prices is between stations charging very high prices and all other stations. In stations with 

very high prices, the long-run pass-through is close to 0.70 whereas for the other 3 groups of 

gas stations, this long-term pass-through is about 0.8. These differences in long run pass through 

of Rotterdam prices to retail prices should mainly reflect differences in the share of Rotterdam 

prices in their marginal costs and to a lesser extent in their average markups.  

In terms of speed of adjustment to the long-run pass-through, differences seem quite limited 

among the four groups of gas stations (Table B.1 in Appendix). Gas stations in lower prices 

categories respond only a little more quickly than gas stations in higher prices categories. In all 

groups, more than 90% of the long run response is observed between 10 and 15 days after the 

shock. In the very-low-price category, this threshold is reached after a little less than 10 days 

whereas for very high price stations after 15 days. 

In Figure B.2 in Appendix, we plot the impulse response function for the baseline specification 

on two different subgroups of gas stations depending on their frequency of prices ending in 0 

or 9. In particular, we find that gas stations using very frequently psychological prices (i.e. more 

than 98% of the time, corresponding to the top decile of stations with the highest share of 

psychological prices) are less reactive to Rotterdam price changes than others. The long-term 
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pass-through of shocks on marginal costs is of 75% for these stations, against 80% for gas 

stations with a share of psychological prices lower than average (equal to 51%). This result 

might be related to the fact that gas stations with prices ending in 0 or 9 tend to have higher 

price variations on average (Figure B.3).  

Concerning the reaction of gas stations to local prices, there is some heterogeneity across gas 

stations as for the cost shock. Looking at differences between high- and low-price stations, we 

find that very-high-price gas stations respond little and slowly to local price changes whereas 

very-low-price gas stations respond much more strongly and more quickly to changes in local 

prices. The elasticity of retail prices in very low price gas stations with respect to local price 

changes is 0.27 whereas it is less than 0.10 in very-high-price gas stations. These differences 

are consistent with the fact that markups in very-low-price gas stations are quite small and these 

gas stations have to respond quickly to changes in competitors’ prices. However, in the long 

run, the markup elasticity is about the same in all four groups converging 20 days after the 

shock to a value close to 0.07. Looking at differences in the frequency of price endings, we find 

that gas stations using psychological prices less often also tend to be more reactive to the prices 

of local competitors in the short run. This would be consistent with the fact that the use of 

psychological prices is related to the markup level of gas stations.  

Asymmetry. Finally, we test whether the price response to cost shock is asymmetric. Compared 

with our baseline specification, we interact systematically the shock (and its lags) with a dummy 

variable indicating whether the shock is positive or negative. 

∆��/01,/34 = 65
∆���	,�1∆D/01,/HF + 65�∆���	,�1∆D/01,/IF + 75
∆���	,��� 1∆J/01,/0K HF

+ 75�∆���	,��� 1∆J/01,/0K IF + �5 + 8�4 + 95� + :�,�4      (8) 

where 65
 (resp. 65�) is the estimated impulse response function at date h in response to a 

positive (resp. negative) Rotterdam wholesale gasoline price change between dates t-1 and t 

and 75
 (resp. 75�) is the estimated impulse response function at date h in response to a positive 

(resp. negative) average local price change between dates t-1 and t.  

We find that in response to changes in Rotterdam prices, gasoline retail prices react almost 

exactly the same to a negative or a positive shock (Figure B.4 in Appendix). The patterns of the 

impulse response functions are highly similar in both cases: same speed of adjustment and same 

long-term pass-through. Overall, we do not find any evidence in favor of asymmetric responses 

of gasoline price changes to Rotterdam price changes. On the contrary, we find that the 
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responses to local price shocks are somewhat asymmetric, at least during the first two weeks. 

Retail gasoline prices respond more to negative local price changes than to positive ones. This 

would suggest that gas stations are more likely to decrease their prices when other local stations 

do so than when local stations increase their prices. This asymmetry would be consistent with 

a quick reduction in markups when gas stations around decrease their price in order not to lose 

market shares. 

3.3 Gas-Station Level Results  

We then run the same empirical exercise at the gas station level. Here, we take advantage of 

tracking prices at a very high frequency and for a long period of time to estimate the impulse 

response function (65 in equation (7)) for every gas station in our sample (6�5). We report some 

moments of the distribution of the long-run effects in Table 2. We find some heterogeneity 

across gas stations in the long-run effects. The average pass through is 0.8 and most gas stations 

have a long-run pass-through between 0.7 and 0.9. This heterogeneity reflects differences in 

the share of raw material in the cost function (see also Gautier and Le Saout (2015) for more 

details on the determinants of these differences).  

[Table 2] 

In order to test the sufficient statistic property, we calculate for each gas station the cumulated 

impulse response to the cost shock. However, contrary to a typical monetary shock which is 

expected to have the same long-term effect on prices and to have no relative price effect (under 

monetary neutrality), the oil price shock will lead to different reactions of gas prices in the long 

run reflecting the slight differences in the cost structure across gas stations. Thus, we first 

normalize all firm-level IRF so that for each gas station a shock corresponds to a 1%-increase 

in prices in the long run. To do this, we calculate the maximum value for 6�5 over the horizon 

31 to 36 days after the shock to estimate the long-term response (6�M�) and then we divide all 

6�5 for h=1 to 30 days by 6�M�. This normalization will assume that all gas stations are hit by a 

shock (which might be different from one gas station to another) but leading to the same long 

term effect on prices (1%) for all gas stations.11 Finally, we calculate the cumulated impulse 

response of prices (CIRP) over the period from day 1 to day 30 after the shock. If prices adjust 

immediately to the long-run price level and are fully flexible, the CIRP should be equal to 30.  

                                                           
11

 Another interpretation would be to read the long-term response in terms of price levels: if there is a full pass-
through of cost to prices in all gas stations (and regardless of the share of inputs in the price), an increase of EUR 
1 cent of the marginal cost will lead to an increase of EUR 1 cent in all gas stations.  
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We compute alternative measures for the CIRP at the gas station level. The first one defines 

long-term pass-through as the maximum value for 6�5 over the horizon 25 to 31 days after the 

shock to estimate the long-term response (6�M�) and then calculate the CIRP over a period of 24 

days. We compute these CIRP estimates for our baseline shock (Rotterdam price changes) but 

also the alternative measure of shock (gap between the current Rotterdam price and the average 

of Rotterdam price over the last 3 weeks). 

Table 2 provides moments of the distribution of CIRP for the different horizons and measures 

of shocks. We find that the average CIRP is closer to 25 for the horizon 30 months and about 

20 for the horizon 24 months. We also find that there is some heterogeneity across gas stations: 

the first quartiles of the CIRP are respectively 18.5 and 24 and the third quartiles of the CIRP 

are equal to 20 and 26. 

4. Testing the Sufficient Statistic Property 

In this section, we test the sufficient statistic property using two empirical strategies: first, we 

use the same empirical framework as the one estimated to derive the aggregate IRF but we add 

an interaction term between the common marginal cost shock and the ratio kurtosis over 

frequency at the gas station level; in a second empirical exercise, we will use the CIRP estimated 

at the gas station level and correlate them with the ratio kurtosis over frequency of price changes 

also calculated at the gas station level (as in Alvarez et al. 2021b with sectoral data).  

In both empirical approaches, we follow the same strategy as the one described in Alvarez et 

al. (2021b). In a general class of price rigidity models nesting both Calvo and fixed menu cost 

models, the theoretical prediction of Alvarez et al (2021a) can be written as: 

������(7) = 7� − 7
6

NOP�
QPRS�

                 (9) 

where ������(7) is the cumulated impulse response function of prices in sector i to a shock of 

size (7) calculated at the horizon T, NOP� is the kurtosis of the non-zero price change 

distribution in sector i and QPRS� is the frequency of price changes. The relationship is quite 

intuitive. If prices are fully flexible (i.e. frequency equal to 1 and no selection effect NOP� = 6), 

then prices will adjust to the long-term price level immediately and the cumulated effect will 

be equal to the time horizon over which the CIRP has been calculated (T) times the magnitude 

of the shock 7. For a given level of price selection, a longer price adjustment will lower the 

CIRP since prices will take more time to converge to their new level. If prices are more rigid, 
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the price response is longer and the CIRP will be smaller. For a given frequency of price 

adjustment, if the degree of price selection is high (i.e. a low kurtosis), it means that prices that 

will adjust are the ones for which the price gap ��� is the largest, price changes will be large and 

a shock will be transmitted more quickly to prices (like in a standard Golosov and Lucas (2007) 

model). The CIRP will therefore be larger than in the case with weaker price selection and 

higher kurtosis. 

An “unconstrained” version of the test could also be derived from equation (9) (using a first-

order Taylor expansion around the sample means of K and F) to investigate separately the 

correlation with frequency and kurtosis (Alvarez et al., 2021b): 

������(7) = ����UUUUUUU�(7) − 7
6

N
Q

NOP�
N + 7

6
N
Q

QPRS�
Q     (10) 

where  ����UUUUUUU�, N and Q are the sample means of CIRP, kurtosis and frequency of price changes. 

These relations are established for the aggregate price level of a group of firms facing the same 

marginal cost shock (here the wholesale price shock). We then run the test of sufficient statistic 

following two separate empirical approaches relying on the heterogeneity across gas stations: 

one looking at all data pooled together and interacting the response to the shock with the ratio 

kurtosis over frequency calculated at the gas station level and another one relating CIRP and 

the ratio kurtosis over frequency both estimated at the gas station level. As baseline regressions, 

we report results restricting our dataset to gas stations for which we have more than 6 years of 

continuous price observations, this covers a large majority of observations of our dataset and 

more than 3,000 gas stations. This allows us to estimate more precisely both the kurtosis of 

price changes and the CIRP at the gas station level. Section 5 will provide robustness analysis 

for gas stations with shorter uninterrupted price trajectories. 

4.1 Testing the sufficient statistic property at the aggregate level 

Empirical model. We start our empirical investigation by using the same baseline empirical 

framework as the one used for estimating the aggregate IRF and described in equation (7). We 

add to this empirical model an interaction term of the cost shock (∆���	,�) with the ratio kurtosis 

over frequency (
WK
XK

) defined at the gas station i. 

