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ABSTRACT 

We study the implications of trade aggregation in an infinite-horizon economy with multiple 
countries, asking whether there is a role for alternatives to the Armington aggregator in a wide range 
of workhorse open-economy macroeconomics models. We show analytically that the first-order 
dynamics of the model are entirely captured by a few sufficient statistics. Over and above these 
statistics, the precise choice of functional form for the trade aggregator is irrelevant. This result has 
the following implications. For given steady-state trade elasticities and expenditure shares, any 
aggregator that is homogeneous of degree one is equivalent to the Armington aggregator at first 
order. Similarly, aggregators that are homogeneous of arbitrary degree are equivalent to a simple 
generalisation of the Armington aggregator, for given steady-state trade elasticities and expenditure 
shares. In models with more than two countries, alternative aggregators can play a role by allowing 
for steady-state differences in bilateral trade elasticities across different country pairs, which the 
Armington aggregator rules out. 

Keywords: International Trade, Open-economy Macroeconomics, Armington Aggregator, Elasticity 
of Trade. 

JEL classification: F00, F10, F41.

1 Banque de France, noemie.lisack@banque-france.fr . 
2 Bank of England, simon.lloyd@bankofengland.co.uk, rana.sajedi@bankofengland.co.uk   
We are grateful to an anonymous referee, Mauro Bambi (discussant), Giancarlo Corsetti, Aydan Dogan, Evi 
Pappa and Robert Zymek for useful comments and suggestions, as well as presentation attendees at the Centre 
for Central Banking Studies, Bank of England, Banque de France, European Economic Association Annual 
Conference 2022, Paris School of Economics, Theories and Methods in Macroeconomics 2022, and Universitat 
Autonoma Barcelona. The views expressed in this paper are those of the authors, and not necessarily those of 
the Banque de France or the Bank of England. 

Working Papers reflect the opinions of the authors and do not necessarily express the views of the Banque de 
France. This document is available on publications.banque-france.fr/en 

mailto:noemie.lisack@banque-france.fr
mailto:simon.lloyd@bankofengland.co.uk
mailto:rana.sajedi@bankofengland.co.uk
https://publications.banque-france.fr/en


 

Banque de France WP894   ii 

NON-TECHNICAL SUMMARY 

Goods trade is central to structural international macro models, including those used for policy 
analysis (e.g. the GIMF model used at the International Monetary Fund). One of the most primitive 
assumptions needed within these models is how agents allocate their consumption across domestic 
and foreign goods, i.e. how these goods are ‘aggregated’ together. The precise nature of this 
aggregation determines the make-up of cross-border trade, and can affect how demand responds to 
changes in international relative prices. 

The ‘go-to’ choice of aggregator within workhorse international policy models is the constant 
elasticity of substitution (CES) aggregator, which is governed by two parameters. First, the share of 
expenditure on each good, which captures ‘home bias’—the idea that countries tend to spend 
proportionally more on their domestic goods even if prices are equal. Second, the ease with which 
consumers can substitute between goods produced in different countries—the ‘trade elasticity’—
which governs how relative demand responds to relative prices. 

A major reason for this aggregator’s wide usage is its tractability, which comes from the fact that the 
trade elasticity is given by a constant parameter. However, the flipside of this simplicity is that the 
value of the trade elasticity becomes crucially important for the dynamics of international macro 
models. In fact, both the sign and size of spillovers from shocks in these models depend on this 
value. In other strands of the literature, many argue that the trade elasticity can vary with a range of 
factors (e.g. the level of consumption, the time horizon over which substitution can occur, and 
income levels). Considering such alternative aggregators, with more parameters and greater flexibility 
than CES, could allow for richer dynamics and help to alleviate this challenge.   

In this paper, we take these alternative aggregators to the workhorse international macro model and 
assess the implications of how trade aggregation is modelled. How does the precise form of the 
aggregator influence macro dynamics and the international transmission of shocks? 

We find that— when linearizing these non-linear relationships—just two sets of parameters are key 
for macro dynamics: the long-run share of domestic vs. foreign goods in expenditure and the trade 
elasticity. Since these are precisely the parameters captured in the CES aggregator, our results indicate 
that the specific aggregator choice has only a limited impact on global macroeconomic model 
dynamics. This means that, while the precise formulation of the aggregator is irrelevant, the choice 
of these parameters is important.  

In many settings, once you pin down the two sets of sufficient statistics that we identify, it is very 
hard to overturn the results attained using the standard CES aggregator. This is true in models with 
only two countries, and in models in which countries are assumed to be perfectly symmetric.  

Conversely, by considering models with more than two countries in which countries are asymmetric, 
we get around this ‘aggregator irrelevance’. In these settings, aggregator choice can be important and 
departing from the CES aggregator can deliver richer dynamics. Indeed, when countries differ in size, 
or other structural features, there is no longer just a single bilateral trade elasticity to consider, but 
potentially different elasticities across every pair of goods being traded. As a result, the cross-border 
transmission of shocks will depend not only on bilateral trade between two countries, but also on 
their indirect linkages via third countries. While the standard CES aggregator imposes that the 
elasticity is the same across all pairs of goods, alternative aggregators can allow for realistic differences 
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in the trade elasticities across different pairs of goods, and therefore qualitatively change the macro 
dynamics, as is visible in Figure 1.  

Figure 1: Impulse Responses of imports of foreign good by home country to a 2% endowment shock in the Home country, asymmetric 3-country 
case 

Note: The Home (H) country is assumed to be a small economy with steady-state endowment equal to 0.5, 
while the two other countries, Foreign (F) and Rest of World (R), are large (endowment equal to 1). Dotted 
lines represent the CES responses with 𝜙𝜙  = 1.5, while each solid line represents responses for different 
values of the Kimball `curvature' parameter 𝜖𝜖 , with 𝜎𝜎  = 1.5. All consumers have symmetric preferences 
with home bias. 

Agrégation entre pays : choix d’agrégateur 
et dynamiques macroéconomiques 

RÉSUMÉ 

Nous étudions les implications de l’agrégation entre biens échangeables dans un modèle multi-pays 
en horizon infini, et si des alternatives à l’agrégateur Armington ont un rôle à jouer dans les modèles 
typiques de macroéconomie ouverte. Nous montrons analytiquement que les dynamiques de 
premier ordre du modèle sont entièrement déterminées par un petit nombre de statistiques 
suffisantes. Au-delà de ces statistiques, le choix précis de la forme fonctionnelle de l’agrégateur du 
commerce n’a pas d’effet. Ce résultat a les conséquences suivantes. À élasticités de commerce et 
parts de dépenses à l’état stationnaire données, tout agrégateur homogène de degré 1 est équivalent 
à l’agrégateur Armington au premier ordre. De même, les agrégateurs homogènes de degré 
arbitraire sont équivalents à une simple généralisation de l’agrégateur Armington, étant données 
les élasticités de commerce et parts de dépenses à l’état stationnaire. Dans les modèles avec plus 
de deux pays, les agrégateurs alternatifs peuvent jouer un rôle en permettant aux élasticités 
bilatérales de commerce entre différentes paires de pays de prendre des valeurs différentes à l’état 
stationnaire, ce qui n’est pas possible avec l’agrégateur Armington. 
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1 Introduction

Goods trade is a central component of New Open-Economy Macroeconomics (NOEM) models

(Corsetti, 2008), playing an important role in the cross-border propagation of macroeconomic

shocks. One of the most primitive assumptions in any international macroeconomics model is

how domestic and foreign goods are bundled together to form aggregate goods. The structure of

this aggregation has implications for how agents’ demand responds intratemporally to changes

in relative prices. These relative prices can, in turn, influence aggregate wealth and intertem-

poral consumption-savings decisions and, thus, macroeconomic dynamics. So this aggregation

is central to our understanding of many features of the global economy. In this paper, we de-

rive sufficient statistics that summarise the impact of the trade aggregator on the first-order

dynamics of these models, and assess the implications of how trade aggregation is modelled for

macroeconomic dynamics and the international transmission of shocks.

We show that within the class of aggregators that are homogeneous of degree one, the first-order

dynamics of a two-country NOEM model are entirely determined by two types of sufficient

statistics: the steady-state consumption expenditure shares and the steady-state elasticity of

substitution.1 The first relate to the share of expenditure on each good, which typically capture

the degree of ‘home bias’ in preferences—the idea that countries tend to spend proportionally

more on their domestic goods even if prices are symmetric. The second captures the elasticity of

substitution between goods produced in different countries—also known as the ‘trade elasticity’

or ‘Armington elasticity’—governing how relative demand responds to relative prices. Hence, for

a given calibration of these steady-state objects, the precise form of the aggregator is irrelevant.

These two sufficient statistics happen to be precisely the quantities that are given parameterically

in the Armington (1969) aggregator. The Armington aggregator, which is a Constant Elasticity

of Substitution (CES) aggregator, has been widely applied in the NOEM literature, and is the

‘go-to’ aggregator in multi-country models. A major reason for the Armington aggregator’s

wide usage is its tractability and elegant closed-form solutions, which are summarised by the

two types of parameters that correspond to the sufficient statistics highlighted above. In a two-

country model, any aggregator that is homogeneous of degree one is therefore equivalent to the

Armington aggregator to first order.

The second part of our contribution extends this result to a broader set-up. We first consider

a model with more than two countries. In this case, there is no longer just one single bilateral

trade elasticity of substitution, but potentially different elasticities across every pair of country-

goods. Our results show that the sufficient statistics for the first-order dynamics of the model

now include the steady-state elasticity of substitution across every pair of country-goods. This

is because the cross-border transmission of shocks in a multi-country model depends not only

1These results are derived analytically from the linearised model, and so they hold exactly at first order. This
means that alternative aggregators may have additional effects at higher order, but by definition these effects will
be small unless there is a non-linearity in the model, or if we consider large shocks or shocks to higher moments.
These extensions are left for future research.
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on the bilateral trade between two countries, but also their indirect linkages via third countries.

While the Armington aggregator imposes that the elasticity is the same across all pairs of

country-goods, an alternative aggregator can therefore change the first-order dynamics of the

model relative to Armington by allowing, in steady state, for different elasticities of substitution

across different pairs of goods. This matters for macro modellers as the Armington aggrega-

tor remains standard practice even in large-scale, multi-country quantitative models used for

policy analysis. For instance, the International Monetary Fund’s Global Integrated Monetary

and Fiscal model (Laxton, Mursula, Kumhof, and Muir, 2010) features layered CES aggregation

of domestic and foreign, consumption and investment, and final and intermediate goods across

multiple countries. The use of Armington aggregators in this and other similar cases, by re-

stricting the bilateral Armington elasticity values to a single number for all country pairs, limits

the possible dynamics of such large-scale models.

In this context, we also investigate an alternative approach to generating differences in elasticities

of substitution across different pairs of goods, while retaining the tractability of the Armington

aggregator. Specifically, for each type of good (final goods in our setting), we consider how a

nested-CES structure—i.e. a layered set of two-good CES aggregators adding recursively each

country-good to the current bundle—compares to alternative aggregators. While allowing for

some differences in elasticities across different pairs of goods, we show that this nested-CES

structure is still not sufficiently flexible to generically replicate the dynamics under alternative

aggregators, as it specifies all bilateral trade elasticities but one, whereas matching all sufficient

statistics requires the ability to specify all bilateral elasticities.

