In this paper we provide a unified methodology for conducting likelihood-based inference on the unknown parameters of a general class of discrete-time stochastic volatility (SV) models, characterized by both a leverage effect and jumps in returns. Given the nonlinear/non-Gaussian state-space form, approximating the likelihood for the parameters is conducted with output generated by the particle filter. Methods are employed to ensure that the approximating likelihood is continuous as a function of the unknown parameters thus enabling the use of standard Newton-Raphson type maximization algorithms. Our approach is robust and efficient relative to alternative Markov Chain Monte Carlo schemes employed in such contexts. In addition it provides a feasible basis for undertaking the nontrivial task of model comparison. Furthermore, we introduce new volatility model, namely SV-GARCH which attempts to bridge the gap between GARCH and stochastic volatility specifications. In nesting the standard GARCH model as a special case, it has the attractive feature of inheriting the same unconditional properties of the standard GARCH model but being conditionally heavier-tailed; thus more robust to outliers. It is demonstrated how this model can be estimated using the described methodology. The technique is applied to daily returns data for S&P 500 stock price index for various spans. In assessing the relative performance of SV with leverage and jumps and nested specifications, we find strong evidence in favour of a including leverage effect and jumps when modelling stochastic volatility. Additionally, we find very encouraging results for SV-GARCH in terms of predictive ability which is comparable to the other models considered.
Sheheryar Malik and Michael K Pitt
February 2011
Classification JEL : C01, C11, C14, C15, C32, E32
Keywords : Stochastic volatility, Particle filter, Simulation, State space, Leverage effect, Jumps
Updated on: 06/12/2018 10:55