∆��/01,/34 = Y5∆���	,�+Z5 [∆���	,� × N�
Q�

] + <5∆���	,��� + O5 + ^�4 + _5� + :�,�4       (11) 
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This additional term will capture how the ratio alters the IRF of prices to a given shock over 

the horizon h. Summing this expression over horizons, we are able to relate the cumulated sum 

of price changes between time horizons h=1 and H and the interaction term with the ratio 

kurtosis over frequency: 

` ∆��/01,/34

a

5?	
= ∆���	,� ` Y5

a

5?	
+ [∆���	,� × N�

Q�
] ` Z5

a

5?	
+ b��4      (12) 

where b��4 = ∑ )<5∆���	,��� + O5 + ^�4 + _5�+:�,�4  *a5?	 .12 

Overall, we can estimate the following equation: 

�O�∆��a = ca∆���	,� + da [∆���	,� × N�
Q�

] + b��4      (13) 

where �O�∆��a = ∑ ∆��/01,/34
a5?	  

According to the predictions of the model, if prices are fully flexible at each horizon h, the price 

change (Y5)  in response to a 1%-shock (∆���	,� =  1) should be equal to 1 and so, when 

cumulating price changes over H periods, ca should be equal to H.13 Another prediction is that 

da = −1/6, which is the core prediction of the sufficient statistic theory.  

This first equation is a test of the constrained version of the model, as described in 

Alvarez et al (2021b) and we can extend this estimation to test an unconstrained version of the 

model: 

�O�∆��a = ca∆���	,� + �a [∆���	,� × N�
N ] + fa [∆���	,� × Q�

Q ] + b��4      (14) 

In this setting, following Alvarez et al (2021b) the prediction is that �a=-fa, and that �a is 

equal to − Wg
hXU. In our case, this term is equal to -1.7. 

Results. Table 3 reports the main results of our analysis, for both the constrained and the 

unconstrained versions of the model. Moreover, we report results using two different definitions 

of shocks, either the observed change in Rotterdam prices or the gap between the current 

Rotterdam prices and the moving average over the last 3 weeks. Finally, we consider two 

                                                           
12

 The control variables are identical to those described in equation (7), and we interact the ratio kurtosis over 
frequency (constrained version) or kurtosis and frequency (unconstrained version) with all the control variables. 
13

 We here normalize the shock to be equal to 1 for all gas stations by dividing the cumulating price change by the 
station-specific estimated long-term reaction of prices to a Rotterdam price change. 
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horizons H for the calculations of the �O�∆��a: 24 days and 30 days. Results for all horizons 

between 1 and 30 days (for the baseline shock) are plotted on Figures C.1 to C.14 in 

Appendix C. 

[Table 3] 

The upper panel of Table 3 reports results for the constrained version of the regression. First, 

we find that the coefficient related to the Rotterdam shock is very close to the horizon 

considered (21 for a regression cumulating price changes over 24 days after the shock, 27 for a 

regression cumulating price changes over 30 days after the shock). Second, we find that the 

coefficient of the shock interacted with the ratio kurtosis over frequency is between -0.14 and -

0.15, a value which is very close to the theoretical prediction of − 	
h ≈ −0.167. Moreover, we 

cannot reject the hypothesis that our estimated coefficients are statistically (at a 5% level) 

different of the theoretical value of – 0.167. Interestingly, the values of the coefficient are very 

stable over the horizons and according to the type of shock considered. Figure C.2 (Appendix 

C) plots the coefficients estimated for all time horizons between 1 and 30 days after the shock 

and highlights that the coefficient of the parameter of interest reaches is minimum value after 

about 20 days (i.e. the time needed for the shock to be fully transmitted to prices) and remains 

then quite the same for longer horizons. 

The lower panel of Table 3 reports results for the unconstrained version of the regression. We 

find that the coefficient related to the Rotterdam shock is close but slightly lower to those of 

the constrained regression (19 for the 24-day horizon, 25 for the 30-day horizon) as expected.14 

The coefficient of the shock interacted with frequency is found to be between 1.6 and 1.7, while 

the coefficient of the shock interacted with kurtosis varies between -1.2 and -1.3. The sign of 

these estimated coefficients are in line with the theory: for a given frequency of price changes, 

a larger kurtosis is associated with less price selection and a smaller CIRP. For a given kurtosis, 

a higher frequency is associated with a quicker response of prices and so a higher CIRP. 

Moreover, in absolute value terms, both coefficients are quite close and we cannot reject the 

hypothesis that they are equal to 1.7 (i.e. the value implied by theory). The coefficient 

corresponding to frequency is even exactly equal to the theoretical prediction of 1.7. The lower 

value of coefficients for kurtosis is likely to be explained by the fact that kurtosis is more 

sensitive to even small measurement errors than the frequency. Finally, as in the constrained 

                                                           
14

 In the unconstrained version of the model, the constant of the model is not predicted to be equal to 7� any 

more but to ����UUUUUUU�(7) =  7� − Wg
hXU where in our case − Wg

hXU  is about -1.7. 
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version, the coefficients are stable across horizons and specifications. As highlighted by the full 

evolution of coefficients over the time horizons (Figure C.4 in Appendix C), they are quite 

stable after about 20 days after the shock. 

Placebo test. The sufficient statistic property also predicts that other moments of the non-zero 

price change distribution should not have an effect on the CIRP. To test this prediction, we run 

placebo regressions where we add in interaction with the common shock, the average of (non-

zero) price changes, the standard deviation of price changes and the skewness of price changes. 

In this setting, as we do for the ratio kurtosis over frequency (constrained case) or frequency 

and kurtosis taken separately (unconstrained case), we interact the other moments with all the 

controls variables included in the regression. The placebo model could be written as: 

�O�∆��a(∆���	,�)
= ca∆���	,� + da [∆���	,� × N�

Q�
] + �a)∆���	,� × ��* + Qa)∆���	,� × jkl�*

+ ma)∆���	,� × jnR_�*+"��     (15) 

where �� is the average price change over the sample period in gas station i, jkl� is the standard 

deviation of price changes over the sample period in gas station i and jnR_� is the skewness of 

price changes over the sample period in gas station i.  

Table 4 reports results for these placebo regressions. In the constrained regression, we find that 

the interaction between the shock and the ratio kurtosis over frequency is the only coefficient 

to be significant at any considered horizons, with coefficients very much in line with the theory 

(between -0.17 and -0.18). The mean and skewness of price changes are not significant at 

horizons 24 or 30 days, while standard deviation is significant only at the 24-day horizon but 

not at 30-day horizon. Figures C.6 to C.9 in the Appendix plot coefficients for all horizons 

between 1 and 30 days. They confirm that coefficients associated with the interaction terms 

between the shock and the mean and between the shock and the skewness of price changes are 

not statistically significant for most of the horizons over which we cumulate price changes. The 

interaction term between the shock and the standard deviation of price changes becomes 

insignificant at the 5% level for horizons longer than 28 days.  

[Table 4] 

In the unconstrained regression, the results are similar (see also Figures C.11 to C.14 for the 

complete set of coefficients for all time horizons H (from 1 to 30 days)): frequency and kurtosis 

are the only coefficients that are statistically significant, while other moments do not have a 
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statistically significant effect. The significance of the standard deviation becomes even smaller 

than in the constrained placebo test (as it is not significant any more at the 5% level for the 24-

day horizon). The respective coefficients of the shock interacted with frequency and kurtosis 

are slightly larger in absolute values than in the non-placebo regressions (between 2.1 and 2.2 

for the shock interacted with frequency, and -1.5 for the shock interacted with kurtosis), and 

they remain very close to values predicted by the theory.  

4.2 Testing the sufficient property at a disaggregated level 

Empirical model. Our second empirical approach consists of using CIRP estimated at the gas 

station level (as in section 3.3) and relating them to the sufficient statistic also calculated at 

the gas station level: 

�����a = $ + % [ NOP
QPRS] � + &�          (16) 

where �����a are the estimated cumulated price response to a marginal cost at the gas station 

over the long run horizon H (as described in section 3.3). The main predictions derived from 

the theory for a positive 1%-shock are as follows: % should be equal to o− 	
hp whereas the 

constant should be equal to H, the horizon over which the CIRP is calculated.  

We can also test the unconstrained version of this model estimating the following equation: 

�����a = , + %q [NOP
N ] � + %r [QPRS

Q ] � + &�   (17) 

Compared with the previous expression, the main prediction is now that %q = −%r. Following 

Alvarez et al (2021b), the estimated coefficients (in absolute values) should be equal to %q =
− Wg

hXU. In our case, this term is equal to -1.7.15 

Figure 5 represents the scatterplot of CIRP and of the ratio of kurtosis over frequency. As 

predicted by the theory, we find a clear negative slope relating CIRP and the ratio 
Wst
Xtuv. When 

looking at the correlation using separately frequency or kurtosis (Figure 6), we find as expected 

a positive relationship between frequency and CIRP whereas we find a strong negative 

relationship between kurtosis and CIRP.  

                                                           

15
 A last prediction is that , = ����UUUUUUU�(7) =  7� − Wg

hXU. In our case, it would imply , =  $ − 1.7. 
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[Figure 5] 

[Figure 6] 

Results. As for the aggregate test, we report results restricting our dataset to gas stations for 

which we have more than 6 years of continuous price observations, for two different definitions 

of shocks depending on how we measure it, and we consider two horizons for the calculations 

of CIRP (24 days and 30 days) (see Section 5 for robustness results using gas stations for which 

we observe continuously prices for more than 2 years without interruption).  

Table 5 reports the results of constrained and unconstrained versions of the empirical exercise. 

In terms of presentation of the results, almost all coefficients are significant at 1%-level since 

we use a very large sample of individual gas stations (around 3,000 in our baseline regression), 

this can be partly explained by the small degree of dispersion of the left-hand side variable 

across gas stations. We here report T-statistics associated with estimated coefficients to provide 

more information on the relative precision of the estimates and on how much each variable 

contributes to explain the cross section differences in CIRP.  

[Table 5] 

In the constrained version of the model, we find a negative coefficient between CIRP and the 

ratio of kurtosis over frequency. This coefficient is between -0.14 to -0.15 and quite robust over 

the specifications of the shock or over the different horizons we consider. This estimated 

coefficient is statistically different from -0.167 but the size of the coefficient is still quite in line 

with the one predicted by the theory. We might expect to have still some mismeasurement in 

our variables of interest, which would bias downwards estimated coefficients.  