Second, we consider the case in which the aggregator is not homogeneous of degree one. The

first-order dynamics of the model are then summarised by a broader set of sufficient statistics:

the steady state consumption expenditure shares and the steady state bilateral elasticities as

before, and the steady state values of ratios related to the degree of homogeneity (if any) of the

aggregator. Here, the first-order dynamics will change relative to the Armington aggregator,

even in a two-country model, due to the difference in the degree of homogeneity. We propose

a simple extension of the Armington aggregator, introducing one new parameter. This gener-

alised Armington aggregator can parsimoniously replicate any aggregator that is homogeneous

of arbitrary degree in a two-country setup. As before, in a setup with more than two countries,

differences in steady-state bilateral elasticities of substitution can affect the first-order dynamics

of the model in a way that the generalised Armington aggregator cannot replicate.

The simplicity and tractability of the Armington aggregator has made it one of the most common

aggregator choices in the NOEM literature. However, the flipside of this simplicity is that the

value of this single elasticity parameter becomes crucially important for the dynamics of these

models when more than two countries are involved, as shown by our sufficient statistics result. As

Corsetti, Dedola, and Leduc (2008) demonstrate, both the sign and size of spillovers in NOEM

models depend on the trade elasticity in the Armington aggregator. For instance, a low trade

elasticity is typically required to match the empirical Backus-Smith-Kollmann correlation—the
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negative unconditional correlation between real exchange rates and relative consumption.2 In

contrast, micro-evidence of empirically observed patterns of trade substitution point to a high

trade elasticity.

The unique elasticity parameter present in the Armington aggregator also plays a role in gener-

ating trade comovement across countries. In an example using a three-country set-up, because

of the restrictions the unique parameter places on bilateral trade elasticities across country pairs,

the Armington aggregator generates conditional responses of trade quantities that counterfac-

tually covary negatively across countries in response to endowment shocks. Within the same

model, we show that a Kimball aggregator (following Kimball, 1995) can qualitatively change

the dynamics of trade, generating positive cross-country correlation of trade and consumption.3

Overall, our analytical results highlight the importance of two types of parameters for trade and,

in turn, macroeconomic dynamics in NOEM models. While our work underlines an ‘irrelevance’

of alternative trade aggregators for macroeconomic dynamics vis-à-vis the Armington specifica-

tion in a two-country setup, there is scope for richer macroeconomic dynamics in more general

settings. Moreover, because the sufficient statistics we uncover have clear empirical counter-

parts, our theoretical findings justify continued focus on the estimation of trade elasticities and

shares from micro data (e.g. Freeman, Larch, Theodorakopoulos, and Yotov, 2021).

Related Literature The point of departure for our work is the NOEM literature (e.g Backus,

Kehoe, and Kydland, 1992). Within many workhorse multi-country NOEM models, a common

assumption is that goods from multiple countries are bundled together to form aggregate con-

sumption using an Armington aggregator (following Armington, 1969) or, in a special case

thereof, a Cobb-Douglas aggregator. Within two-country variants of the models, it is widely

understood that the two parameters underpinning this aggregation—the elasticity of substitu-

tion between traded goods and the degree of openness—are crucial for pinning down the size

and, in some circumstances, the sign of cross-country shock transmission (Corsetti et al., 2008).

However, while the importance of these Armington parameters is well understood and despite

other known limitations of the Armington aggregator, to date no studies have explored how

these aggregators can impact shock transmission in NOEM models. Our contribution in this

dimension is two-fold. First, applying a generic NOEM model in a two-country setting, we

show that Armington aggregation is entirely sufficient for capturing first-order macroeconomic

dynamics. Given estimates for steady-state trade elasticities and openness, first-order dynamics

are invariant to the aggregation method used. Second, outside of the two-country setting, we

show that there is scope to deviate from the first-order dynamics implied by Armington aggre-

gation and that, critical to those deviations, is the calibration of bilateral trade elasticities and

openness across each country pair.

2Corsetti et al. (2008) show that the Backus-Smith-Kollmann correlation can also be matched with high trade
elasticities if shocks are assumed to be persistent.

3This finding has parallels with the conclusions of Drozd, Kolbin, and Nosal (2021) who find that changing the
household preferences, while keeping a CES bundle of domestic and foreign goods, does not help to resolve the
‘trade comovement puzzle’. In contrast, setting a dynamic Armington elasticity can help to resolve the puzzle.
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Our paper also contributes to a recent and growing literature searching for sufficient statis-

tics that govern equilibrium outcomes in multi-country and multi-sector models. For example,

Arkolakis and Morlacco (2017) analyse the properties of demand functions used in international

macroeconomic and trade models as alternatives to the Armington setup. Focusing on the

pass-through of marginal costs to prices, they show that, for a general class of demand func-

tions, markups can be written as a function of a single sufficient static, namely the ratio of firm

prices to the market price—the ‘choke price’. Similarly, and closest in spirit to our contribu-

tion, Baqaee and Farhi (2019) investigate the implications of ‘Hulten’s theorem’ (Hulten, 1978)

in a multi-sector open-economy setup. They assess the impact of sectoral shocks propagating

through global production networks, and derive sufficient statistics in terms of the input-output

structure of the economy. In contrast, our work focuses on the dynamics of the workhorse NOEM

model. Relative to these papers, a key contribution of our work is to derive results for trade

aggregation and macroeconomic dynamics in terms of readily observable sufficient statistics with

well-known empirical counterparts. In so doing, our conclusions highlight that recent advances

in the estimation of the Armington elasticity, reconciling micro and macro estimates (Feenstra,

Luck, Obstfeld, and Russ, 2018), are particularly valuable for the calibration of NOEM models.

Finally, our work brings together insights from the NOEM literature and developments in the

trade literature. While the Armington aggregator is commonplace in NOEM models focused

on studying the spillovers from macroeconomic shocks, a largely independent literature has put

forward a set of alternative functional forms for trade aggregation. Departing from the CES

assumption, many of these alternatives allow for variation in the elasticity of substitution in

different ways, and this literature has shown that these are key for capturing many empirical

facts, for example: variation over time helping to resolve the trade-comovement puzzle (Drozd

et al., 2021); variation across firms accounting for variable markups (Kimball, 1995; Gopinath

and Itskhoki, 2011); variation with respect to the number of goods being produced (e.g. the

QMor and Translog of Bergin and Feenstra, 2000; Feenstra, 2003) capturing the ‘pro-competitive’

effects of trade (Feenstra, 2018; Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare, 2019);

and variation in the price-elasticity of demand depending on the consumer’s income level, using

aggregators that are not homogeneous of degree one (Jung, Simonovska, and Weinberger, 2019).

The latter can match pricing-to-market patterns observed in the data, with monopolistically

competitive producers setting higher mark-ups and charging higher prices in richer countries.

Our contribution is to show in which dimensions and settings will these methods for trade

aggregation influence macroeconomic dynamics.

The rest of the paper is organised as follows. Section 2 shows the main features of our generic

model. Section 3 contains the core sufficient-statistics result, and Section 4 explores the impli-

cations of this in different cases. Section 5 concludes.
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2 Model Setup

We begin by setting up a generic multi-country NOEM model. For simplicity and analytical

tractability we consider endowment economies, hence abstracting from production and assuming

that only final consumption goods are traded across countries.

In this workhorse model, the problem of the representative consumer can be split into an in-

tertemporal and an intratemporal component. The intertemporal aspect of the household prob-

lem is analytically independent of the aggregation structure, and defines aggregate quantities in

equilibrium. The intratemporal aspect is aggregator-specific, taking the aggregate choices from

the intertemporal problem as given.

For this reason, the results we will present below, about the aggregator choice, are independent

of the precise formulation of the intertemporal block of the model. Most notably, the results

would continue to hold if we introduced a perfectly competitive production sector, which does

not take the demand structure into account, since the intratemporal block remains separate to

the production side of the model. Moreover, while we have focused here on the consumption

aggregator, the same results would hold in more complex models with aggregators used for

other types of goods, such as intermediate inputs or investment goods, so long as the optimal

composition of these goods between domestic and foreign goods remains an intratemporal choice.

The model has N countries, indexed by n = 1, 2, ..., N . Time is discrete and infinite. In each

time period t, each country n is endowed with a unique tradable good, denoted by Y
(n)
t , which

takes strictly positive values. Variation in these country-specific endowments is the sole source

of uncertainty in our model. The endowments are subject to stochastic mean-zero disturbances

from period to period, which result in fluctuations around their mean value, denoted by Y
(n)

.

Hence the steady state of the model is defined as the deterministic equilibrium with Y
(n)
t = Y

(n)

for all t.

Intertemporal Problem. The representative consumer in country n has additively separable

preferences over time:

U
(n)
t = Et

[ ∞∑
τ=0

βτu
(
C

(n)
t+τ

)]

where C
(n)
t denotes aggregate consumption in period t; u : R+ → R is a twice continuously

differentiable, strictly increasing and strictly concave function, with limC→0 u
′(C) = ∞; and

β ∈ (0, 1) is the discount factor.

Let P
(n)
t denote the price of a unit of aggregate consumption in country n and P

(n)
i,t the price of

a unit of the country-i good in country n. The intertemporal budget constraint of the country-n

representative consumer is:

∞∑
τ=0

(
P

(n)
t+τC

(n)
t+τ − P

(n)
n,t+τY

(n)
t+τ

)
≤ 0.
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Without loss of generality, we will consider complete international capital markets. We obtain

the equilibrium risk-sharing condition by equalising the optimality conditions for the represen-

tative households in two countries, n and n′:

RER
(n,n′)
t+τ = κ(n,n

′)
u′
(
C

(n′)
t+τ

)
u′
(
C

(n)
t+τ

) ∀ n′ 6= n

where RER
(n,n′)
t ≡ P (n′)

t /P
(n)
t denotes the real exchange rate of country n vis-à-vis country n′,

defined such that an increase in its value represents a depreciation for country n.

Assumption 1: In steady state, there is bilateral balanced trade between every pair of countries.

The risk-sharing constant, κ(n,n
′), ensures that the risk-sharing condition is satisfied at steady

state under Assumption 1. Specifically, κ(n,n
′) = 1 when countries are symmetric at steady

state, but it will differ from unity when there are steady-state asymmetries across countries.4

In equilibrium, the intertemporal optimisation of representative consumers in each country,

and the risk-sharing condition, will pin down the sequence of C
(n)
t and RER

(n,n′)
t given the

endowment processes.

Intratemporal Problem. The aggregate consumption of households in country n is formed

of goods produced in all N countries, according to the aggregator function f : RN+ → R, such

that:

C
(n)
t ≡ f

(
c
(n)
t

)
(1)

where c
(n)
t =

[
c
(n)
1,t , c

(n)
2,t , ..., c

(n)
N,t

]′
denotes the N × 1 vector of consumption levels, with c

(n)
i,t

denoting the representative country-n household’s consumption of goods from country i.

The intratemporal problem of the representative household at time t involves minimising total

expenditure, taking as given the level of aggregate consumption from the intertemporal optimi-

sation, C
(n)
t , and the prices, P

(n)
i,t .

Assumption 2: The law of one price (LOOP) holds, such that P
(n)
i,t = Pi,t for all n.