Looking at the unconstrained version of the model, we find a positive correlation between CIRP 

and frequency whereas we find a negative correlation between kurtosis and CIRP (lower panel 

of Table 5), which is in line with theoretical predictions. Looking at the magnitude of the 

coefficients, we expect both coefficients to be equal in absolute values to 1.7. For the parameters 

associated with frequency, estimated coefficients are very close to this value (between 1.67 and 

1.78). For kurtosis, we find slightly lower values than 1.7, but the estimated coefficients are 

still quite high (between 1.32 and 1.44) and the high values of T-stats provide strong evidence 

in favor of the relevance of kurtosis to explain the cross section dispersion of CIRP across gas 

stations.  
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Placebo test. As in the aggregate test, we run placebo regressions where we add the average 

of non-zero price changes, the standard deviation of price changes and the skewness of price 

changes. The regression model in the constrained version could be written as: 

�����a = $ + % [ NOP
QPRS] � + ,�� + 6jkl� + �jnR_� + &�  (18) 

Results are reported in Table 6. In the constrained version of the model, we find that the 

coefficient associated with the ratio of kurtosis over frequency has a similar value as in the 

baseline regressions, the value is even closer to its predicted value of -0.167. The T-statistic is 

also very close to the one obtained in the baseline regressions. Other moments have all a 

significant effect but the T-statistics associated to these estimates are much smaller than the 

ones obtained for the ratio. For skewness, the estimates are not significantly different from 0 in 

all specifications. This suggests that the relationship between CIRP and the ratio is much more 

robust than the one with other moments. This also suggests that in relative terms, the ratio is 

much more relevant to explain the cross section of the CIRP than other moments of the price 

change distribution.  

[Table 6] 

When looking at the unconstrained version of the model, we find very similar evidence: the 

coefficients associated with kurtosis and frequency are in line with the ones obtained in the 

baseline regressions and the T-statistics are also quite the same. For other moments, the 

coefficients are significant but the T-stats are much lower than the ones associated with 

frequency or kurtosis. Interestingly, the T-stats associated with the coefficient associated with 

the kurtosis is also much higher than the ones associated with other moments.  

5.  Robustness analysis at the gas station level 

In the robustness analysis, we perform different empirical exercises using our second empirical 

exercise which rely on the cross section variations at the gas station level of both CIRP and 

ratio kurtosis over frequency. The first robustness exercise looks at the full sample of gas 

stations and investigate to which extent our baseline results are robust to the inclusion of gas 

stations with fewer observations and a shorter time dimension. We also test whether our 

conclusions are sensitive to the definition of the horizon. We provide results using an alternative 

measure of kurtosis taking into account for product heterogeneity. We also perform regressions 

using the change in the price of Brent (crude oil price) as a measure of shock instead of the 
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Rotterdam price change. Finally, we include results of misspecified versions of the 

unconstrained of the model, to investigate to which extent not including the frequency (or the 

kurtosis) in the regression leads to a significant omitted variable bias. 

5.1 Number of observations by gas station 

In Tables 7 and 8, we report baseline and placebo regressions for different definitions of our 

sample of gas stations. When we consider all gas stations with more than 2 years of prices (over 

the 11 years of our sample), we find a somewhat smaller effect of the ratio. The coefficient is 

still equal to -0.13. This smaller estimated coefficient might be due to a slightly larger 

measurement issue for both estimated IRF at the gas station level but also for the kurtosis of 

price changes. We find that when we restrict the sample to gas stations with more observations, 

the coefficient is larger with a maximum at around -0.14 to -0.15 in absolute values. When 

considering the unconstrained model, we find similar conclusions. In particular, we find that 

coefficients associated with both frequency and kurtosis are lower than in the case considering 

gas stations with very long trajectories.  

[Table 7] 

In the placebo test, we obtain similar conclusions for the coefficients associated with the ratio 

of kurtosis over frequency. For all the samples, the coefficients are in line with theoretical 

predictions, the magnitude of the coefficients are not far from the baseline exercise and we find 

relatively larger T-stat for the ratio, frequency but also for kurtosis. More interestingly, in these 

robustness exercises, we find that kurtosis and frequency are the only moments for which 

coefficients keep the same sign and the same level of significance (here measured by T-stats). 

For mean, standard deviation and skewness of price changes, the coefficients do not have the 

same sign depending on the restrictions we impose on the length of station trajectories. 

Moreover, the T-statistics decrease when we consider gas stations with more observations, 

which suggest some issues regarding the robustness of the measure of CIRP or price change 

statistics. This evidence confirms that kurtosis and frequency are the only moments for which 

the sign and the relevance of the correlation are robust.  

[Table 8] 
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5.2 Long-term horizon 

In the baseline cross-section regressions, we have considered two definitions for the measure 

of the long-term pass through and the CIRP. In the first one, we measure the long-run pass 

through as the maximum effect over the horizon 25 to 30 days after the shock and calculate the 

CIRP as the sum of IRF over the period 1 to 24 days after the shock. In the second one, we use 

a window between 31 and 36 days for the long run horizon and the CIRP is calculated over the 

period 1 to 30 days. We consider these two cases since the estimation of the long-run pass 

through might depend on the horizon we consider. At the same time, the precision of the 

estimation might be smaller at longer horizons.  

As a robustness exercise, we here use two other definitions. The first one defines the maximum 

looking at the pass through over the period 19 to 24 days and calculate CIRP over the period 1 

to 18 days. The second uses a window 37 to 40 days to define the maximum pass through and 

the CIRP is calculated over the period 1 to 36 days. Results are reported in Tables 9 and 10. 

[Table 9] 

We find smaller estimated coefficients for the shortest and longest horizons but the coefficients 

have still the expected sign in the constrained and unconstrained models and show similar 

values for T-statistics. Moreover, in the placebo exercise, we also obtain that the sign of 

coefficients associated to other moments is not robust (in particular the mean of price changes), 

the T-statistics are quite lower than the ones associated with frequency and kurtosis and for 

skewness, the coefficient is even not significant in some cases.  

[Table 10] 

5.3 Kurtosis measurement 

In this robustness exercise, we use an alternative measure of kurtosis introduced by Alvarez et 

al. (2021a) to control for mismeasurement of kurtosis due to the presence of unobserved 

heterogeneity. This issue should be arguably quite limited in our case since we observe the price 

of a very homogenous product for a given gas station over time. However, the correction for 

unobserved heterogeneity may help to deal with other potential price measurement issues. We 

find that kurtosis including this correction for heterogeneity is somewhat lower than our 

baseline measure of kurtosis but the correlation is very high (see Table D.1 and Figure D.2 in 

Appendix).  
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[Table 11] 

In Table 11, we report the results of our baseline regressions, we find that in the constrained 

version of the model the coefficient on the ratio of kurtosis over frequency is somewhat larger 

and closer to the expected value of -0.167, in some cases we cannot even reject the equality of 

the estimated coefficients with the value predicted by the model. In the unconstrained version, 

results are also in line with the baseline results. The placebo estimation results are reported in 

Table D.3 in Appendix and show the robustness of our initial findings when we correct for 

unobserved heterogeneity in the measurement of the kurtosis. 

5.4 Brent price 

We also test the sufficient statistic predictions using the change in the price of Brent as a 

marginal cost shock instead of the Rotterdam price (see Table B.2 for descriptive statistics on 

this alternative shock). Oil prices should affect wholesale prices listed at Rotterdam and then 

retail prices. We here use oil prices converted in euros. The IRF are quite similar as the ones 

reported for Rotterdam prices except that the long run effects are on average smaller (see Figure 

B.5). This reflects the fact that the share of oil in the total cost of retail gas station is lower than 

the share of Rotterdam prices. 

[Table 12] 

Table 12 reports the results of OLS regressions. We find that baseline results are robust to the 

use of Brent as a cost shock. Estimated coefficients are smaller than in the baseline cases using 

Rotterdam prices but they are still in line with the theory in both the constrained and 

unconstrained version of the model. Placebo regressions (Table D.4 in Appendix) also confirm 

the baseline results: the ratio of kurtosis over frequency, frequency and also kurtosis have the 

expected sign, and they contribute more than other moments to explain the dispersion of CIRP 

across gas stations. 

5.5 Misspecified unconstrained model 

To investigate the role of kurtosis and frequency taken separately in explaining CIRP 

dispersion, we run two regressions where we exclude either frequency of kurtosis. Results are 

reported in Table 13.  

[Table 13] 
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We find that running the model using only frequency or kurtosis leads to bias the estimated 

coefficient of the moment we include in the regression. For instance, if we include only 

frequency in the regression, the estimated coefficient is lower than in the case where we include 

both moments. This suggests an omitted variable bias: since there is a positive correlation 

between frequency and kurtosis and the regression coefficient of kurtosis on CIRP is negative, 

we expect a negative bias. A similar finding is obtained for the regression where we include 

only the kurtosis. In both cases, the R² of the regressions are much lower than in the case where 

we include both moments. A similar conclusion appears when we use the placebo regression, 

suggesting that the omitted variable in our first set of results (Table D.5 in Appendix) is not the 

mean, the standard deviation or the skewness of the price change distribution. 

6. Conclusion 

In this paper, we propose to test the sufficient statistic theoretical result of Alvarez et al. (2016, 

2021a) in the clean case study of gasoline prices, where we can rely on the high frequency of 

price collection for a very homogenous good and where we can relate price changes to an 

observed marginal cost measure. We document several findings.  

First, gasoline prices are sticky (relative to the high frequency of shocks) and we document 

several patterns of price rigidity. First, retail gasoline price changes are infrequent (the median 

gas station adjusts prices on average every 4 opening days) while the main cost of the gas station 

changes every day. Second, the distribution of price changes differs a lot from the cost shock 

distribution. Third, the probability of a price change monotonically increases with the price gap 

(i.e. the gap between the actual price and the price that would have been observed under flexible 

prices). This last pattern of the data is fully consistent with the theoretical set-up of 

Alvarez et al. (2021a) in which the sufficient statistic result is shown to hold. Then, we 

document that it takes some time (about 3 weeks) for gasoline prices to incorporate a marginal 

cost shock. We show that the long term pass through is consistent with the share of the cost of 

the material input into the total cost (about 0.8), which suggests a full pass through of cost to 

prices over a long-run horizon.  