Using Assumption 2, the intratemporal problem can be written as:

min
c
(n)
t

N∑
i=1

Pi,tc
(n)
i,t subject to C

(n)
t = f

(
c
(n)
t

)
.

Assumption 3: The function f is continuous, twice differentiable and strictly quasi-concave.

Under Assumption 3, the solution to the intratemporal problem exists, is unique, and is defined

4As long as Assumption 1 is satisfied, our results will hold under financial autarky or other forms of incomplete
markets.
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by the first-order conditions:

Pi,t = λtf
(n)
i,t ∀ i = 1, ... N

where λt is the Lagrange multiplier on the constraint and f
(n)
i,t ≡ ∂f(c

(n)
t )/∂c

(n)
i,t . To remove the

Lagrange multiplier, these N optimality conditions can be written as (N − 1) relative demand

functions:
f
(n)
i,t

f
(n)
N,t

=
p
(n)
i,t

p
(n)
N,t

for i = 1, 2, ..., N − 1. (2)

where we have also defined the relative price as p
(n)
i,t ≡ Pi,t/P

(n)
t .

The aggregate consumer price index P
(n)
t can be defined simply by:

P
(n)
t C

(n)
t =

N∑
i=1

Pi,tc
(n)
i,t

C
(n)
t =

N∑
i=1

p
(n)
i,t c

(n)
i,t (3)

World equilibrium in goods markets is given by:

Y
(n)
t ≥

N∑
i=1

c
(i)
n,t for n = 1, 2, ..., N. (4)

In equilibrium, the intratemporal optimisation in each country, and the goods market clearing

conditions, define the trade quantities c
(n)
t and relative prices p

(n)
t , given aggregate variable

definitions from the intertemporal problem.

3 Sufficient Statistics for the Aggregator

The key question of this paper is how the specific choice of functional form for f affects the

model’s equilibrium macroeconomic dynamics. Our main result is summarised by the following

theorem:

Theorem 1 Under Assumptions 1-3, the effect of the aggregator function on the first-order

dynamics of this model is captured entirely by the following sufficient statistics, where overlines

represent the steady-state values of variables and functions thereof:

(i) the elasticities of substitution between each pair of goods:

Φ
(n)
i,j ≡

∂ ln
(
c
(n)
i /c

(n)
j

)
∂ ln

(
f
(n)
j /f

(n)
i

) for i, j = 1, 2, ..., N, i 6= j
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(ii) the share of consumption expenditure for each good:

α
(n)
i ≡

p
(n)
i c

(n)
i

C
(n)

for i = 1, 2, ..., N,

(iii) the ratio H(n)
, defined as:

H(n) ≡ H(c(n)) =

∑N
i=1 f

(n)
i c

(n)
i

f(c(n))

(iv) the ratios H(n)
i for each good, defined as:

H(n)
i ≡ Hi(c(n)) =

∑N
k=1 f

(n)
ik c

(n)
k

fi(c
(n))

for i = 1, 2, ..., N,

for each country n = 1, 2, ..., N .

Proof : First, notice that equations (1)-(4) are the only model equations affected by the aggrega-

tor function and the consumption levels c
(n)
t . The rest of the model equations are independent

of the aggregator by definition. We therefore prove the theorem by showing that the first-order

approximation of these four equations only depends on the aggregator function, f , through the

steady-state quantities described above. Full derivations are provided in Appendix A.

The elasticities of substitution, consumption expenditure shares and the ratiosH(.) andHi(.) are

generically functions of the variables of the model and therefore can vary dynamically. However,

Theorem 1 states that the dynamics of the model at first order depend only on the steady-state

values of these objects.

Before unpacking the implications of this theorem, it is useful to say a few words on H(n)

and H(n)
i . While it is natural to think of an aggregator as being defined by the elasticities

of substitution and the consumption shares across goods, the ratios H(n)
and H(n)

i are less

familiar. To better understand what these two statistics are, it is useful to consider a specific

class of aggregators: homogeneous functions. The result for this group is summarised by the

following corollary to the theorem:

Corollary 1 If the aggregator function, f , is homogeneous of degree h, the first-order dynamics

of the model are captured by the following sufficient statistics: Φ
(n)
i,j , α

(n)
i for i, j = 1, 2, ..., N, i 6=

j, n = 1, 2, ..., N , as defined above, and h.

Proof : Recall, first, that if a function is homogeneous of degree h, then the partial derivatives

of that function are homogeneous of degree (h− 1). Then, by Euler’s theorem, if the function f

is homogeneous of degree h, then H(n)
= h and H(n)

i = (h− 1). Hence, h becomes the sufficient

statistic to replace H(n)
and H(n)

i . Full derivations are provided in Appendix B.
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When comparing across homogeneous aggregators, Corollary 1 has implications that are sum-

marised in the following corollary:

Corollary 2 All aggregators that are homogeneous of the same degree will imply the same

first-order dynamics, for given Φ
(n)
i,j and α

(n)
i for i, j = 1, 2, ..., N, i 6= j, n = 1, 2, ..., N , as

defined above.

Proof : This follows directly from Corollary 1. When comparing across aggregators with the

same h, then the sufficient statistics collapse to just the elasticities and expenditure shares.

To explore the implications of Theorem 1 and Corollaries 1 and 2, the following section considers

a few separate cases.

4 Implications of the Theorem

4.1 Homothetic Preferences

One of the basic assumptions of most economic models is that preferences are homothetic. A

homothetic function is a monotonic transformation of a function that is homogeneous of degree

1, henceforth referred to as HOD(1). Therefore, if the utility function, u(C
(n)
t ), is a monotonic

increasing function of aggregate consumption, then utility is homothetic with respect to c
(n)
t if

the aggregator function f is HOD(1).

Corollary 2 implies that, within the class of HOD(1) aggregators, the sufficient statistics for

the first-order dynamics of the model are just the steady-state elasticities of substitution and

expenditure shares. Since this class includes the Armington aggregator, this means that any

alternative HOD(1) aggregator, with the same steady-state elasticities of substitution and ex-

penditure shares, will be equivalent to the Armington aggregator.

In this subsection, we unpack these implications by comparing the Armington aggregator to the

Kimball (1995) aggregator, an alternative HOD(1) functional form. Our exploration proceeds

in three steps: (i) we consider the two-country case, (ii) we extend our analysis to more than

two countries, and (iii) we compare these results to a nested-CES framework.

4.1.1 Case 1: Two Countries

If N = 2, all aggregators that are HOD(1) are equivalent at first order to the Armington aggre-

gator with the same steady-state elasticity and home bias.
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Armington Aggregator. The two-country Armington aggregator is given by:

C
(n)
t ≡ f(c

(n)
1,t , c

(n)
2,t ) =

(
a
(n)
1

1
φ c

(n)
1,t

φ−1
φ +

(
1− a(n)1

) 1
φ
c
(n)
2,t

φ−1
φ

) φ
φ−1

for n = 1, 2

and yields the familiar relative demand functions:

c
(n)
1,t

c
(n)
2,t

=
a
(n)
1

1− a(n)1

(
p
(n)
2,t

p
(n)
1,t

)φ
for n = 1, 2

where φ is the constant elasticity of substitution between the only two goods, and a
(1)
1 is the

degree of home bias in country n, which maps into the steady-state consumption shares, α
(1)
1

and α
(1)
2 = (1− α(1)

1 ).5

The first-order approximation of these equations is given by:

C̃
(n)
t = α

(n)
1 c̃

(n)
1,t + (1− α(n)

1 )c̃
(n)
2,t (5)

c̃
(n)
1,t − c̃

(n)
2,t = φ

(
p̃
(n)
2,t − p̃

(n)
1,t

)
(6)

for n = 1, 2, where x̃t is the percentage deviation of variable x from its steady state x̄. These two

equations illustrate how the two parameters of the Armington aggregator enter the linearised

model.

Corollary 2 tells us that any HOD(1) aggregator across two goods can be mapped into an equiv-

alent Armington aggregator, with φ set to match the same steady-state elasticity of substitution,

and a
(n)
1 set to match the same steady-state consumption shares.

To illustrate this property, we compare these linearised equations under CES to the Kimball

(1995) aggregator—an alternative HOD(1) specification.

Kimball Aggregator. Consider Kimball (1995)’s aggregator, where aggregate consumption

C
(n)
t is implicitly defined by:

1 = b
(n)
1 Υ

(
c
(n)
1,t

b
(n)
1 C

(n)
t

)
+ b

(n)
2 Υ

(
c
(n)
2,t

b
(n)
2 C

(n)
t

)
for n = 1, 2 (7)

where b
(n)
2 ≡ (1− b(n)1 ), and Υ(.) is such that Υ(1) = 1, Υ′(.) > 0 and Υ′′(.) > 0. It can be seen

from this implicit definition of C
(n)
t that aggregate consumption is HOD(1) in consumption of

country-specific goods: increasing both c
(n)
1,t and c

(n)
2,t by the same factor would require C

(n)
t to

increase by the same factor for the implicit function to continue to hold.

5In a symmetric steady state, in which the prices of the two goods are equal, then α
(1)
1 = a

(1)
1 , but outside of

symmetry this mapping will depend on the steady-state relative prices, with α
(1)
1 = a

(1)
1 (p

(1)
1 /P

(1)
)1−φ.
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We follow Klenow and Willis (2016) and specify the function Υ(.) as:6

Υ(x) = 1 + (σ − 1) exp(ε−1)ε
σ
ε
−1

(
Γ

(
σ

ε
,
1

ε

)
− Γ

(
σ

ε
,
x
ε
σ

ε

))

where:

Γ(u, z) =

∫ +∞

z
su−1 exp(−s) ds

This specification of Υ(.) yields the following derivative:

Υ′(x) =
σ − 1

σ
exp

{
1− x

ε
σ

ε

}

This aggregator is defined by three parameters: σ, ε and b
(n)
1 for each country. b

(n)
1 is a familiar

home-bias parameter, which maps into consumption shares, while σ and ε pin down the elasticity

of substitution.

To see this, consider the relative demand functions from the household’s intratemporal problem:

p
(n)
1,t

p
(n)
2,t

=

Υ′
(

c
(n)
1,t

b
(n)
1 C

(n)
t

)
Υ′
(

c
(n)
2,t

b
(n)
2 C

(n)
t

) =

exp

{
1
ε

(
1−

(
c
(n)
1,t

b
(n)
1 C

(n)
t

) ε
σ

)}

exp

{
1
ε

(
1−

(
c
(n)
2,t

b
(n)
2 C

(n)
t

) ε
σ

)} for n = 1, 2 (8)

From this, we can define the consumption shares and elasticity of substitution:

α
(n)
1,t =

p
(n)
1,t c

(n)
1,t

p
(n)
1,t c

(n)
1,t + p

(n)
2,t c

(n)
2,t

=

Υ′
(

c
(n)
1,t

b
(n)
1 C

(n)
t

)
c
(n)
1,t

Υ′
(

c
(n)
1,t

b
(n)
1 C

(n)
t

)
c
(n)
1,t + Υ′

(
c
(n)
2,t

b
(n)
2 C

(n)
t

)
c
(n)
2,t

(9)

Φ
(n)
1,2,t = σ

(
1 +

α
(n)
1,t

α
(n)
2,t

)( c
(n)
1,t

b
(n)
1 C

(n)
t

) ε
σ

+
α
(n)
1,t

α
(n)
2,t

(
c
(n)
2,t

b
(n)
2 C

(n)
t

) ε
σ

−1 (10)

for n = 1, 2.7

Equation (10) illustrates the key property of Kimball preferences: the elasticity of substitution

depends on the relative consumption levels. Notice that as ε → 0, Φ
(n)
1,2,t → σ, implying that

Kimball nests CES, with elasticity σ, as a limit case.

To further explore the properties of the Kimball aggregator, Figure 1 plots the relative demand

function, given by equation (8), and corresponding elasticities from equation (10), for different

6There are multiple formulations of the Kimball (1995) aggregator, with different specifications of Υ(.). For
example, Lindé and Trabandt (2018) use a Dotsey and King (2005) specification in their closed-economy analysis.
But the specific choice of functional form is irrelevant for our results.

7Full derivations are provided in Appendix C.
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values of ε. To form this plot, we calibrate the three remaining aggregator parameters: σ = 1.5,

b
(n)
1 = 0.8 and b

(n)
2 = 0.2. First, notice that when p

(n)
1 /p

(n)
2 = 1, we have c

(n)
1 /c

(n)
2 = b

(n)
1 /b

(n)
2 = 4

and Φ
(n)
1,2 = σ = 1.5 independently of ε. This implies that Kimball is also equivalent to CES at

the point of symmetry across good types, with σ = φ and b
(n)
1 = a

(n)
1 .8

More generally, ε controls the curvature of the demand function. In the limiting case of CES

preferences, as ε → 0, shown in the black dotted lines, the relative demand function is convex

and the elasticity of substitution is constant at σ = 1.5. As ε increases, the relative demand

curve becomes less convex, and the elasticity of substitution varies with the relative consumption

levels. For ε = σ, the relative demand curve is approximately linear. When ε > σ, the curve is

concave. When this is the case, the concave relative demand curves imply finite ‘choke prices’,

above which demand for the relatively more expensive good is 0.

Consider, for example, the concave relative demand at ε = 5 in panel (a) of Figure 1. Here,

as the price of good 1 relative to good 2 rises above 1, the concavity of the curve means that

relative demand for good 1 falls more than in the CES case. In contrast, when the relative price

of good 1 falls below 1, the concavity of the curve means that the relative demand for good 1

rises less rapidly than it does under CES.

We can explain this equivalently in terms of the elasticity of substitution, shown in panel (b)

of Figure 1. When consumption of good 1 is low relative to good 2, then the elasticity of

substitution rises, and a decrease in the relative price of good 1 leads to a larger substitution

towards good 1. Conversely, when the consumption of good 1 is high relative to good 2, then the

elasticity of substitution falls, and a decrease in the relative price of good 1 leads to a smaller

substitution towards good 1.

This relative-demand curvature allows for the elasticity of substitution to vary over time, as the

economy is hit by exogenous shocks, as illustrated by the time subscripts in equation (10). This

leads to what Klenow and Willis (2016) refer to as “a smoothed version of a kinked demand

curve”: if a shock drives the relative price of a good up, the elasticity of substitution increases,

such that demand declines more than the CES case, while if a shock drives the relative price

down, the elasticity decreases, such that demand increases less than the CES case.

Comparing Armington and Kimball. Despite these additional mechanisms in the Kimball

aggregator, the application of Corollary 2 to this case tells us that, at first order, Kimball is

equivalent to the Armington aggregator. To see why, we take the first-order approximation of

the implicit definition of aggregate consumption, equation (7), and the relative demand function,

8This point is explored more in Baqaee, Farhi, and Sangani (2021), who highlight the importance of firm
heterogeneity when using the Kimball aggregator to aggregate across monopolistically differentiated goods.
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Figure 1: Kimball (1995) aggregator

(a) Relative demand functions
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(b) Elasticity of substitution
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Note: Each line represents the relative demand function and elasticity of substitutions for a value of the Kimball
‘curvature’ parameter ε, plotted with σ = 1.5 and b

(n)
1 = 0.8.

equation (8):

C̃
(n)
t = α

(n)
1 c̃

(n)
1,t + (1− α(n)

1 )c̃
(n)
2,t

c̃
(n)
1,t − c̃

(n)
2,t = Φ

(n)
1,2

(
p̃
(n)
2,t − p̃

(n)
1,t

)
for n = 1, 2, where α

(n)
1 and Φ

(n)
1,2 are the steady-state values of the consumption share and

elasticity of substitution defined in equations (9) and (10).9

From these equations we see that, even under Kimball, the linearised equations only depend

on the steady-state consumption shares and the steady-state elasticity of substitution. The

parameters of the Kimball aggregator, including the curvature parameter ε, only matter insofar

as they pin down these two steady-state values. Importantly, then, despite the fact that ε > 0

allowed for the elasticity of substitution to vary dynamically, as described above, these dynamics

do not enter the linearised model equations.

Thus, for a given value of the Kimball parameters, we can set the Armington parameters, a
(n)
1 to

match the same α
(n)
1 , and φ = Φ

(n)
1,2 , and we see immediately that these linearised equations are

exactly equivalent to the linearised equations under CES, equations (5) and (6). In other words,

the first-order dynamics of the two-country model with the Kimball aggregator are equal to those

of a CES specification, for given steady-state consumption shares and steady-state elasticity of

9These expressions can be derived by applying the generic formulas in the proof of Theorem 1 in Appendix A.
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substitution.

4.1.2 Case 2: N > 2 Countries

If N > 2, then the specific form of the aggregator is relevant only to the extent that the bilateral

elasticities of substitution across different pairs of goods are different in steady state.

Armington Aggregator. We can define the N -good Armington aggregator in country-n as:

C
(n)
t = f(c

(n)
1,t , ... c

(n)
N,t) =

(
N∑
i=1

a
(n)
i

1
φ c

(n)
i,t

φ−1
φ

) φ
φ−1

for n ∈ [1, N ]

where
∑N

i=1 a
(n)
i = 1.

The relative demand functions are given by:

c
(n)
i,t

c
(n)
N,t

=
a
(n)
i

a
(n)
N

p(n)N,t

p
(n)
i,t

φ

for i ∈ [1, N − 1], n ∈ [1, N ]

This leads to the following linearised equations:

C̃
(n)
t =

N∑
i=1

α
(n)
i c̃

(n)
i,t

c̃
(n)
i,t − c̃

(n)
N,t = φ

(
p̃
(n)
N,t − p̃

(n)
i,t

)
for i ∈ [1, N − 1]

for n ∈ [1, N ].

The pair-wise elasticities of substitution between any two goods are given by the same param-

eter, φ, by definition of the single Armington aggregator. To see how this property affects the

comparison with more general aggregators, we go back to the example of the Kimball aggregator

considered above.

Kimball Aggregator. In each country n, the implicit definition of the N -good Kimball ag-

gregator is now:

1 =
N∑
i=1

b
(n)
i Υ

(
c
(n)
i,t

b
(n)
i C

(n)
t

)
for n ∈ [1, N ]

where
∑N

i=1 b
(n)
i = 1 and the function Υ(.) is defined as in Section 4.1.1.
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The resulting relative demand functions are then:

p
(n)
i,t

p
(n)
N,t

=

Υ′
(

c
(n)
i,t

b
(n)
i C

(n)
t

)
Υ′
(

c
(n)
N,t

b
(n)
N C

(n)
t

) =

exp

{
1
ε

(
1−

(
c
(n)
i,t

b
(n)
i C

(n)
t

) ε
σ

)}

exp

{
1
ε

(
1−

(
c
(n)
N,t

b
(n)
N C

(n)
t

) ε
σ

)} for i ∈ [1, N − 1], n ∈ [1, N ]

As for the two-country case, we can compute the consumption shares and the bilateral elasticities

of substitution:

α
(n)
i,t =

p
(n)
i,t c

(n)
i,t∑N

j=1 p
(n)
j,t c

(n)
j,t

=

c
(n)
i,t Υ′

(
c
(n)
i,t

b
(n)
i C

(n)
t

)
∑N

j=1 c
(n)
j,t Υ′

(
c
(n)
j,t

b
(n)
j C

(n)
t

) for i ∈ [1, N ]

Φ
(n)
i,j,t = σ

(
1 +

α
(n)
i,t

α
(n)
j,t

)( c
(n)
i,t

b
(n)
i C

(n)
t

) ε
σ

+
α
(n)
i,t

α
(n)
j,t

(
c
(n)
j,t

b
(n)
j C

(n)
t

) ε
σ
−1 for i, j ∈ [1, N ], i 6= j (11)

for n ∈ [1, N ].10

As before, the elasticity of substitution depends on the relative consumption levels. As well as

allowing the elasticity to vary over time, we see that the elasticity can be different for different

pairs of goods, depending on the asymmetries between countries. From equation (11), it is easy

to see that the elasticities between two pairs of goods, {i, j} and {i, l}, will be equal if and only

if one of three conditions holds: (i) ε = 0, in which case we are back to the CES aggregator

with Φ
(n)
i,j,t = σ; (ii) α

(n)
i,t = 0, implying that good i is not consumed at all; or, most importantly,

(iii) b
(n)
j = b

(n)
l and c

(n)
j,t = c

(n)
l,t , such that consumption shares are equal across goods. Ignoring

the trivial cases (i) and (ii), we therefore see that the Kimball aggregator implies that the

elasticities across different pairs of goods will be different, unless there is perfect symmetry

across all countries.

Comparing Armington and Kimball. To see how these differences in elasticities across

different country-pairs affect the dynamics of the model, we again take the first-order approxi-

10Full derivations are provided in Appendix C.
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mation of the aggregator and relative demand functions under Kimball:

C̃
(n)
t =

N∑
i=1

α
(n)
i c̃

(n)
i,t

p̃
(n)
i,t − p̃

(n)
N,t =

1

2

N∑
k=1

c̃
(n)
k

N∑
l=1,l 6=k

[
α
(n)
k

((
Φ
(n)
Nl

)−1
−
(

Φ
(n)
il

)−1)
+ α

(n)
l

((
Φ
(n)
ik

)−1
−
(

Φ
(n)
Nk

)−1)

+
α
(n)
k α

(n)
l

α
(n)
N

((
Φ
(n)
Nl

)−1
−
(

Φ
(n)
Nk

)−1)
+
α
(n)
k α

(n)
l

α
(n)
i

((
Φ
(n)
ik

)−1
−
(

Φ
(n)
il

)−1)]
for i ∈ [1, N − 1]

for n ∈ [1, N ].11

We can see that the presence of the additional countries creates additional terms in the relative

demand function, capturing the potential indirect substitution between goods i and N via

goods k, l. Importantly, when we have perfect symmetry across countries in steady state, such

that Φ
(n)
i,j = Φ

(n)
i,l for all i, j and l, then these additional terms disappear from all relative

demand functions.12 This is why these terms were absent for the Armington aggregator. In

this symmetric case, therefore, we can again replicate the first-order dynamics from the Kimball

aggregator using an Armington aggregator by matching the steady-state consumption shares,

and setting φ to match this common elasticity of substitution.