Second, we relate the cumulative impulse response function of prices to marginal cost to the 

ratio of kurtosis over frequency using two different empirical exercises. The first one is 

conducted pooling all price observations together while the second exercise uses the cross 

sectional dispersion of both the cumulated price response and the ratio kurtosis over frequency 
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at the gas station level. In both empirical exercises, we provide robust and consistent evidence 

that this ratio correlates negatively with CIRP as predicted by the sufficient statistic theory. The 

estimated coefficient relating CIRP and the ratio is also very close to -0.167 which is the value 

predicted by the theory. Besides, we show that both the frequency and the kurtosis of price 

changes taken separately correlate equally and significantly with CIRP and with the expected 

sign. We also provide evidence that other moments of the price change distribution do not show 

the same robust and significant relationship with CIRP as the one obtained for the frequency or 

the kurtosis of price changes. Finally, we run several robustness exercises using different 

measures of shocks, different samples of gas stations, different definitions of the long run 

horizon or for the period over which we calculate the CIRP. In all specifications, the sufficient 

statistic prediction holds and the magnitudes of the estimated coefficients are robustly 

consistent with the values predicted by the theory. 
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Figures and Tables 

Figures 
Figure 1: Distribution of Frequency and Kurtosis across Gas stations 

a) Frequency 

 

b) Kurtosis 

 

Note: these figures represent the distribution of the frequency of price changes (top panel) and the kurtosis of price changes 
(bottom panel) calculated at the gas station level. Gas stations opening more than 500 days (2 years of opening days) 
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Figure 2: Price change distribution of diesel (before- and after- tax) 

 
Note: this figure plots the distribution of diesel (non-zero) price changes (included taxes in red histogram and excluded taxes 
in blue histogram) (gas stations opening more than 500 days (2 years of opening days)). The black solid line plots the 
distribution of changes in the price of the wholesale diesel price at Rotterdam over the period 2007-2018. 
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Figure 3: Adjustment hazard rates 

a) Probability of price changes 

 
b) Probabilities of price increases/decreases 

 
 

Note: these figures are binscatter plots representing adjustment hazards calculated as the probability of a price change 
conditional on the value of the difference between p and p*, for gas stations opening more than 500 days (2 years of opening 
days). p is the actual pre-tax price for a given station on a given day, and p* is the optimal price for that station and for that 
day, estimated by linear regressions of price levels on Rotterdam wholesale prices on the day of a price change at the station 
level. Left panel plots the adjustment hazard for all price changes whereas the bottom panel plots the adjustment hazard for 
price increases and decreases separately. 
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Figure 4: Impulse Reaction Function of Prices to a Cost Shock – Baseline Estimation 

 

Note: this figure plots the impulse response function of diesel retail prices to a 1% shock in Rotterdam wholesale price (red 
line), a 1% shock on average local price (defined as the average price changes of the 10 closest gas stations) (blue line), for gas 
stations opening more than 500 days (2 years of opening days). Grey areas correspond to the 95% confidence intervals. 
Regressions control for up to 5 lags of shocks on Rotterdam wholesale price and average local price, as well as up to 5 lags of 
the average diesel retail price change and include station fixed effects. Standard errors are clustered by date. 
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Figure 5: Cumulative Impulse Response of Prices to a Cost Shock vs Ratio Kur/Freq (gas 

station level) 

 

Note: this figure represents the binned scatterplot of the CIRP with respect to the ratio kurtosis over frequency both calculated 
at the gas station level (the sample is restricted to gas stations with more than 6 years of opening days).  
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Figure 6: Cumulative Impulse Response of Prices to a Cost Shock vs Kurtosis and 
Frequency of Price Changes (gas station level) 

 

Note: these figures represent the binned scatterplots of the CIRP with respect to the frequency of price changes (in blue, top 
panel) both calculated at the gas station level, and of the CIRP with respect to the kurtosis of price changes (in green, bottom 
panel) both calculated at the gas station level (the sample is restricted to gas stations with more than 6 years of opening days).  
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Tables 
 

Table 1: Descriptive Statistics on Diesel Price Changes 

 Average P10 P25 P50 P75 P90 
Frequency of price changes  0.30 0.18 0.21 0.27 0.36 0.48 
Distribution of non-zero price 
changes        
Average of price changes (in %) 0.01 -0.15 -0.05 0.01 0.09 0.18 
Average of price increases (in %) 1.85 1.02 1.40 1.76 2.21 2.75 
Average of price decreases (in %) -1.95 -2.97 -2.36 -1.84 -1.40 -0.99 
Standard Deviation (in %) 2.32 1.26 1.67 2.16 2.79 3.53 
Skewness  -0.12 -0.45 -0.28 -0.11 0.05 0.21 
Kurtosis  3.31 2.12 2.56 3.14 3.83 4.70 

Note: in this table, statistics (frequency of price changes and moments of the (non-zero) price change distribution) are first 
calculated at the gas station level using the available time dimension for each gas station. Then, we calculate average and 
percentiles of the distribution of gas-station frequencies and moments of the price change distribution (we keep all gas stations 
opening more than 500 days (2 years of opening days)). 

 

 

Table 2: Descriptive Statistics on Long term Pass through and Cumulated Impulse 
Response of Prices (CIRP)  

 Average P10 P25 P50 P75 P90 
Long term pass through        
Horizon 25-30 days       
Baseline 0.79 0.67 0.75 0.80 0.84 0.88 
Moving Average Shock 0.82 0.73 0.79 0.83 0.87 0.90 
       
Horizon 31-36 days       
Baseline 0.80 0.68 0.76 0.81 0.85 0.88 
Moving Average Shock 0.82 0.72 0.79 0.83 0.87 0.90 
       
Cumulative Impulse Response        
Horizon 24 days       
Baseline 19.45 17.54 18.49 19.46 20.38 21.24 
Moving Average Shock 19.64 17.76 18.69 19.67 20.60 21.40 
       
Horizon 30 days       
Baseline 24.85 22.64 23.81 24.94 25.93 26.84 
Moving Average Shock 25.35 23.17 24.30 25.49 26.47 27.31 

Note: we first calculate the long term pass through and cumulative impulse response of prices by estimating the local projection 
regression at the gas station level, for gas stations opening more than 500 days (2 years of opening days). Then, we report the 
average and the percentiles of the distribution of estimated pass through and CIRP across gas stations. Long-term pass-through 
is evaluated as the maximum of long term effects over the horizon period between t+25 and t+30 or over the horizon period 
between t+31 and t+36. 
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Table 3: Pooled regressions linking cumulated price changes to the interaction variable 
“shock x ratio Kur/Freq” 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Shock x Ratio (Kur./Freq.)  -0.139 

(-4.72) 
 

-0.144 
(-4.61) 

 

-0.143 
(-3.42) 

 

-0.147 
(-3.36) 

 
Shock 21.00 

(15.57) 
 

21.43 
(14.92) 

 

26.69 
(13.52) 

 

27.19 
(12.93) 

 
R2 0.339 0.337 0.291 0.287 
     
Unconstrained regression     
Shock x Frequency 1.664 

(5.72) 
 

1.701 
(5.61) 

 

1.693 
(4.27) 

 

1.730 
(4.20) 

 
Shock x Kurtosis -1.217 

(-2.83) 
 

-1.273 
(-2.79) 

 

-1.272 
(-2.06) 

 

-1.325 
(-2.03) 

 
Shock 19.03 

(15.95) 
 

19.43 
(15.24) 

 

24.71 
(13.80) 

 

25.17 
(13.19) 

 
R2 0.340 0.338 0.291 0.288 
     

Note: in this table, we report the results of the regression of the cumulative price change on the ratio kurtosis over frequency 
interacted with the cost shock (equation 13) (top panel) and of the regression of the cumulative price change on the rescaled 
kurtosis and frequency both interacted with the cost shock (equation 14) (bottom panel). We consider two horizons for the 
calculation of the cumulative price change (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider 
two measures of the shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price 
and the moving average on the last 3-weeks. Each regression controls for up to 5 lags of the shock, shocks on markup (with up 
to 5 lags of this variable) and the average price change over the sample of stations (with up to 5 lags of this variable). Each 
control variable is interacted with either the ratio kurtosis over frequency, or the rescaled kurtosis and frequency. T-statistics 
of the estimates are reported in parentheses. The sample is restricted to gas stations with more than 6 years of opening days. 
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Table 4: PLACEBO – Pooled regressions linking cumulated price changes to the 
interaction variable “shock x ratio Kur/Freq” 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Shock x Ratio (Kur./Freq.)  -0.176 

(-5.72) 
 

-0.183 
(-5.62) 

 

-0.173 
(-3.95) 

 

-0.180 
(-3.91) 

 
Shock x Mean 121.7 

(0.24) 
 

266.7 
(0.45) 

 

209.7 
(0.25) 

 

370.1 
(0.43) 

 
Shock x Standard Deviation 35.40 

(2.39) 
 

35.80 
(2.44) 

 

27.68 
(1.41) 

 

28.54 
(1.47) 

 
Shock x Skewness -0.176 

(-0.79) 
 

-0.220 
(-0.95) 

 

-0.159 
(-0.53) 

 

-0.203 
(-0.64) 

 
Shock 20.60 

(15.44) 
 

21.03 
(14.70) 

 

26.38 
(13.40) 

 

26.86 
(12.74) 

 
R2 0.340 0.338 0.292 0.288 
     
Unconstrained regression     
Shock x Frequency 2.153 

(6.00) 
 

2.222 
(6.05) 

 

2.093 
(4.30) 

 

2.171 
(4.36) 

 
Shock x Kurtosis -1.463 

(-3.90) 
 

-1.518 
(-3.77) 

 

-1.467 
(-2.71) 

 

-1.52 
(-2.64) 

 
Shock x Mean 164.39 

(0.29) 
 

309.08 
(0.53) 

 

251.76 
(0.31) 

 

412.28 
(0.59) 

 
Shock x Standard Deviation 33.78 

(1.79) 
 

33.99 
(0.53) 

 

25.54 
(1.00) 

 

26.30 
(1.02) 

 
Shock x Skewness -0.176 

(-0.73) 
 

-0.219 
(-0.87) 

 

-0.174 
(-0.52) 

 

-0.214 
(-0.61) 

 
Shock 18.01 

(14.45) 
 

18.34 
(13.68) 

 

23.89 
(12.73) 

 

24.27 
(12.07) 

 
R2 0.343 0.341 0.294 0.290 
     
Note: in this table, we report the results of the regression of the cumulative price change over horizon H on the ratio kurtosis over frequency interacted with the 
cost shock and other moments interacted with the cost shock (mean, standard deviation, skewness) (equation 15) in the top panel and of the regression of the 
cumulative price change on the rescaled kurtosis and frequency and other moments (all moments interacted with the cost shock) in the bottom panel. We consider 
two horizons for the calculation of the cumulative price change (24 days for the first 2 columns, and 30 days for the last 2 columns) and two measures of the shock: 
the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price and the moving average on the last 3-weeks. Each regression 
controls for up to 5 lags of the shock, shocks on markup (with up to 5 lags of this variable) and the average price change over the sample of stations (with up to 5 
lags of this variable). Each control variable is interacted with either the ratio kurtosis over frequency, or the rescaled kurtosis and frequency and each of the other 
moments.  T-statistics of the estimates are reported in parentheses. The sample is restricted to gas stations with more than 6 years of opening days. 
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Table 5: OLS cross-section regressions linking CIRP and ratio  