However, if we allow for steady-state asymmetries across countries, then these additional terms

will create first-order effects that cannot be captured by an Armington aggregator. Notice that

it is again only the steady-state values of the elasticities that enter the linearised equations, and

not any dynamic variation in the elasticity. Nonetheless, the Kimball aggregator allows us to

map steady-state asymmetries in, say, endowments, into differences in elasticities of substitution,

which then impacts the dynamics of the model.

Numerical Exercise with N = 3. To illustrate these effects of using the Kimball aggregator,

we consider a three-country version of our model. We label the countries n = {H, F, R} and

consider our results from the perspective of the Home country, H. For this stylised exercise,

we set the discount factor β = 0.99, and assume the instantaneous utility function u(.) has the

constant relative risk aversion form, with a coefficient of relative risk aversion of 2.

Recall that, under symmetry, Armington and Kimball aggregators can be equivalent, regardless

of the value of the Kimball ε parameter, with the right choice of the remaining parameters.

Making use of this, we set the parameters of the Armington and Kimball aggregators so that

they are equivalent in the symmetric steady state. We then keep these parameters fixed in the

11As before, these expressions are derived within the proof of Theorem 1 in Appendix A for a generic aggregator.
12We use the convention that Φi,i = 0 for all i, so that in the symmetric case, the terms of the equation where

such same-good elasticities appear will not simplify away despite the symmetry, and the linearised equation
remains valid.
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asymmetric setting, allowing the elasticities and expenditure shares to vary, and compare them

across different values of ε.

In particular, we set a
(i)
i = b

(i)
i = 0.7 and a

(i)
j = b

(i)
j = 0.15 for all i, j ∈ {H, F, R}, j 6= i. This

implies that in the symmetric steady states, the domestic expenditure share is 70%, and the

remaining expenditure share is split equally across the two foreign countries. Similarly, we set

φ = σ = 1.5, so that, under symmetry, Φ
(n)
i,j = 1.5 for all i, j, n ∈ {H, F, R}, j 6= i.

To illustrate the role of the Kimball aggregator, we then depart from symmetry by assuming the

steady-state endowment of country H is smaller than the endowment of F and R. Normalising

these values, we set Y
(F )

= Y
(R)

= 1 and Y
(H)

= 0.5. Table 1 shows the implied values of

the steady-state objects of interest, across the different values of ε, where the ε = 0 column

corresponds to the Armington case.

Across all values of ε, this reduction in the supply of country-H goods increases its steady-state

relative price above 1. Given that the Home good’s relative international price is now higher,

Home agents consume a higher share of their domestic good. Reflecting this high relative

consumption and in line with the ‘kinked demand curve’ mechanism explained with reference

to Figure 1, the Home consumer’s elasticity of substitution is declining in ε and smaller than in

the Armington case.

Table 1: Steady-State Expenditure Shares and Elasticities of Substitution Under Asymmetry

Symmetry Asymmetry

ε = 0 ε = 0.5 ε = 1.5 ε = 3 ε = 5

p̄
(H)
H /p̄

(H)
F 1 1.48 1.46 1.41 1.35 1.28

c̄
(H)
H /c̄

(H)
F 1 3.84 3.94 4.12 4.31 4.45

ᾱ
(H)
H 70 65.74 66.32 67.31 68.29 68.99

ᾱ
(H)
F 15 17.13 16.84 16.35 15.86 15.51

Φ̄
(H)
H,F 1.5 1.50 1.37 1.17 0.99 0.86

Φ̄
(H)
F,R 1.5 1.50 1.33 1.09 0.89 0.76

Note: Due to the symmetry between F and R, p̄
(H)
F = p̄

(H)
R , ᾱ

(H)
F ≡ ᾱ

(H)
R and Φ̄

(H)
H,F ≡ Φ̄

(H)
H,R.

Figure 2 shows impulse response functions to a 2% increase in Home endowment. After a positive

endowment shock, the aggregate consumption in the home country, C(H), always increases, more

so with CES or more convex Kimball preferences (ε < φ), while the Home real exchange rate

depreciates as the relative price of the Home good decreases.

More interestingly, the Home consumer’s consumption responses for goods F and R change

qualitatively with the curvature of Kimball preferences. The intuition behind this is as follows.

When their relative demand function is more concave (ε larger), given that they already consume

a large quantity of Home good, the steady-state Home elasticity of substitution for H and F

goods Φ
(H)
H,F is relatively low. So the Home consumer flocks towards the cheaper Home good

more slowly. They will rather use their additional endowment to consume more of the F and
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Figure 2: IRFs to a 2% endowment shock in the Home country, asymmetric 3-country case
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Note: The Home (H) country is assumed to be a small economy with steady-state endowment equal to 0.5,
while the two other countries, (F) and (R), are large (endowment equal to 1). Dotted lines represent the CES
responses with φ = 1.5, while each solid line represents responses for different values of the Kimball ‘curvature’
parameter ε, with σ = 1.5. All consumers have symmetric preferences with home bias.

R goods, financing it by selling Home goods. This triggers an increase in the imports of F and

R goods when ε is high enough—ε = 5 in Figure 2. Since both foreign countries, F and R, are

completely symmetric in this example, the responses of both imports c
(H)
F and c

(H)
R are identical.

4.1.3 Nested CES with N > 2 Countries

If N > 2, then a nested-CES structure, with (N − 1) layers, does not generically give enough

flexibility to replicate the dynamics of alternative aggregators.

So far we have compared Kimball to a single-layer Armington aggregator, which implied by

definition that the bilateral elasticities were the same across all country-good pairs. One way

to gain flexibility, while retaining the tractability of the Armington aggregator, is to move

to a nested-CES framework. This will imply N − 1 layers, which allows for N − 1 elasticity

parameters instead of a single one. The question becomes whether this framework can replicate

any alternative to the Armington aggregator, by matching all of the bilateral elasticities and

expenditure shares.

The answer to this question is generically no, the nested-CES structure does not allow enough

degrees of freedom to fully match the first-order dynamics with alternative aggregators when we

have more than two countries. As with a single-layer CES, we can easily adjust the consumption

share parameters to match the steady-state expenditure shares of each good in each country.

However, we have N bilateral elasticities to match for each country, but only N − 1 nested-CES
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elasticity parameters, and are therefore missing one degree of freedom. With nested-CES, the

bilateral elasticities between each country-good pair are combinations of the parameters in each

CES layer. This means that we can set the elasticity parameter in each layer recursively to match

all steady-state bilateral elasticities but one. For any given aggregator, there is a relationship

between the different elasticities, which implies that, knowing (N−1) elasticities, we can recover

the remaining N th elasticity. However, this relationship is specific to the aggregator. Hence,

having matched (N − 1) steady-state bilateral elasticities from the alternative aggregator, using

the (N − 1) elasticity parameters in the nested CES, does not ensure that the remaining N th

steady-state bilateral elasticity will be the same with the nested CES as with the alternative

aggregator. This means that we cannot match all of the sufficient statistics given by Corollary

2, and so we cannot match the first-order dynamics.

Numerical Exercise with N = 3. As a concrete example, we return to the three-country

setup presented in Section 4.1.2. We consider in each country n ∈ {H,F,R}, a nested-CES spec-

ification where the aggregate consumption is a CES aggregate of the locally produced good, and

a bundle of the two imported goods. This implies the following specification and characteristics

for country H:

C
(H)
t = f

(
c
(H)
H,t , c

(H)
F,t , c

(H)
R,t

)
=

(
a
(H)
H

1
φH c

(H)
H,t

φH−1

φH +
(

1− a(H)
H

) 1
φH C

(H)
FR,t

φH−1

φH

) φH
φH−1

where C
(H)
FR,t =

(
a
(H)
F

1
φFR c

(H)
F,t

φFR−1

φFR +
(

1− a(H)
F

) 1
φFR C

(H)
R,t

φFR−1

φFR

) φFR
φFR−1

The steady-state bilateral elasticities in country H become:13

Φ
(H)
H,F =

φHφFR

(
α
(H)
F + α

(H)
H α

(H)
R

)
α
(H)
F φFR + α

(H)
H α

(H)
R φH

Φ
(H)
H,R =

φHφFR

(
α
(H)
R + α

(H)
H α

(H)
F

)
α
(H)
R φFR + α

(H)
H α

(H)
F φH

Φ
(H)
F,R = φFR

Suppose we want to set the parameters of these two CES aggregators so as to match the steady-

state consumption shares and bilateral trade elasticities from a given parameterisation of the

Kimball aggregator, with asymmetries, in order to replicate the first-order dynamics of the

model. We can set the share parameters, a
(H)
H and a

(H)
F , to match the steady-state consumption

shares obtained from the Kimball aggregator directly. However, we now have two CES elasticity

parameters, φH and φFR, to match the three bilateral elasticities.

In the specific case considered here, with symmetry across countries F and R, their steady-state

13See Appendix D for full derivations.
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consumption shares in country H are equal, α
(H)
F = α

(H)
R , which implies that their bilateral

elasticities are also equal, Φ
(H)
H,R = Φ

(H)
H,F . As this is true in both the Kimball and the nested-CES

specifications, this allows us to match the country H first-order relative demand equations using

a nested-CES aggregator. However, this is not true any more when turning to country F . The

endowment asymmetry across our three countries implies asymmetric steady-state consumption

shares and bilateral elasticities in country F , as stated in Table 2. In other words, α
(F )
H 6= α

(F )
R .

After matching country F ’s steady-state consumption shares, and two of its bilateral elasticities,

we have no degree of freedom left to ensure that the third Kimball bilateral elasticity is matched

by the nested-CES specification, and the nested-CES steady-state bilateral elasticity Φ
(F )
H,F is

not equal to the Kimball one. Consequently, a nested-CES specification is not flexible enough

to match the first-order dynamics of our Kimball setup, due to the endowment asymmetry.

Table 2: Steady-State Expenditure Shares and Elasticities of Substitution:
Nested CES vs. Kimball Aggregator

Nested CES Kimball (ε = 5)

Expenditure Shares

α
(F )
H 9.91 9.91

α
(F )
F 74.19 74.19

α
(F )
R 15.90 15.90

Matched Elasticities

Φ
(F )
H,R 2.52 2.52

Φ
(F )
F,R 1.11 1.11

Derived Elasticity

Φ
(F )
H,F 1.36 5.59

4.2 Non-Homothetic Preferences

Theorem 1 and its corollaries also have implications for non-homothetic preferences, meaning if

the aggregator is not HOD(1).

Notice that saying the aggregator is not HOD(1) can mean two things: that it is HOD(h), for

h 6= 1, or that it is non-homogeneous. We focus on the former case. While Theorem 1 involves

all ratios H(n)
and H(n)

i for all i = 1, 2, ...N , recall that Corollary 1, by focusing specifically on

homogeneous functions, only depends on h. It is useful to again consider the two cases.

4.2.1 Case 1: Two Countries

If N = 2, then any HOD(h) aggregator, h ∈ R, is equivalent at first order to a generalised

Armington-style aggregator that is HOD(h), with the same steady-state elasticity and consump-

tion shares.
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We can define a HOD(h) generalisation of the 2-good Armington aggregator:

C
(n)
t ≡ f(c

(n)
1,t , c

(n)
2,t ) =

(
a
(n)
1

1
φ c

(n)
1,t

φ−1
φ +

(
1− a(n)1

) 1
φ
c
(n)
2,t

φ−1
φ

) φ
φ−1

h

The parameters φ and a
(n)
1 have the same interpretation as before, and h is a free parameter

that determines the degree of homogeneity. Note that, with this generalised aggregator, the

relative demand function remains the same as in the standard case.

This means that any model that uses an alternative aggregator can be mapped parsimoniously

into this generalised Armington aggregator by setting the parameters φ and a
(n)
1 to match the

steady-state elasticity of substitution and consumption shares, as before, and setting h equal to

the same degree of homogeneity as the alternative aggregator.

Notice again that, while these results show that deviating from HOD(1) aggregators can affect

the first-order dynamics, even with N = 2, they also specify that the first-order effect of any

HOD(h) aggregator relative to the standard Armington model is determined entirely by a single

parameter, h.

4.2.2 Case 2: N > 2 Countries

If N > 2, then alternative HOD(h) aggregators can create differences with respect to the N -good

generalised HOD(h) Armington aggregator, by allowing bilateral elasticities of substitution to be

different across different pairs of goods in steady state.

The N -good generalised HOD(h) Armington aggregator can be defined as:

C
(n)
t = f(c

(n)
1,t , ... c

(n)
N,t) =

(
N∑
i=1

a
(n)
i

1
φ c

(n)
i,t

φ−1
φ

) φ
φ−1

h

where
∑N

i=1 a
(n)
i = 1.

The same reasoning as the HOD(1) case can be applied here, again with the addition that the

parameter h is chosen correctly. Note, once again, that the additional mechanism that alternative

HOD(h) aggregators bring when N > 2 is only through the cross-elasticity differences in steady

state. These differences are also the ones that prevent matching a HOD(h) aggregator with a

generalised nested-CES specification, using the generalised Armington.

5 Conclusions

We have shown that the first-order dynamics of models that aggregate goods from multiple

countries into one consumption bundle can be summarised by sufficient statistics that reflect

the characteristics of the aggregation function. These sufficient statistics include the steady-state
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values of consumption shares, bilateral elasticities and ratios related to the degree of homogeneity

of the aggregator. This main result can be unpacked into a number of more specific implications.

First, in a two-country model, the standard Armington aggregator is equivalent at first order to

any other aggregator that is homogeneous of degree one, with the same elasticity of substitution

and consumption expenditure shares in steady state. We have also put forward a parsimonious

generalisation of the Armington aggregator that is homogeneous of arbitrary degree, h. In a

two-country setup again, this generalised Armington aggregator is equivalent at first order to

any aggregator with the same elasticity of substitution and consumption expenditure shares in

steady state, and the same degree of homogeneity.

Second, when the number of countries, N , is larger than two, the Armington aggregator can

become restrictive to the extent that it imposes that the bilateral elasticities of substitution

of each pair of goods are given by the same parameter. Other aggregators that allow these

elasticities to be different in steady state can therefore affect the first-order dynamics of the

model. However, again, this implies that the channel through which these aggregators affect

the model is captured entirely by the asymmetries in the steady-state pair-wise elasticities

of substitution. We also showed that a nested-CES structure, nesting (N − 1) Armington

aggregators, does not provide enough degrees of freedom to generically replicate alternative

aggregators. Similarly, when compared to an alternative aggregator that is homogeneous of

degree h, our generalised Armington aggregator can replicate the first-order dynamics under

symmetry, but not under asymmetry, due to the differences in the steady-state elasticities of

substitution across different pairs of goods.

Notice that throughout the results, only the steady-state elasticities of substitution affected

the first-order dynamics of the model. This means that one of the standard mechanisms that

many alternative aggregators are used to capture in dynamic models—varying elasticities of

substitution across time—does not have a first-order effect in these models.

For clarity, the model we laid out at in Section 2 was a simple endowment economy. However,

Theorem 1, and its corollaries, would continue to hold if we introduced a perfectly competitive

production sector, which does not take the demand structure into account. This is because the

intratemporal consumption-demand block of the model, which is the block which depends on

the aggregator function, remains separate to the production side of the model. Moreover, in

that case, while we have focused here on the consumption aggregator, the same results would

hold if we looked at the aggregators used for other types of goods, such as intermediate inputs

or investment goods, so long as the optimal composition of these goods, between domestic and

foreign goods, remains an intratemporal problem.

Finally, we derived all of these results analytically in a linearised model, and so they hold exactly

at first order. This means that, in principle, the alternative aggregators may have further effects

on the dynamics of the model at higher orders. However, the standard workhorse NOEM model

is very close to being linear, meaning that these higher-order effects are small by definition,

especially for the standard size of shocks. We leave it for future research to explore the impact

22



of the trade aggregator choice in different settings in which non-linearities and higher-order

effects may matter more.
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Appendix

A Proof of Theorem 1

For each country n, the relevant system of equations that are affected by the aggregator function,

f , and the individual consumption levels, c
(n)
t , are the definition of aggregate consumption, the

definition of the price index, the N−1 relative demand functions, and the goods market clearing

condition:

C(n) = f(c(n))

C(n) =

N∑
i=1

p
(n)
i c

(n)
i

p
(n)
i

p
(n)
N

=
f
(n)
i

f
(n)
N

∀ i = 1, ... N − 1

Y (n) =
N∑
i=1

c(i)n

where we have dropped the time subscripts for simplicity. In what follows, we will also drop the

country (n) superscripts for simplicity, except for the derivations related to the goods market

clearing condition where they are relevant.

We want to derive the log-linear form of these equations to understand what drives the first-

order dynamics, and in particular how it depends on the function f . To do this, we will apply

the general formula for the first-order Taylor expansion. Write each equation in a generic format

F (x) = 0, where x is the vector of all model variables. Then the multivariate first-order Taylor

expansion around a point x is given by:

F (x) ≈
(
F ′(x) |x=x

)′
(x− x)

=
∑
i

∂F (x)

∂xi

∣∣∣∣
x=x

(xi − xi)

=
∑
i

Fi(x)xix̃i

where we use the notation x̃ ≡ (x− x)/x, where x denotes the steady state. We will apply this

formula to each of the equations above.
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Aggregate Consumption

C = f(c)

0 = C − f(c)

≈ CC̃ −
N∑
i=1

f icic̃i

= C̃ −
N∑
i=1

f ici

C
c̃i

C̃ ≈
N∑
i=1

f ici

C
c̃i

To simplify this equation, recall the FOCs of the cost-minimisation problem defined above:

Ppi = λfi ∀ i = 1, ... N

We can solve for the Lagrange multiplier using the definition of the aggregate price index:

C =
N∑
i=1

pici

=
N∑
i=1

λfi
P
ci

=
λ

P

N∑
i=1

fici

λ =
P

H(c)

where

H(c) =

∑N
i=1 fici
C

=

∑N
i=1 fici
f(c)

Plugging this into the FOCs:

Ppi =
P

H(c)
fi

or

pi =
fi
H(c)

⇒ fi = piH(c)

Hence
f ici

C
= H(c)

pici

C
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Define the steady state share of consumption expenditure on good j:

αi ≡
pici

C

Putting these together, denoting H(c) ≡ H, the linearised form of the aggregator is given by:

C̃ ≈ H
N∑
i=1

αic̃i

This depends on H and αi for i = 1, ... N .

Consumer Price Index

C =
N∑
i=1

pici

0 = C −
N∑
i=1

pici

≈ CC̃ −
N∑
i=1

picic̃i −
N∑
i=1

cipip̃i

≈ C̃ −
N∑
i=1

pici

C
c̃i −

N∑
i=1

pici

C
p̃i

≈ C̃ −
N∑
i=1

αic̃i −
N∑
i=1

αip̃i

≈ C̃ − 1

H
C̃ −

N∑
i=1

αip̃i

H− 1

H
C̃ ≈

N∑
i=1

αip̃i

where the linearised form of the aggregator was used to simplify the equation. Again, this

depends on H and αi for i = 1, ... N .
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Relative Demand Functions

Consider a specific i without loss of generality:

pi
pN

=
fi(c)

fN (c)

0 =
pi
pN
− fi(c)

fN (c)

0 ≈ 1

pN
pip̃i −

pi
p2N

pN p̃N −
N∑
k=1

∂
(
fi
fN

)
∂ck

∣∣∣∣∣∣
ss

ck c̃k

=
pi
pN

(p̃i − p̃N )−
N∑
k=1

∂
(
fi
fN

)
∂ck

∣∣∣∣∣∣
ss

ck c̃k

Consider the partial derivative term:

∂
(
fi
fN

)
∂ck

=
1

fN

∂fi
∂ck
− fi
f2N

∂fN
∂ck

=
fik
fN
− fifNk

f2N

=
fi
fN

(
fik
fi
− fNk

fN

)
Plugging this back in:

0 ≈ pi
pN

(p̃i − p̃N )−
N∑
k=1

fi
fN

(
fik
fi
− fNk

fN

)∣∣∣∣
ss

ck c̃k

=
pi
pN

(p̃i − p̃N )− f i
fN

N∑
k=1

(
f ik
f i
− fNk

fN

)
ck c̃k

Using the fact that pi/pN = f i/fN :

p̃i − p̃N ≈
N∑
k=1

(
f ik
f i
− fNk

fN

)
ck c̃k =

N∑
k=1

coef
(iN)
k c̃k

where coef
(iN)
k ≡

(
f ik
f i
− fNk

fN

)
ck.

Consider now the definition of the elasticity of substitution between two different goods x and

y (we consider here the direct partial elasticity as defined by McFadden (1963) or Sato (1967)):

Φxy =
∂ ln (cx/cy)

∂ ln (fy/fx)
= −

(
1

cxfx
+

1

cyfy

)[(
fxx
f2x
− fxy
fxfy

)
+

(
fyy
f2y
− fxy
fxfy

)]−1
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In a first step, we derive some relationships between the coefficients of the linearised relative

demand function, the steady state bilateral elasticities and the steady state consumption shares.

Φ
−1
iN = −

[(
f ii

f
2
i

− f iN
f ifN

)
+

(
fNN

f
2
N

− f iN
f ifN

)](
1

cif i
+

1

cNfN

)−1
= −

[
1

f ici
coef

(iN)
i − 1

fNcN
coef

(iN)
N

](
1

cif i
+

1

cNfN

)−1
= −

[
1

f ici
coef

(iN)
i − 1

fNcN
coef

(iN)
N

]
cicNf ifN
cNfN + cif i

= − cNfN
cif i + cNfN

coef
(iN)
i +

cif i
cif i + fNcN

coef
(iN)
N

Using the definition of the steady state expenditure shares:

cif i
cif i + fNcN

=
ci

f i
fN

ci
f i
fN

+ cN
=

ci
pi
pN

ci
pi
pN

+ cN

=
cipi

cipi + pNcN
=

cipi∑
l clpl

∑
l clpl

cipi + pNcN

=
αi

αi + αN

And we obtain:

Φ
−1
iN = − αN

αi + αN
coef

(iN)
i +

αi
αi + αN

coef
(iN)
N

i.e.