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Ratio (Kur./Freq.)  -0.141 

(-25.7) 
 

-0.144 
(-25.9) 

 

-0.146 
(-23.4) 

 

-0.152 
(-23.1) 

 
Intercept 21.31 

(352.0) 
 

21.52 
(344.2) 

 

26.87 
(379.3) 

 

27.38 
(366.0) 

 
R2 0.205 0.203 0.168 0.165 
     
Unconstrained regression     
Frequency 1.670 

(24.2) 
 

1.704 
(23.7) 

 

1.753 
(21.1) 

 

1.782 
(20.3) 

 
Kurtosis -1.322 

(-16.0) 
 

-1.347 
(-16.2) 

 

-1.351 
(-14.3) 

 

-1.442 
(-14.6) 

 
Intercept 19.42 

(199.5) 
 

19.57 
(198.1) 

 

24.87 
(219.2) 

 

25.37 
(212.2) 

 
R2 0.190 0.186 0.158 0.152 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency (equation (16)) (top 
panel) and of the regression of the CIRP on the rescaled kurtosis and frequency (equation (17)) (bottom panel). We consider 
two horizons for the calculation of the CIRP (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider 
two measures of the shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price 
and the moving average on the last 3-weeks. T-statistics of the estimates are reported in parentheses. The sample is restricted 
to gas stations with more than 6 years of opening days. 
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Table 6: PLACEBO - OLS cross-section regressions linking CIRP and ratio  

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Ratio (Kur./Freq.)  -0.184 

(-24.8) 
 

-0.190 
(-25.0) 

 

-0.175 
(-20.6) 

 

-0.183 
(-20.53) 

 
Mean 274.10 

(6.60) 
 

377.4 
(8.79) 

 

142.2 
(2.95) 

 

327.8 
(6.48) 

 
Standard Deviation 43.13 

(9.33) 
 

44.46 
(9.13) 

 

24.67 
(4.30) 

 

24.82 
(4.10) 

 
Skewness 0.014 

(0.12) 
 

-0.024 
(-0.27) 

 

-0.294 
(-2.14) 

 

-0.347 
(-2.43) 

 
     
Intercept 20.8 

(260.7) 
 

21.00 
(252.8) 

 

26.60 
(265.9) 

 

27.10 
(257.8) 

 
R2 0.247 0.256 0.180 0.188 
     
Unconstrained regression     
Frequency 2.279 

(23.68) 
 

2.359 
(23.6) 

 

2.137 
(19.05) 

 

2.206 
(18.46) 

 
Kurtosis -1.539 

(-17.25) 
 

-1.572 
(-17.51) 

 

-1.538 
(-14.57) 

 

-1.624 
(-14.9) 

 
Mean 311.1 

(7.17) 
 

416.8 
(9.30) 

 

171.7 
(3.47) 

 

356.0 
(6.85) 

 
Standard Deviation 41.63 

(8.54) 
 

42.92 
(8.33) 

 

22.62 
(3.81) 

 

21.67 
(3.43) 

 
Skewness 0.029 

(0.25) 
 

-0.002 
(-0.02) 

 

-0.300 
(-2.10) 

 

-0.354 
(-2.38) 

 
Intercept 18.08 

(102.1) 
 

18.15 
(98.17) 

 

24.12 
(115.2) 

 

24.56 
(108.9) 

 
R2 0.231 0.239 0.170 0.175 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency and other moments 
(mean, standard deviation, skewness) in the top panel (equation (18)) and of the regression of the CIRP on the rescaled kurtosis 
and frequency and other moments (mean, standard deviation, skewness) in the bottom panel. We consider two horizons for the 
calculation of the CIRP (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider two measures of the 
shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price and the moving 
average on the last 3-weeks. T-statistics of the estimates are reported in parentheses. The sample is restricted to gas stations 
with more than 6 years of opening days. 
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Table 7: OLS cross-section regressions - robustness by duration of price trajectories  

 >2years >4years >6years >8years 
Constrained regression      
Ratio (Kur./Freq.)  -0.127 

(-22.7) 
 

-0.139 
(-19.9) 

 

-0.146 
(-23.4) 

 

-0.148 
(-20.51) 

 
Intercept 26.28 

(374.7.0) 
 

26.64 
(332.3) 

 

26.87 
(379.3) 

 

26.83 
(342.3) 

 
R2 0.051 0.099 0.168 0.205 
Number of gas stations 10,106 4,893 3,116 1,931 
Unconstrained regression     
Frequency 1.415 

(18.24) 
 

1.601 
(19.54) 

 

1.544 
(21.09) 

 

1.637 
(21.15) 

 
Kurtosis -1.273 

(-14.62) 
 

-1.399 
(-13.93) 

 

-1.268 
(-14.26) 

 

-1.005 
(-9.85) 

 
Intercept 24.61 

(227.8) 
 

24.79 
(203.9) 

 

24.87 
(219.2) 

 

24.40 
(182.8) 

 
R2 0.044 0.100 0.158 0.206 
Number of gas stations 10,106 4,893 3,116 1,931 

Note: in this table, we report the results of the regression of the CIRP (for the baseline shock and after 30 days) on the ratio 
kurtosis over frequency (top panel) (equation (16)) and of the regression of the CIRP on the rescaled kurtosis and frequency 
(equation (17)) (bottom panel). We consider different definitions of the sample of gas stations: gas stations with more than 2 
years of price observations (first column), 4 years (second column), 6 years (third column) and 8 years (fourth column). T-
statistics of the estimates are reported in parentheses. 
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Table 8: PLACEBO - OLS cross section regressions linking CIRP and ratio  

 >2years >4years >6years >8years 
Constrained regression      
Ratio (Kur./Freq.)  -0.089 

(-13.44) 
 

-0.127 
(-14.58) 

 

-0.175 
(-20.60) 

 

-0.173 
(-16.91) 

 
Mean 423.8 

(18.57) 
 

524.6 
(11.86) 

 

142.2 
(2.95) 

 

-510.2 
(-5.79) 

 
Standard Deviation -48.59 

(-13.07) 
 

-22.48 
(-4.67) 

 

24.67 
(4.30) 

 

31.24 
(4.32) 

 
Skewness -0.830 

(-7.59) 
 

-0.543 
(-3.82) 

 

-0.294 
(-2.14) 

 

-0.076 
(-0.52) 

 
     
Intercept 26.78 

(317.8) 
 

26.86 
(285.3) 

 

26.60 
(265.9) 

 

26.45 
(229.8) 

 
R2 0.125 0.160 0.180 0.237 
     
Unconstrained regression     
Frequency 0.736 

(7.42) 
 

1.530 
(14.63) 

 

1.881 
(19.05) 

 

1.947 
(18.08) 

 
Kurtosis -1.041 

(-11.89) 
 

-1.282 
(-12.02) 

 

-1.443 
(-14.57) 

 

-1.134 
(-10.67) 

 
Mean 421.2 

(18.37) 
 

533.9 
(12.04) 

 

171.7 
(3.47) 

 

-528.6 
(-5.65) 

 
Standard Deviation -56.23 

(-14.02) 
 

-20.76 
(-4.20) 

 

22.62 
(3.81) 

 

33.40 
(4.43) 

 
Skewness -0.847 

(-7.69) 
 

-0.591 
(-4.13) 

 

-0.300 
(-2.10) 

 

0.008 
(0.051) 

 
Intercept 26.19 

(147.6) 
 

25.06 
(128.4) 

 

24.12 
(115.2) 

 

23.49 
(92.40) 

 
R2 0.122 0.162 0.170 0.240 
     

Note: in this table, we report the results of the regression of the CIRP (for the baseline shock and after 30 days) on the ratio 
kurtosis over frequency and other moments (mean, standard deviation, skewness) in the top panel (equation (18)) and of the 
regression of the CIRP on the rescaled kurtosis and frequency and other moments (mean, standard deviation, skewness) in the 
bottom panel. We consider different definitions of the sample of gas stations: gas stations with more than 2 years of price 
observations (first column), 4 years (second column), 6 years (third column) and 8 years (fourth column). T-statistics of the 
estimates are reported in parentheses. 
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Table 9: OLS cross section regressions linking CIRP and ratio – Long term horizon and 
CIRP  

CIRP horizon 18 days 24 days 30 days 36 days 
Long term definition 19-24 days 25-30 days 31-36 days 37-40 days 
Constrained regression      
Ratio (Kur./Freq.)  -0.114 

(-24.1) 
 

-0.141 
(-25.7) 

 

-0.146 
(-23.41) 

 

-0.102 
(-15.08) 

 
Intercept 14.85 

(290.3) 
 

21.31 
(352.0) 

 

26.87 
(379.3) 

 

30.57 
(396.4) 

 
R2 0.195 0.205 0.168 0.068 
     
Unconstrained regression     
Frequency 1.425 

(24.12) 
 

1.670 
(24.20) 

 

1.753 
(21.09) 

 

1.339 
(14.74) 

 
Kurtosis -0.881 

(-12.66) 
 

-1.322 
(-15.97) 

 

-1.351 
(-14.26) 

 

-0.684 
(-6.25) 

 
Intercept 13.06 

(159.1) 
 

19.42 
(199.5) 

 

24.87 
(219.2) 

 

28.79 
(211.7) 

 
R2 0.182 0.186 0.158 0.066 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency (equation (16)) (top 
panel) and of the regression of the CIRP on the rescaled kurtosis and frequency (equation (17)) (bottom panel). We consider 
four horizons for the calculation of the CIRP and the long-term pass through 18 days (first column), 24 days (second column), 
30 days (third column), 36 days (fourth column); the long-term horizon then corresponds to the maximum on the five following 
days. T-statistics of the estimates are reported in parentheses. The sample is restricted to gas stations with more than 6 years of 
opening days. 
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Table 10: Placebo OLS cross section regressions linking CIRP and ratio – Long term 
horizon and CIRP 