(αi + αN )Φ
−1
iN = −αNcoef (iN)

i + αicoef
(iN)
N (12)

Equation (12) is the first type of relationship we were aiming for, and is true for every i =

1, 2, ..., N − 1. Now we derive a second type of relationship, involving two bilateral elasticities.
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1
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ckfk
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coef

(iN)
k

=−

(
f ii

f
2
i

− f iN
f ifN

)
−

(
f iN
f ifN

− fNN

f
2
N

)
+

2

ckfk
coef

(iN)
k

=− 1

cif i
coef

(iN)
i − 1

cNfN
coef

(iN)
N +

2

ckfk
coef

(iN)
k

Now bringing back expenditure shares as above:(∑
l clf l
cif i

+

∑
l clf l
ckfk

)
Φ
−1
ik −

(∑
l clf l

cNfN
+

∑
l clf l
ckfk

)
Φ
−1
Nk

=−
∑

l clf l
cif i

coef
(iN)
i −

∑
l clf l

cNfN
coef

(iN)
N +

2
∑

l clf l
ckfk

coef
(iN)
k

(
1

αi
+

1

αk

)
Φ
−1
ik −

(
1

αN
+

1

αk

)
Φ
−1
Nk

= − 1

αi
coef

(iN)
i − 1

αN
coef

(iN)
N +

2

αk
coef

(iN)
k

(αi + αk)αNΦ
−1
ik − (αk + αN )αiΦ

−1
Nk

= −αkαNcoef
(iN)
i − αiαkcoef

(iN)
N + 2αiαNcoef

(iN)
k (13)

Equation (13) is our second type of relationship, and is valid for all i = 1, 2, ..., N − 1 and for

all k 6= i,N . Now, we can use the relationships obtained in equations (12) and (13) to express

the linearised relative demand function as a function of the steady state expenditure shares,

elasticities and ratios H and Hj .

31



From equation (12), we have:

coef
(iN)
N =

αi + αN
αi

Φ
−1
iN +

αN
αi
coef

(iN)
i (14)

And from equation (13), for all k 6= i,N :

coef
(iN)
k =

αi + αk
2αi

Φ
−1
ik −

αk + αN
2αN

Φ
−1
Nk +

αk
2αi

coef
(iN)
i +

αk
2αN

coef
(iN)
N

=
αi + αk

2αi
Φ
−1
ik −

αk + αN
2αN

Φ
−1
Nk +

αk
2αi

coef
(iN)
i

+
αk

2αN

(
αi + αN
αi

Φ
−1
iN +

αN
αi
coef

(iN)
i

)
=
αk
αi
coef

(iN)
i +

αi + αk
2αi

Φ
−1
ik −

αk + αN
2αN

Φ
−1
Nk +

(αi + αN )αk
2αNαi

Φ
−1
iN (15)

Plugging expressions (14) and (15) in the linearised relative demand function:

p̃i − p̃N =coef
(iN)
i c̃i +

N−1∑
k=1,k 6=i

coef
(iN)
k c̃k + coef

(iN)
N c̃N

=coef
(iN)
i c̃i

+

N−1∑
k=1,k 6=i

(
αk

αi
coef

(iN)
i +

αi + αk

2αi
Φ
−1
ik −

αk + αN

2αN
Φ
−1
Nk +

(αi + αN )αk

2αNαi
Φ
−1
iN

)
c̃k

+

(
αi + αN

αi
Φ
−1
iN +

αN

αi
coef

(iN)
i

)
c̃N

=coef
(iN)
i c̃i +

αN

αi
coef

(iN)
i c̃N +

N−1∑
k=1,k 6=i

(
αk

αi
coef

(iN)
i

)
c̃k

+

N−1∑
k=1,k 6=i

(
αi + αk

2αi
Φ
−1
ik −

αk + αN

2αN
Φ
−1
Nk +

(αi + αN )αk

2αNαi
Φ
−1
iN

)
c̃k

+
αi + αN

αi
Φ
−1
iN c̃N

=
1

αi
coef

(iN)
i

αic̃i + αN c̃N +

N−1∑
k=1,k 6=i

αk c̃k


+

N−1∑
k=1,k 6=i

(
αi + αk

2αi
Φ
−1
ik −

αk + αN

2αN
Φ
−1
Nk +

(αi + αN )αk

2αNαi
Φ
−1
iN

)
c̃k

+
αi + αN

αi
Φ
−1
iN c̃N

=
1

αi

[
coef

(iN)
i

(
N∑

k=1

αk c̃k

)

+
1

2

N−1∑
k=1,k 6=i

(
(αi + αk) Φ

−1
ik −

(αk + αN )αi

αN
Φ
−1
Nk +

(αi + αN )αk

αN
Φ
−1
iN

)
c̃k

+ (αi + αN )Φ
−1
iN c̃N

]
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From the aggregate consumption linearisation we know that:

C̃ ≈ H
N∑
k=1

αk c̃k

So we get:

αi (p̃i − p̃N ) = coef
(iN)
i

C̃

H

+
1

2

N−1∑
k=1,k 6=i

(
(αi + αk) Φ

−1
ik −

(αk + αN )αi
αN

Φ
−1
Nk +

(αi + αN )αk
αN

Φ
−1
iN

)
c̃k

+ (αi + αN )Φ
−1
iN c̃N (16)

With a similar approach, still using equations (12) and (13), we can obtain the following expres-

sions for the coefficients and the linearised relative demand function:

coef
(iN)
i =

αi
αN

coef
(iN)
N − αi + αN

αN
Φ
−1
iN

coef
(iN)
k =

αk
αN

coef
(iN)
N +

αi + αk
2αi

Φ
−1
ik −

αk + αN
2αN

Φ
−1
Nk −

αk(αi + αN )

2αiαN
Φ
−1
iN ∀k 6= i,N

implying:

αN (p̃i − p̃N ) = coef
(iN)
N

C̃

H

+
1

2

N−1∑
k=1,k 6=i

(
(αi + αk)αN

αi
Φ
−1
ik − (αk + αN ) Φ

−1
Nk −

αk(αi + αN )

αi
Φ
−1
iN

)
c̃k

− (αi + αN )Φ
−1
iN c̃i (17)

Using again a similar approach, from equations (12) and (13):

coef
(iN)
N =

αk + αN
2αk

Φ
−1
Nk −

(αi + αk)αN
2αiαk

Φ
−1
ik +

αi + αN
2αi

Φ
−1
iN

+
αN
αk

coef
(iN)
k ∀k 6= i,N (18)

coef
(iN)
i =

αi
αN

coef
(iN)
N − αi + αN

αN
Φ
−1
iN

=
αi
αk
coef

(iN)
k +

αi(αk + αN )

2αkαN
Φ
−1
Nk −

αi + αk
2αk

Φ
−1
ik

− αi + αN
2αN

Φ
−1
iN ∀k 6= i,N (19)

Considering a specific k 6= i,N without loss of generality, we now need to also express coef
(iN)
l
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(l 6= i,N, k) as a function of coef
(iN)
k , steady state bilateral elasticities and consumption shares.

Rewriting equation (19) for any l 6= i,N, k:

coef
(iN)
N =

αl + αN
2αl

Φ
−1
Nl −

(αi + αl)αN
2αiαl

Φ
−1
il +

αi + αN
2αi

Φ
−1
iN +

αN
αl
coef

(iN)
l

Implying for all l 6= i,N, k:

coef
(iN)
l =

αl
αN

(
coef

(iN)
N +

(αi + αl)αN
2αiαl

Φ
−1
il −

αl + αN
2αl

Φ
−1
Nl −

αi + αN
2αi

Φ
−1
iN

)
=
αl
αk
coef

(iN)
k +

αl(αk + αN )

2αkαN
Φ
−1
Nk

− αl(αi + αk)

2αiαk
Φ
−1
ik +

(αi + αl)

2αi
Φ
−1
il −

αl + αN
2αN

Φ
−1
Nl (20)

We can again plug the expressions (18) to (20) into the linearised relative demand function and

obtain after some manipulations:

αk (p̃i − p̃N ) =coef
(iN)
k

C̃

H

+
1

2

(
αi(αk + αN )

αN
Φ
−1
Nk − (αi + αk) Φ

−1
ik −

(αi + αN )αk

αN
Φ
−1
iN

)
c̃i

+
1

2

(
(αk + αN ) Φ

−1
Nk −

(αi + αk)αN

αi
Φ
−1
ik +

(αi + αN )αk

αi
Φ
−1
iN

)
c̃N

+
1

2

N−1∑
l=1,l 6=i,k

(
αl(αk + αN )

αN
Φ
−1
Nk

αl(αi + αk)

αi
Φ
−1
ik

+
(αi + αl)αk

αi
Φ
−1
il −

(αl + αN )αk

αN
Φ
−1
Nl

)
c̃l (21)

Equation (21) is valid for any k 6= i,N . Now let’s sum equations (16), (17) and all (21) for all

k 6= i,N and notice that by definition of the consumption shares:

αi (p̃i − p̃N ) + αN (p̃i − p̃N ) +
N−1∑

k=1,k 6=i
αk (p̃i − p̃N ) = (p̃i − p̃N )

N∑
k=1

αk = p̃i − p̃N
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And we obtain the following expression for the linearised relative demand function:

p̃i−p̃N =
C̃

H

N∑
k=1

(
coef

(iN)
k

)

+ c̃i

1

2

N−1∑
k=1,k 6=i

(
αi(αk + αN )

αN
Φ
−1
Nk − (αi + αk) Φ

−1
ik −

(αi + αN )αk
αN

Φ
−1
iN

)
− (αi + αN )Φ

−1
iN

]
+ c̃N

1

2

N−1∑
k=1,k 6=i

(
(αk + αN ) Φ

−1
Nk −

(αi + αk)αN
αi

Φ
−1
ik +

(αi + αN )αk
αi

Φ
−1
iN

)
+ (αi + αN )Φ

−1
iN

]
+

1

2

N−1∑
k=1,k 6=i

c̃k

(
(αi + αk)

(
1 +

αN
αi

)
Φ
−1
ik − (αk + αN )

(
αi
αN

+ 1

)
Φ
−1
Nk

+(αi + αN )αk

(
1

αN
− 1

αi

)
Φ
−1
iN

)

+
1

2

N−1∑
k=1,k 6=i

 N−1∑
l=1,l 6=i,k

c̃l

(
αl(αk + αN )

αN
Φ
−1
Nk −

αl(αi + αk)

αi
Φ
−1
ik +

(αi + αl)αk
αi

Φ
−1
il

−(αl + αN )αk
αN

Φ
−1
Nl

)]

Despite a fairly rich expression, this expression depends only on steady state elasticities, con-

sumption shares and the term C̃
H
∑N

k=1

(
coef

(iN)
k

)
. Note that:

N∑
k=1

coef
(iN)
k =

N∑
k=1

(
f ik
f i
− fNk

fN

)
ck

=
N∑
k=1

(
f ikck

f i

)
−

N∑
k=1

(
fNkck

fN

)
= Hi −HN

where Hl ≡
∑N
k=1 f lkck
f l

for all l = 1, 2, ..., N .
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and therefore, after some rearranging:

p̃i − p̃N =C̃
Hi −HN
H

+
1

2

N∑
k=1

c̃k

N∑
l=1,l 6=k

(
αk

(
Φ
−1
Nl − Φ

−1
il

)
+ αl

(
Φ
−1
ik − Φ

−1
Nk

)
+
αkαl
αN

(
Φ
−1
Nl − Φ

−1
Nk

)
+
αkαl
αi

(
Φ
−1
ik − Φ

−1
il

))

with the convention that Φxy = 0 if y = x.

Recalling that C̃ can be expressed as a function of the consumptions c̃l, the steady state ratio H
and the steady state consumption shares, the equation above defines the linearised demand func-

tion as depending only on steady state consumption shares αl, steady state bilateral elasticities

Φlm and the steady state ratios H and Hl (l = 1, 2, ..., N ; m = 1, 2, ..., N).

Considering the above equation for all i = 1, ... N − 1, we have prooved that the first-order

dynamics of all relative demand functions depend only on the steady state values of the sufficient

statistics listed in Theorem 1.

Market Clearing Condition

Y (n) =

N∑
i=1

c(i)n

0 = Y (n) −
N∑
i=1

c(i)n

≈ Y
(n)
Ỹ (n) −

N∑
i=1

c(i)n c̃
(i)
n

Ỹ (n) ≈
N∑
i=1

c
(i)
n

Y
(n)
c̃(i)n

Recall that we assumed that in steady state C
(n)

= p
(n)
n Y

(n)
, which implies:

Ỹ (n) ≈
N∑
i=1

p
(n)
n c

(i)
n

C
(n)

c̃(i)n

We are going to further assume that there is bilaterally balanced trade between every country-
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pair, which means that p
(n)
i c

(n)
i = p

(i)
n c

(i)
n . Plugging this in, assuming that p

(i)
n = p

(n)
n :

Ỹ (n) ≈
N∑
i=1

p
(n)
i c

(n)
i

C
(n)

c̃(i)n

=

N∑
i=1

α
(n)
i c̃(i)n

which again only depends on the α
(n)
i .

B Proof of Corollary 1

As shown in Appendix A, the linearised equations characterising the aggregate consumption,

the consumer price index and the market clearing conditions already depend only on steady

state consumption shares, steady state bilateral elasticities and the steady state ratio H. Recall

now that the linearised relative demand function equations are defined for all i = 1, 2, ..., N as:

p̃i − p̃N =C̃
Hi −HN
H

+
1

2

N∑
k=1

c̃k

N∑
l=1,l 6=k

(
αk

(
Φ
−1
Nl − Φ

−1
il

)
+ αl

(
Φ
−1
ik − Φ

−1
Nk

)
+
αkαl
αN

(
Φ
−1
Nl − Φ

−1
Nk

)
+
αkαl
αi

(
Φ
−1
ik − Φ

−1
il

))

It is easy to check that a function f homogeneous of degree r has the following property:∑N
k=1 fikck
fi(c)

= r − 1

This implies that Hi = r− 1 for all i = 1, 2, ..., N . Hence the first term in the linearised relative

demand functions is equal to zero, and the steady state consumption shares, bilateral elasticities

and the ratio H are sufficient to characterise the dynamics of the model at first order.

p̃i − p̃N =
1

2

N∑
k=1

c̃k

N∑
l=1,l 6=k

(
αk

(
Φ
−1
Nl − Φ

−1
il

)
+ αl

(
Φ
−1
ik − Φ

−1
Nk

)
+
αkαl
αN

(
Φ
−1
Nl − Φ

−1
Nk

)
+
αkαl
αi

(
Φ
−1
ik − Φ

−1
il

))
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C Kimball Aggregator Derivations

In this Appendix, we derive the elasticity of substitution between two goods i and j, for i, j =

1, 2, ..., N and i 6= j, for a a representative consumer in country n, where n = 1, 2, ..., N , implied

by the Kimball (1995) aggregator. For readability, we drop the country (n) superscripts and the

time subscripts. The elasticity of substitution that we derive is defined as:

Φij =
d(cj/ci)

d(pi/pj)

cipi
cjpj

We note that the first term on the right-hand side of this expression can be written as:

d(cj/ci)

d(pi/pj)
=

[
d(pi/pj)

d(cj/ci)

]−1
=

[
d(pi/pj)

dcj

dcj
d(cj/ci)

]−1
(22)

We derive this term in two steps.

First, we solve for the final term in equation (22), which can be expressed as:

dcj
d(cj/ci)

=

[
d(cj/ci)

dcj

]−1
=

[
∂(cj/ci)

∂cj
+
∂(cj/ci)

∂ci

dci
dcj

]−1
Within this, we can solve for dci

dcj
by using the total derivative of the aggregator function C = f(c),

where dC = 0 and dck for all k = 1, 2, ..., N where k 6= i, j. This yields:

dci
dcj

= −fj
fi

= −pj
pi

So then:

dcj
d(cj/ci)

=

[
1

ci

(
1 +

pjcj
pici

)]−1

Second, we solve for the first term in equation (22). To do this, we note that the relative demand

function can be expressed as:

pi
pj

=
Υ′
(
ci
biC

)
Υ′
(
cj
bjC

) ≡ h (ci, cj , C)
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So then, when dC = 0:

d(pi/pj)

dcj
=

dh

dcj

=
∂h

∂cj
+
∂h

∂ci

dci
dcj

=
1

σci

(
ci
biC

) ε
σ

+
pi
pj

1

σcj

(
cj
bjC

) ε
σ

Combining the expressions for the first and second terms in equation (22) yields:

d(cj/ci)

d(pi/pj)
=

(
1

σci

(
ci
biC

) ε
σ

+
pi
pj

1

σcj

(
cj
bjC

) ε
σ

)
ci

[
1 +

pjcj
pici

]−1

With this, the elasticity of substitution can be written as:

Φij = σ

(
1 +

αi
αj

)[(
ci
biC

) ε
σ

+
αi
αj

(
cj
bjC

) ε
σ

]−1
(23)

D Nested-CES Derivations

Here we derive the elasticity of substitution between pairs of goods in the 3-country nested CES

set-up detailed in the main text. We consider country (H) along all computations here and

therefore drop the superscripts (H) and the time subscripts for readability. Let us recall the

formula for the direct partial elasticity between goods x and y:

Φ−1xy = −
(

1

cxfx
+

1

cyfy

)−1 [(fxx
f2x
− fxy
fxfy

)
+

(
fyy
f2y
− fxy
fxfy

)]
We can apply it to the 3-country nested CES aggregator defined by :

C = f (cH , cF , cR) =

(
aH

1
φH cH

φH−1

φH + (1− aH)
1
φH CFR

φH−1

φH

) φH
φH−1

where CFR =

(
aF

1
φF cF

φF−1

φF + (1− aF )
1
φF CR

φF−1

φF

) φF
φF−1
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First, we compute the partial derivatives of f .

fH = a
1
φH
H

(
C

cH

) 1
φH

fF = (1− aH)
1
φH a

1
φF
F

(
C

CFR

) 1
φH

(
CFR
cF

) 1
φF

fR = (1− aH)
1
φH (1− aF )

1
φF

(
C

CFR

) 1
φH

(
CFR
cR

) 1
φF

fHH =
1

φH
fH

(
− 1

cH
+

1

C
fH

)
fHF = fFH =

1

φH
a

1
φH
H (1− aH)

1
φH a

1
φF
F

(
C

cH

) 1
φH

(
C

CFR

) 1
φH

(
CFR
cF

) 1
φF 1

C
=

1

φHC
fHfF

fHR =
1

φHC
fHfR

fFF = fF

(
− 1

φF cF
+
φH − φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF 1

CFR
+

1

φHC
fF

)

fFR = fF (1− aF )
1
φF

(
CFR
cR

) 1
φF

(
φH − φF
φHφF

1

CFR
+

1

φHC
(1− aH)

1
φH

(
C

CFR

) 1
φH

)

= fF

(
1

φHC
fR +

φH − φF
φHφF

1

CFR
(1− αF )

1
φF

(
CFR
cR

) 1
φF

)

fRR = fR

(
− 1

φF cR
+
φH − φF
φHφF

(1− aF )
1
φF

(
CFR
cR

) 1
φF 1

CFR
+

1

φHC
fR

)
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Using the above, we compute the inverse of the bilateral elasticities.

Φ−1
HF = −

(
1

cHfH
+

1

cF fF

)−1 [(
fHH
f2
H

− fHF
fHfF

)
+

(
fFF
f2
F

− fHF
fHfF

)]
= −

(
1

xHfH
+

1

xF fF

)−1

×

 1
φH

fH
(
− 1
cH

+ 1
C
fH
)

f2
H

−
1

φHC
fHfF

fHfF



+

fF
(
− 1
φF cF

+ φH−φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF 1

CFR
+ 1

φHC
fF

)
f2
F

−
1

φHC
fHfF

fHfF




= −
(

1

cHfH
+

1

cF fF

)−1

×


(
− 1
φHcH

+ 1
φHC

fH
)

fH
− 1

φHC



+


(
− 1
φF cF

+ φH−φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF 1

CFR
+ 1

φHC
fF

)
fF

− 1

φHC




= −
(
cF fF + cHfH
cHfHcF fF

)−1

×

[
− 1

φHcHfH
+

1

φHC
− 1

φHC
− 1

φF cF fF
+
φH − φF
φHφF fF

a
1
φF
F

(
CFR
cF

) 1
φF 1

CFR
+

1

φHC
− 1

φHC

]

= − cHfHcF fF
cF fF + cHfH

×

[
− 1

φHcHfH
− 1

φF cF fF
+
φH − φF
φHφF fF

a
1
φF
F

(
CFR
cF

) 1
φF 1

CFR

]

= −

[
− cF fF
cF fF + cHfH

1

φH
− cHfH
cF fF + cHfH

1

φF
+

cHfH
cF fF + cHfH

φH − φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF cF

CFR

]

=
cF pF

PFRCFR

(
cF pF + cHpH
PFRCFR

)−1
1

φH
+
cHpH
PC

PC

cF pF + cHpH

1

φF

− cHfH
cF fF + cHfH

φH − φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF cF

CFR

=
cF pF
PC

PC

PFRCFR

(
cF pF + cHpH

PC

PC

PFRCFR

)−1
1

φH

+
cHpH
PC

PC

cF pF + cHpH

1

φF
− cHfH
cF fF + cHfH

φH − φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF cF

CFR

=
αF

1 − αH

(
αF + αH
1 − αH

)−1
1

φH
+ αH (αF + αH)−1 1

φF
− αH
αF + αH

φH − φF
φHφF

a
1
φF
F

(
CFR
cF

) 1
φF cF

CFR

=
αF

αF + αH

1

φH
+

αH
αF + αH

1

φF
− αH
αF + αH

φH − φF
φHφF

pF
PFR

cF
CFR

=
αF

αF + αH

1

φH
+

αH
αF + αH

1

φF
− αH
αF + αH

φH − φF
φHφF

αF
1 − αH

=
1

φHφF (αF + αH) (1 − αH)
[αF (1 − αH)φF + αH(1 − αH)φH − αHαF (φH − φF )]

Φ−1
HF =

αFφF + αHαRφH
φHφF (αF + αHαR)
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Hence:

Φ
(H)
HF =

φHφF

(
α
(H)
F + α

(H)
H α

(H)
R

)
α
(H)
F φF + α

(H)
H α

(H)
R φH

We can compute Φ
(H)
HR in a similar fashion and obtain symmetrically:

Φ
(H)
HR =

φHφF (α
(H)
R + α

(H)
H α

(H)
F )

α
(H)
R φF + α

(H)
H α

(H)
F φH

And it is easy to check that Φ
(H)
FR = φF .
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