CIRP horizon 18 days 24 days 30 days 36 days 
Long term definition 19-24 days 25-30 days 31-36 days 37-40 days 
Constrained regression      
Ratio (Kur./Freq.)  -0.154 

(-24.62) 
 

-0.184 
(-24.78) 

 

-0.175 
(-20.60) 

 

-0.135 
(-15.66) 

 
Mean -181.4 

(-5.122) 
 

274.1 
(6.60) 

 

142.2 
(2.95) 

 

-678.8 
(-10.10) 

 
Standard Deviation 46.60 

(12.45) 
 

43.13 
(9.33) 

 

24.67 
(4.30) 

 

44.72 
(7.67) 

 
Skewness 0.106 

(1.154) 
 

0.014 
(0.121) 

 

-0.294 
(-2.14) 

 

0.116 
(0.761) 

 
     
Intercept 14.33 

(224.3) 
 

20.81 
(260.7) 

 

26.60 
(265.9) 

 

30.09 
(286.4) 

 
R2 0.251 0.247 0.180 0.133 
     
Unconstrained regression     
Frequency 1.971 

(24.28) 
 

2.279 
(23.68) 

 

2.137 
(19.05) 

 

1.737 
(14.57) 

 
Kurtosis -1.125 

(-15.37) 
 

-1.539 
(-17.25) 

 

-1.538 
(-14.57) 

 

-0.942 
(-8.32) 

 
Mean -137.8 

(-3.72) 
 

311.1 
(-7.17) 

 

171.7 
(3.47) 

 

-637.9 
(-9.25) 

 
Standard Deviation 46.79 

(11.57) 
 

41.63 
(8.54) 

 

22.62 
(3.81) 

 

44.83 
(7.30) 

 
Skewness 0.164 

(1.711) 
 

0.029 
(0.251) 

 

-0.300 
(-2.103) 

 

0.183 
(1.151) 

 
     
Intercept 11.78 

(79.35) 
 

18.08 
(102.1) 

 

24.12 
(115.2) 

 

27.81 
(118.9) 

 
R2 0.235 0.231 0.170 0.127 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency and other moments 
(mean, standard deviation, skewness) in the top panel (equation (18)) and of the regression of the CIRP on the rescaled kurtosis 
and frequency and other moments (mean, standard deviation, skewness) in the bottom panel. We consider four horizons for the 
calculation of the CIRP and the long-term pass through 18 days (first column), 24 days (second column), 30 days (third column), 
36 days (fourth column); the long-term horizon then corresponds to the maximum on the five following days. T-statistics of 
the estimates are reported in parentheses. The sample is restricted to gas stations with more than 6 years of opening days. 
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Table 11: OLS cross section regressions linking CIRP and ratio – kurtosis corrected for 
heterogeneity 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Ratio (Kur./Freq.)  -0.152 

(-23.4) 
 

-0.156 
(-23.7) 

 

-0.159 
(-21.10) 

 

-0.167 
(-21.38) 

 
Intercept 21.10 

(362.9) 
 

21.31 
(355.9) 

 

26.67 
(385.5) 

 

27.19 
(375.7) 

 
R2 0.171 0.170 0.144 0.145 
     
Unconstrained regression     
Frequency 1.514 

(22.06) 
 

1.545 
(21.70) 

 

1.599 
(19.45) 

 

1.623 
(18.79) 

 
Kurtosis -1.031 

(-12.33) 
 

-1.059 
(-12.65) 

 

-1.099 
(-11.42) 

 

-1.224 
(-12.31) 

 
Intercept 19.28 

(183.3) 
 

19.44 
(181.8) 

 

24.77 
(202.4) 

 

25.31 
(197.3) 

 
R2 0.161 0.159 0.138 0.135 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency (equation (16)) (top 
panel) and of the regression of the CIRP on the rescaled kurtosis and frequency (equation (17)) (bottom panel). We consider 
two horizons for the calculation of the CIRP (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider 
two measures of the shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price 
and the moving average on the last 3-weeks. T-statistics of the estimates are reported in parentheses. The measure of the kurtosis 
that we use here is the alternative introduced in Alvarez et al. (2021a) to control for unobserved heterogeneity (we use 15 lags 
for the covariance term). The sample is restricted to gas stations with more than 6 years of opening days. 
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Table 12: OLS cross section regressions linking CIRP and ratio – Brent oil price  

CIRP horizon 14 days 18 days 24 days 30 days 
Long term definition 15-19 days 19-24 days 25-30 days 31-36 days 
Constrained regression      
Ratio (Kur./Freq.)  -0.084 

(-20.23) 
 

-0.092 
(-19.87) 

 

-0.118 
(-22.46) 

 

-0.073 
(-12.09) 

 
Intercept 14.51 

(317.5) 
 

14.11 
(276.9) 

 

20.19 
(348.7) 

 

24.04 
(360.3) 

 
R2 0.145 0.142 0.165 0.053 
     
Unconstrained regression     
Frequency 1.043 

(19.69) 
 

1.126 
(19.25) 

 

1.285 
(19.27) 

 

0.879 
(11.50) 

 
Kurtosis -0.614 

(-10.38) 
 

-0.751 
(-11.31) 

 

-1.224 
(-16.17) 

 

-0.689 
(-7.98) 

 
Intercept 13.16 

(185.4) 
 

12.73 
(158.9) 

 

18.85 
(208.0) 

 

23.05 
(216.7) 

 
R2 0.130 0.129 0.147 0.051 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency (equation (16)) (top 
panel) and of the regression of the CIRP on the rescaled kurtosis and frequency (equation (17)) (bottom panel). We consider 
two horizons for the calculation of the CIRP (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider 
two measures of the shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price 
and the moving average on the last 3-weeks. T-statistics of the estimates are reported in parentheses. The CIRP is computed 
with respect to a cost shock measured by the Brent oil price. T-statistics of the estimates are reported in parentheses. The sample 
is restricted to gas stations with more than 6 years of opening days. 
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Table 13: OLS cross section regressions linking CIRP and Kurtosis, Frequency – 
Misspecified models 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Frequency 1.390 
(19.63) 

 

1.418 
(19.35) 

 

1.467 
(17.40) 

 

1.476 
(16.64) 

 
Intercept 18.38 

(240.0) 
 

18.51 
(234.7) 

 

23.80 
(265.4) 

 

24.23 
(255.3) 

 
R2 0.115 0.112 0.098 0.090 
     
Kurtosis -0.864 

(-10.48) 
 

-0.880 
(-10.64) 

 

-0.870 
(-9.13) 

 

-0.953 
(-9.61) 

 
Intercept 20.63 

(243.0) 
 

20.81 
(242.4) 

 

26.14 
(264.9) 

 

26.66 
(257.7) 

 
R2 0.034 0.033 0.027 0.029 
     

Note: in this table, we report the results of the regression of the CIRP on the rescaled frequency (top panel) and of the regression 
of the CIRP on the rescaled kurtosis (equation 17). We consider two horizons for the calculation of the CIRP (24 days for the 
first 2 columns, and 30 days for the last 2 columns). We consider two measures of the shock: the observed change in Rotterdam 
prices (baseline) or the gap between the current Rotterdam price and the moving average on the last 3-weeks. T-statistics of the 
estimates are reported in parentheses.  The sample is restricted to gas stations with more than 6 years of opening days. 
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Online Appendix – Not Intended to Be Published 

Appendix A - Gasoline micro price data  
 

The dataset we used is provided in a systematic way (through XML files). on a website hosted 

by the French Government.16 In this section, we describe the data transformation we operated. 

First of all, the data have been put into a panel dataset. The dataset contain only the date of price 

changes and the new price at the price change date. To get panel series, we assume that a price 

tag remains similar until the next price change is recorded. When several changes are observed 

within a single day, we have kept the latest observation.  

Another issue is that we do not observe whether a gas station is closed or not in a given day and 

no price change for a very long period of time could indicate that the gas station is closed. Since 

the dataset does not contain any information on quantities sold by a gas station, the 

identification of a closed gas station is inferred from price changes. We adopt the following 

approach: we consider a station as closed after observing that a price tag lasts for more than a 

given number of days. Our baseline threshold is 30 days. Therefore, after a period of 30 days 

with the same price, the price series for that gas station is interrupted. If another price change 

occurs after 30 days, we assign another identifier to the station and start a new station trajectory. 

Figure A.1: Number of estimated open retailers of diesel 

 

                                                           
16

 https://www.prix-carburants.gouv.fr/rubrique/opendata/ 
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We have tested three different thresholds: 15, 30 and 45 days. As indicated in Figure A1: the 

shorter the time span, the more fluctuations we observe in the number of open stations, and the 

lower the estimated number of open stations. However, using one or the other threshold does 

not change substantially the patterns of the aggregate price series. 

We also exclude top high or low price levels or variations (the latter often corresponding to 

measurement issues in the reporting. which is subsequently corrected, thus leading to outliers 

in the price variations). We have dropped 1% of outlier observations. 

 

Figure A.2: Diesel, Brent and Rotterdam wholesale gasoline, weekly level (2007-2018) 

 

Note: the figure plots the weekly average of all diesel prices of our sample (unweighted and excluding taxes, red solid line), 
the average diesel price released by the Ministry of Economy (excluding taxes, black dashed line), the wholesale diesel price 
on Rotterdam markets (Reuters, blue sold line) and the price of crude oil (Brent, euros, Bloomberg, blue dashed line). 
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Table A.1: Diesel price decomposition 

 Price incl. 
taxes 

VAT 
Other 
taxes 

Price excl. 
taxes 

Rotterdam 
price 

Other 
costs 

In euros 1.25 0.21 0.48 0.56 0.46 0.10 
% of price incl. taxes - 17.1 39.4 46.1 37.5 8.5 
% of price excl. taxes - - - - 81.3 18.5 

Note: calculations based on average values over the full sample. The first row reports average values of price levels, taxes, 

wholesale prices as observed over our sample period. “Other costs” is calculated as the difference between “price excluding 

taxes” and the wholesale Rotterdam price. The second row is calculated as the ratio of the average price including taxes (1.25 

euros) and VAT, other taxes… The third row is calculated as the ratio between the average price excluding taxes and wholesale 

Rotterdam price and the ratio between price excluding taxes and “other costs”. 

 

Table A.2: Distribution of the marginal cost shock 

In % Average P25 P50 P75 SD. Kurtosis 
Rotterdam price change 0.00 -0.99 0.00 1.00 0.19 6.30 
Rotterdam price gap 
 with its moving average 

-0.02 -2.31 0.08 2.52 0.43 4.82 

Brent price changes -0.15 -1.09 -0.22 1.12 0.21 5.84 
Note: in this table, we report descriptive statistics over the full sample on the different shocks we consider. 

 

Figure A.3 Size of price changes depending on the price gap 

 

Note: this figure is a binscatter plot representing the size of non-zero price changes conditional on the value of the difference 
between p and p*, for gas stations opening more than 500 days (2 years of opening days). p is the actual pre-tax price for a 
given station on a given day, and p* is the optimal price for that station and for that day, estimated by linear regressions of 
price levels on Rotterdam wholesale prices on the day of a price change at the station level.  
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Appendix B - Heterogeneity and asymmetry 
 

Figure B.1: Impulse Reaction Function of Prices to a Cost Shock– Position in the Price 
Distribution 

 

Note: this figure plots the impulse response functions of diesel retail prices to a 1% shock in Rotterdam wholesale price (red 
lines), and to a 1% shock on average local price (defined as the average price changes of the 10 closest gas stations) (blue 
lines), estimated separately for stations with very low prices (solid), low prices (large dash), high prices (small dash) and very 
high prices (dotted), for gas stations opening more than 500 days (2 years of opening days). Regressions control for up to 5 
lags of shocks on Rotterdam wholesale price and average local price, as well as up to 5 lags of the average diesel retail price 
change and include station fixed effects. Standard errors are clustered by date. 
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Table B.1: Duration (in open days) before a full transmission of a marginal cost and 

markup shock 

 
Very low 

prices 
Low 

prices 
High prices 

Very high 
prices 

 Marginal cost 
t 0.00 0.00 0.00 0.00 
t+3 0.34 0.29 0.25 0.26 
t+5 0.55 0.50 0.45 0.43 
t+10 0.77 0.74 0.70 0.63 
t+15 0.79 0.77 0.75 0.66 
t+20 0.80 0.78 0.76 0.66 
Max. value 0.82 0.80 0.78 0.68 
  
 Markups 
t 0.26 0.24 0.16 0.06 
t+3 0.19 0.18 0.15 0.12 
t+5 0.15 0.14 0.13 0.11 
t+10 0.11 0.11 0.08 0.10 
t+15 0.09 0.08 0.07 0.08 
t+20 0.07 0.07 0.06 0.06 
Max. value 0.26 0.22 0.17 0.12 

Note : this table represents the values of the IRF of pre-tax diesel price change, for shocks on marginal costs and on markups, 

on the day of the shock (t), 3 days after (t+3), 5 days after (t+5), 10 days after (t+10), 15 days after (t+15) the shock, for gas 

stations opening more than 500 days (2 years of opening days). It also highlights the maximum value attained up until 40 days 

after the shock. Markup shocks are defined as the average price variation in the 10 closest stations. The marginal cost shock is 

defined as day-to-day log price variation of Rotterdam wholesale prices. Regressions are estimated separately for each group 

of price levels, and control simultaneously for marginal cost and markup shocks, as well as up to 5 lags of such shocks, as well 

as up to 5 lags of the average diesel retail price change over the sample and include station fixed effects.  
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Figure B.2: Impulse Reaction Function of Prices to a Cost Shock – Role of the 
Frequency of Psychological Prices 

 

Note: this figure plots the impulse response functions of diesel retail prices to a 1% shock in Rotterdam wholesale price (red 
lines), and to a 1% shock on average local price (defined as the average price changes of the 10 closest gas stations) (blue 
lines), estimated separately for stations using less psychological prices than average, equal to 51% (dashed) and more 
psychological prices than the top decile, equal to 98% (solid), for gas stations opening more than 500 days (2 years of opening 
days). Regressions control for up to 5 lags of shocks on Rotterdam wholesale price and average local price, as well as up to 5 
lags of the average diesel retail price change and include station fixed effects. Standard errors are clustered by date. 
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Figure B.3: Price variations (in tens of Euros cents), for stations with more or less 
psychological price changes than the average 

a) Share of psychological price changes above average (>51%) 

 

 

b) Share of psychological price changes below average (<=51%) 

 

Note: this figure represents the distribution of absolute price variations on the estimating sample, distinguishing stations with 

above-average share of psychological prices and stations with below-average share of psychological prices (defined as tax-

included price-trajectories with a third digit in 0 or 9), for gas stations opening more than 500 days (2 years of opening days).  

 



57 

 

Figure B.4: Impulse Reaction Function of diesel retail prices to positive and negative 
shocks on wholesale gasoline prices  

 

 

Note: this figure plots the impulse response function of diesel retail prices to a 1% shock in Rotterdam wholesale price (red 

line), and to a 1% shock on average local price (defined as the average price changes of the 10 closest gas stations) (blue lines), 

differentiating between positive and negative shocks (both for Rotterdam wholesale prices and average local prices), for gas 

stations opening more than 500 days (2 years of opening days). Shocks on Rotterdam wholesale prices are defined as deviation 

from a 3-weeks moving average of log-Rotterdam wholesale prices. Regressions control for up to 5 lags of shocks on Rotterdam 

wholesale price and average local price, and include station fixed effects. Grey areas correspond to the 95% confidence 

intervals. 
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Figure B.5: Impulse Reaction Function of Diesel Retail Prices to Shocks on Wholesale 
Gasoline Prices and Brent Prices  

 

 

Note: this figure plots the impulse response function of diesel retail prices to a 1% shock in Rotterdam wholesale price (solid 
red line) or in Brent crude oil price (dashed red line), and to a 1% shock on average local price (defined as the average price 
changes of the 10 closest gas stations) (blue lines), for gas stations opening more than 500 days (2 years of opening days). 
Regressions control for up to 5 lags of shocks on Rotterdam wholesale price and average local price, as well as up to 5 lags of 
the average diesel retail price change and include station fixed effects. Grey areas correspond to the 95% confidence intervals, 
with standard errors are clustered by date. 
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Appendix C – Estimated Coefficients over the Horizon - Pooled regressions 
linking cumulated price changes to the interaction variable “shock x ratio 
Kur/Freq” 
“Baseline” shock – Coefficients of the constrained model 
Figure C.1 – Shock (ca) 
 

 

Figure C.2 – Shock interacted with the ratio 
kurtosis over frequency (da) 

 
Note: these figures plot the estimated coefficients of equation (13) where we relate the cumulated price changes over horizon 
H to the shock (coefficient ca – left panel) and to the shock interacted with K/F (coefficient da – right panel). The x axis 
gives the horizon H at which we estimate the coefficients. Gray shaded areas give the 95% confidence intervals. The sample 
is restricted to gas stations with more than 6 years of opening days. 

 

Baseline shock – Coefficients of the unconstrained model  
Figure C.3 – Shock (ca) 
 

 
 

Figure C.4 – Shock interacted with frequency and 
kurtosis (�a and fa) 

 
Note: these figures plot the estimated coefficients of equation (14) where we relate the cumulated price changes over horizon 

H to the shock (coefficient ca – left panel), to the shock interacted with 
XK
X  (coefficient �a – red line, right panel) and the 

shock interacted with 
WK
W  (coefficient fa – red line, right panel). The x axis gives the horizon H at which we estimate the 

coefficients. Gray shaded areas give the 95% confidence intervals. The sample is restricted to gas stations with more than 6 
years of opening days. 
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Baseline shock – Coefficients of the placebo test over horizon H (constrained model) 
Figure C.5 – Shock (ca) 
 

 
 

Figure C.6 – Shock interacted with the ratio 
kurtosis over frequency (da) 

 

Figure C.7  - Shock interacted with mean (�a) 
 

 

Figure C.8 – Shock interacted with standard 
deviation (Qa) 

 

Figure C.9 – Shock interacted with skewness 
(ma) 

 

 

Note: these figures plot the estimated coefficients of equation (15) where we relate the cumulated price changes over horizon 
H to the shock (coefficient ca – top left panel), to the shock interacted with K/F (coefficient da – top right panel) and to 
the shock interacted with other moments. The x axis gives the horizon H at which we estimate the coefficients. Gray shaded 
areas give the 95% confidence intervals. The sample is restricted to gas stations with more than 6 years of opening days. 
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Baseline shock – Coefficients of the placebo test over horizon H (unconstrained model) 
Figure C.10 – Shock (ca) 
 

 
 

Figure C.11 – Shock interacted with the frequency 
and kurtosis (�a Yzl fa) 

 
 

Figure C.12  - Shock interacted with mean (�a) 
 

 
 

Figure C.13 – Shock interacted with standard 
deviation (Qa) 

 

Figure C.14 – Shock interacted with skewness 
(ma) 

 

 

Note: these figures plot the estimated coefficients of equation (15) where we relate the cumulated price changes over horizon 

H to the shock (coefficient ca – top left panel), to the shock interacted with 
XK
X  (coefficient �a – red line, top right panel), 

the shock interacted with 
WK
W  (coefficient fa – red line, top right panel) and the shock interacted with other moments (other 

panels). The x axis gives the horizon H at which we estimate the coefficients. Gray shaded areas give the 95% confidence 
intervals. The sample is restricted to gas stations with more than 6 years of opening days. 
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Appendix C – Robustness Analysis 
 

Figure D.1: Impulse Reaction Function of Prices to a Cost Shock – Robustness 
 

 

Note: this figure plots the impulse response function of diesel retail prices to a 1% shock in Rotterdam wholesale price (red 
line), a 1% shock on average local price (defined as the average price changes of the 10 closest gas stations) (blue line). Grey 
areas correspond to the 95% confidence intervals. Regressions control for up to 5 lags of shocks on Rotterdam wholesale price 
and average local price, as well as up to 5 lags of the average diesel retail price change and include station fixed effects. 
Standard errors are clustered by date. “All” correspond to the sample restricted to gas stations with more than 2 years of opening 
days while “Long traj.” correspond to the sample restricted to gas stations with more than 6 years of opening days. 
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Figure D.2: Distribution of Kurtosis Across Gas Stations – including or not correction 
for unobserved heterogeneity 

 

Note: this figure plots in grey the distribution of the kurtosis and in white the distribution of the corrected kurtosis for 
unobserved heterogeneity (we allow 15 lags for the covariance term in the corrected measure of kurtosis (Alvarez et al.,2021a)).  

 

 

Table D.1: Distribution of kurtosis after correction for unobserved heterogeneity 

 Average P25 P50 P75 Correlation  
Kurtosis (no correction) 3.31 2.56 3.15 3.83 1 
Kurtosis incl correction (10 lags) 2.80 2.20 2.66 3.19 0.87 
Kurtosis incl correction (15 lags) 2.85 2.23 2.71 3.27 0.89 
Kurtosis incl correction (20 lags) 2.90 2.25 2.74 3.32 0.90 

Note: we first calculate for every gas station the kurtosis of non-zero price changes and then we report in this table the average 
and the percentiles of the distribution of kurtosis over gas stations. The first line corresponds to the case using raw price data 
without any correction, the second line reports results where we allow 10 lags for the covariance term in the corrected measure 
of kurtosis (Alvarez et al. 2021a), the second line reports results taking into account 15 lags for the correction and the last line 
allows for 20 lags.  

  



64 

 

 

Table D.2: OLS cross section regressions linking CIRP and ratio – Log specifications 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Ratio (Kur./Freq.)  -0.0825 

(-26.00) 
 

-0.0835 
(-25.86) 

 

-0.0657 
(-22.62) 

 

-0.0670 
(-22.19) 

 
Intercept 3.175 

(434.1) 
 

3.186 
(426.0) 

 

3.382 
(498.6) 

 

3.402 
(481.7) 

 
R2 0.201 0.198 0.160 0.155 
     
Unconstrained regression     
Frequency 0.088 

(24.4) 
 

0.089 
(24.1) 

 

0.071 
(21.0) 

 

0.071 
(20.2) 

 
Kurtosis -0.072 

(-15.97) 
 

-0.073 
(-16.17) 

 

-0.057 
(-14.02) 

 

-0.059 
(-14.12) 

 
Intercept 3.169 

(418.8) 
 

3.180 
(413.7) 

 

3.377 
(486.4) 

 

3.398 
(469.2) 

 
R2 0.204 0.201 0.163 0.157 
     

Note: in this table, we report the results of the regression of the log of CIRP on the log of the ratio kurtosis over frequency (top 
panel) and of the regression of the log of the CIRP on the log of kurtosis and the log of frequency (bottom panel). We consider 
two horizons for the calculation of the CIRP (24 days for the first 2 columns, and 30 days for the last 2 columns). We consider 
two measures of the shock: the observed change in Rotterdam prices (baseline) or the gap between the current Rotterdam price 
and the moving average on the last 3-weeks. T-statistics of the estimates are reported in parentheses. The sample is restricted 
to gas stations with more than 6 years of opening days. 
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Table D.3: Placebo - OLS cross section regressions linking CIRP and ratio – kurtosis 
corrected for unobserved heterogeneity 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Constrained regression      
Ratio (Kur./Freq.)  -0.204 

(-21.18) 
 

-0.212 
(-21.17) 

 

-0.193 
(-16.98) 

 

-0.206 
(-17.33) 

 
Mean 262.1 

(6.45) 
 

364.6 
(8.30) 

 

129.6 
(2.67) 

 

314.4 
(6.19) 

 
Standard Deviation 44.88 

(8.20) 
 

46.54 
(7.92) 

 

25.84 
(3.82) 

 

27.24 
(3.81) 

 
Skewness 0.172 

(1.56) 
 

0.139 
(1.25) 

 

-0.137 
(-1.10) 

 

-0.189 
(-1.36) 

 
     
Intercept 20.58 

(248.2) 
 

20.76 
(238.8) 

 

26.38 
(255.4) 

 

26.87 
(247.0) 

 
R2 0.212 0.221 0.154 0.166 
     
Unconstrained regression     
Frequency 2.094 

(20.87) 
 

2.171 
(20.72) 

 

1.954 
(16.87) 

 

2.028 
(16.40) 

 
Kurtosis -1.253 

(-13.81) 
 

-1.285 
(-14.03) 

 

-1.268 
(-11.60) 

 

-1.384 
(-12.37) 

 
Mean 310.3 

(7.01) 
 

415.3 
(9.12) 

 

168.8 
(3.38) 

 

351.0 
(6.76) 

 
Standard Deviation 42.52 

(7.85) 
 

43.86 
(7.59) 

 

23.58 
(3.60) 

 

23.40 
(3.36) 

 
Skewness 0.197 

(1.73) 
 

0.169 
(1.46) 

 

-0.133 
(-0.95) 

 

-0.189 
(-1.31) 

 
Intercept 17.98 

(96.39) 
 

18.05 
(92.58) 

 

24.03 
(110.2) 

 

24.48 
(104.2) 

 
R2 0.202 0.210 0.148 0.156 

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency and other moments 
(mean, standard deviation, skewness) in the top panel and of the regression of the CIRP on the rescaled kurtosis and frequency 
and other moments (mean, standard deviation, skewness) in the bottom panel. The kurtosis that we compute is corrected for 
heterogeneity (Alvarez et al., 2021a).We consider two horizons for the calculation of the CIRP (24 days for the first 2 columns, 
and 30 days for the last 2 columns). We consider two measures of the shock: the observed change in Rotterdam prices (baseline) 
or the gap between the current Rotterdam price and the moving average on the last 3-weeks. T-statistics of the estimates are 
reported in parentheses. The sample is restricted to gas stations with more than 6 years of opening days. 
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Table D.4: Placebo OLS cross section regressions linking CIRP and ratio – Brent oil 
price  

CIRP period 14 days 18 days 24 days 30 days 
Long term definition 15-19 days 19-24 days 25-30 days 31-36 days 
Constrained regression      
Ratio (Kur./Freq.)  -0.135 

(-25.76) 
 

-0.118 
(-19.98) 

 

-0.147 
(-20.70) 

 

-0.087 
(-11.09) 

 
Mean -213.4 

(-7.45) 
 

-241.6 
(-7.12) 

 

329.1 
(8.14) 

 

-159.2 
(-3.29) 

 
Standard Deviation 44.13 

(13.38) 
 

33.63 
(10.21) 

 

28.24 
(6.66) 

 

17.90 
(3.60) 

 
Skewness 0.024 

(0.329) 
 

0.222 
(2.42) 

 

0.012 
(0.106) 

 

0.037 
(0.283) 

 
     
Intercept 10.52 

(190.0) 
 

13.73 
(223.1) 

 

19.86 
(267.4) 

 

23.84 
(266.4) 

 
R2 0.272 0.187 0.202 0.062 
     
Unconstrained regression     
Frequency 1.700 

(25.25) 
 

1.448 
(18.84) 

 

1.662 
(18.34) 

 

1.054 
(9.91) 

 
Kurtosis -0.979 

(-16.25) 
 

-0.894 
(-12.81) 

 

-1.336 
(-15.86) 

 

-0.788 
(-8.36) 

 
Mean -176.1 

(-5.84) 
 

-213.8 
(-6.05) 

 

343.5 
(8.21) 

 

-146.3 
(-2.97) 

 
Standard Deviation 43.60 

(12.18) 
 

32.08 
(9.02) 

 

22.82 
(5.20) 

 

16.55 
(3.07) 

 
Skewness 0.079 

(1.028) 
 

0.261 
(2.74) 

 

0.001 
(0.010) 

 

0.028 
(0.210) 

 
     
Intercept 8.332 

(67.85) 
 

11.92 
(88.03) 

 

18.03 
(114.9) 

 

22.64 
(114.5) 

 
R2 0.249 0.169 0.178 0.058 
     

Note: in this table, we report the results of the regression of the CIRP on the ratio kurtosis over frequency and other moments 
(mean, standard deviation, skewness) in the top panel and of the regression of the CIRP on the rescaled kurtosis and frequency 
and other moments (mean, standard deviation, skewness) in the bottom panel. We consider four horizons for the calculation of 
the CIRP and the long-term pass through 18 days (first column), 24 days (second column), 30 days (third column), 36 days 
(fourth column); the long-term horizon then corresponds to the maximum on the five following days. The CIRP is computed 
with respect to a cost shock measured by the Brent oil price. T-statistics of the estimates are reported in parentheses. The sample 
is restricted to gas stations with more than 6 years of opening days. 
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Table D.5: Placebo - OLS cross section regressions linking CIRP and ratio – Mis-specified 
models 

Long-term 24 days 30 days 
 

Baseline 
Moving 
Average 
Shock 

Baseline 
Moving 
Average 
Shock 

Frequency 1.665 
(18.00) 

 

1.733 
(18.08) 

 

1.524 
(14.20) 

 

1.559 
(13.61) 

 
Mean 355.3 

(7.80) 
 

462.0 
(9.83) 

 

215.8 
(4.20) 

 

402.6 
(7.43) 

 
Standard Deviation 21.37 

(4.55) 
 

22.23 
(4.49) 

 

2.39 
(0.42) 

 

0.292 
(0.048) 

 
Skewness 0.533 

(4.380) 
 

0.513 
(4.179) 

 

0.204 
(1.40) 

 

0.178 
(1.18) 

 
     
Intercept 17.64 

(98.26) 
 

17.70 
(94.37) 

 

23.68 
(111.3) 

 

24.10 
(105.4) 

 
R2 0.144 0.153 0.104 0.108 
     
Kurtosis -0.715 

(-8.43) 
 

-0.719 
(-8.48) 

 

-0.765 
(-7.78) 

 

-0.826 
(-8.14) 

 
Mean 218.0 

(4.46) 
 

320.4 
(6.36) 

 

84.6 
(1.61) 

 

266.0 
(4.83) 

 
Standard Deviation -22.97 

(-6.27) 
 

-23.95 
(-6.37) 

 

-37.97 
(-8.43) 

 

-40.69 
(-8.77) 

 
Skewness 0.405 

(3.22) 
 

0.387 
(3.03) 

 

0.0522 
(0.350) 

 

0.009 
(0.061) 

 
Intercept 20.99 

(182.8) 
 

21.16 
(181.0) 

 

26.85 
(196.0) 

 

27.38 
(189.9) 

 
R2 0.059 0.064 0.054 0.063 
     

Note: in this table, we report the results of the regression of the CIRP on the rescaled frequency and other moments (mean, 
standard deviation, skewness) in the top panel and of the regression of the CIRP on the rescaled kurtosis and other moments 
(mean, standard deviation, skewness) in the bottom panel. We consider two horizons for the calculation of the CIRP (24 days 
for the first 2 columns, and 30 days for the last 2 columns). We consider two measures of the shock: the observed change in 
Rotterdam prices (baseline) or the gap between the current Rotterdam price and the moving average on the last 3-weeks. T-
statistics of the estimates are reported in parentheses. The sample is restricted to gas stations with more than 6 years of opening 
days. 

 


